Какие свойства проявляет бериллий. Бериллий с точки зрения биолога и медика

Бериллий - светло-серый, легкий, достаточно твердый, хрупкий металл. На воздухе покрывается оксидной пленкой.

Получение:

В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия : BeCl2+2K=Be+2KCl.B e C l 2 + 2 K ⟶ B e + 2 K C l {\displaystyle {\mathsf {BeCl_{2}+2K\longrightarrow Be+2KCl}}}

В настоящее время бериллий получают, восстанавливаяфторид бериллиямагнием : BeF2+Mg=Be+MgF2,

либо электролизом расплава смеси хлоридов бериллия и натрия.

Химические свойства:

Для бериллия характерна только одна степень окисления +2. По многим химическим свойствам бериллий больше похож на алюминий, чем на находящийся непосредственно под ним в таблице Менделеева магний (проявление «диагонального сходства »). Металлический бериллий относительно мало реакционноспособен при комнатной температуре.

Пассивируется в холодной воде, концентрированных серной и азотной кислотах. Восстановитель, реагирует с кипящей водой, разбавленными кислотами, концентрированными щелочами, неметаллами, аммиаком, оксидами металлов, при нагревании сгорает в кислороде и на воздухе. С металлами бериллий образует интерметаллические соединения.

2Be + O 2 (900°С) = 2BeO

С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом.

Be + Hal 2 (нагр.) = 2BeHal 2 (7Be+2F→Be 7 F 2 ; 2Be+I 2 →2BeI)

3Be + C 2 H 2 = BeC 2 + H 2

Be + MgO = BeO + Mg

Взаимодействие с серой: 2Be+S→Be 2 S

Взаимодействие с азотом(N): 2Be+N 2 →2BeN

Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.

Be + 2HCl(разб.) = BeCl 2 + H 2

3Be + 8HNO3(разб) = 3 Be(NO3)2 + 2 NO + 4 H2O

Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.

Be + 2NaOH(конц.) + H 2 O = Na 2 BeO 2 + H 2

Be + 2NaOH(расплав) = Na 2 + H 2

Взаимодействие с водой:

2Be+3H 2 O→2H 2 + ВеО + Ве(OH) 2

2Be + 3H 2 O(кип.) = BeO↓ + Be(OH) 2 ↓ + 2H 2

Бериллий склонен к образованию комплексных соединений при взаимодействии с водными растворами щелочей.

Взаимодействие с азотной кислотой:

Взаимодействие с растворами щелочей:

Be + 2KOH + 2H 2 O = K 2 + H 2

Производство и применение:

В России планируется строительство нового комбината по производству бериллия к 2019 году. На долю остальных стран приходилось менее 1 % мировой добычи. Всего в мире производится 300 тонн бериллия в год (2016 год).

Легирование сплавов

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твёрдость и прочность сплавов, коррозионную устойчивость поверхностей, изготовленных из этих сплавов изделий. Рентгенотехника Бериллий слабо поглощает рентгеновское излучение , поэтому из него изготавливают окошки рентгеновских трубок Ядерная энергетика

В атомных реакторах из бериллия изготовляют отражатели нейтронов , его используют как замедлитель нейтронов . Лазерные материалы В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).Аэрокосмическая техника

В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материалРакетное топливо Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в связи с этим приложены значительные усилия для выявления бериллийсодержащих топлив, имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия .Огнеупорные материалы Он служит высокотеплопроводным высокотемпературным изолятором и огнеупорным материалом для лабораторных тиглей и в других специальных случаях.Акустика

Ввиду своей легкости и высокой твёрдости бериллий успешно применяется в качестве материала для электродинамических громкоговорителей . Биологическая роль и физиологическое действие:

В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать магний в некоторых ферментах , что приводит к нарушению их работы. Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг.

(на всякий случай)

Соединения бериллия (II). В кислых водных растворах ионы Ве 2+ находятся в виде прочных аква-комплексов [Ве(Н 2 О) 4 ] 2+ ; в сильно щелочных растворах – в виде ионов [Ве(ОН) 4 ] 2– .

Оксид ВеО – амфолит, при сплавлении взаимодействует и с основными, и с кислотными оксидами:

ВеО + SiО 2 = BeSiО 3 ; ВеО + Na 2 О = Na 2 BeО 2

При нагревании ВеО взаимодействует со щелочами и кислотами:

ВеО + 2HCl(конц.) = BeCl 2

ВеО + 2NaОН + Н 2 О = Na 2 [Ве(ОН) 4 ]

ВеО применяют в качестве химически стойкого и огнеупорного материала для изготовления тиглей и специальной керамики, а в атомной энергетике – как замедлитель и отражатель нейтронов.

Гидроксид Ве(ОН) 2 – полимерное соединение, и поэтому в воде не растворяется, амфолит.

Ве(ОН) 2 + 2NaОН(конц.) = Na 2 [Ве(ОН) 4 ]

ВеО + 2HCl + 3Н 2 О = [Ве(Н 2 О) 4 ]Cl 2

Амфотерностъ ВеНа1 2 наиболее отчетливо проявляется у фторида. Так, при нагревании BeF 2 с основными фторидами образуются фторобериллаты (другие галогенобериллаты не характерны): 2KF + BeF 2 = K 2

При взаимодействии BeF 2 с кислотными фторидами образуются соли бериллия:

BeF 2 + SiF 4 = Be

Гидрид ВеН 2 – сильный восстановитель; при его разложении водой выделяется водород: ВеН 2 + 2Н 2 О = Ве(ОН) 2 ↓ + Н 2

Большинство солей бериллия растворимо в воде, нераствори­мы ВеСО 3 , Ве 3 (РО 4) 2 и некоторые другие. Для бериллия весьма ха­рактерны двойные соли – бериллаты со сложными лигандами, например:

Na 2 SО 4 + BeSО 4 = Na 2

(NH 4) 2 CО 3 + BeCО 3 = (NH 4) 2

Прежде всего несколько (их может быть гораздо больше!) ответов на вопрос: «Что может нам дать бериллий?»... Самолет, вес которого вдвое меньше обычного; ...ракетное топливо с наивысшим удельным импульсом; ...пружины, способные выдержать до 20 миллиардов (!) циклов нагрузки – пружины, не знающие усталости, практически вечные.

А в начале нашего века в справочниках и энциклопедиях о бериллии говорилось: «Практического применения не имеет». Открытый еще в конце XVIII в. бериллий 100 с лишним лет оставался «безработным» элементом, хотя химикам уже были известны его уникальные и очень полезные свойства. Для того чтобы эти свойства перестали быть «вещью в себе», требовался определенный уровень развития науки и техники. В 30-х годах академик А.Е. Ферсман называл бериллий металлом будущего. Сейчас о бериллии можно и должно говорить как о металле настоящего.

Недоразумение с периодической системой

История элемента №4 началась с того, что его долго не могли открыть. Многие химики XVIII в. анализировали берилл (основной минерал бериллия), но никто из них не смог обнаружить в этом минерале нового элемента.

Даже современному химику, вооруженному фотометрическим, полярографическим, радиохимическим, спектральным, радиоактивационным и флуориметрическим методами анализа, нелегко выявить этот элемент, словно прячущийся за спину алюминия и его соединений, – настолько похожи их признаки. Первым исследователям бериллия приходилось, разумеется, гораздо труднее.

Но вот в 1798 г. французский химик Луи Никола Воклен, занимаясь сравнительным анализом берилла и изумруда, открыл в них неизвестный окисел – «землю». Она была очень похожа на окись алюминия (глинозем), однако Воклен заметил и отличия. Окисел растворялся в углекислом аммонии (а окись алюминия не растворяется); сернокислая соль нового элемента не образовывала квасцов с сернокислым калием (а сернокислая соль алюминия такие квасцы образует). Именно этой разницей в свойствах Воклен и воспользовался для разделения окислов алюминия и неизвестного элемента. Редакция журнала «Annales de chimie», опубликовавшего работу Воклена, предложила для открытой им «земли» название «глицина» (от греческого γλυμυς – сладкий) из-за сладкого вкуса ее солей. Однако известные химики М. Клапрот и А. Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе XIX в., вплоть до 60-х годов, элемент №4 сплошь и рядом называется «глицием», «глицинием» или «глюцинием». Ныне это название сохранилось только во Франции.

Интересно отметить, что с предложением называть элемент №4 бериллием еще в 1814 г. выступал харьковский профессор Ф.И. Гизе.

Окисел был получен, но еще долгое время никому не удавалось выделить бериллий в чистом виде. Только через 30 лет Ф. Вёлер и А. Бюсси получили немного порошкообразного металла действием металлического калия на хлористый бериллий, но металл этот содержал много примесей. Прошло еще почти 70 лет, прежде чем П. Лебо смог получить (в 1898 г.) чистый бериллий электролизом бериллиево-фтористого натрия.

Сходство бериллия с алюминием принесло немало хлопот и автору периодического закона Д.И. Менделееву. Именно из-за этого сходства в середине прошлого века бериллий считали трехвалентным элементом с атомным весом 13,8. Но, будучи помещен в таблице между углеродом и азотом, как того требовал его атомный вес, бериллий вносил полную путаницу в закономерное изменение свойств элементов. Это было серьезной угрозой периодическому закону. Однако Менделеев был уверен в правильности открытой им закономерности и доказывал, что атомный вес бериллия определен неверно, что бериллий должен быть не трехвалентным, а двухвалентным элементом «с магнезиальными свойствами». Исходя из этого, Менделеев поместил бериллий во вторую группу периодической системы вместе с двухвалентными щелочноземельными металлами, исправив его атомный вес на 9.

Первое подтверждение своих взглядов Менделеев нашел в одной из малоизвестных работ русского химика И.В. Авдеева, который считал, что окись бериллия химически подобна окиси магния. А в конце 70-х годов прошлого века шведские химики Ларе Фредерик Нильсон и Отто Петерсон (некогда бывшие самыми ярыми сторонниками мнения о трехвалентном бериллии), повторно определив атомный вес бериллия, нашли его равным 9,1.

Так бериллий, бывший первым камнем преткновения на пути периодического закона, только подтвердил его всеобщность. Благодаря периодическому закону стало более четким понятие о физической и химической сущности бериллия. Образно говоря, бериллий получил, наконец, свой «паспорт».

Сейчас бериллием интересуются люди многих профессий. В каждой из них – свой подход к элементу №4, своя «бериллиевая» проблематика.

Бериллий с точки зрения геолога

Типично редкий элемент. На тонну земного вещества в среднем приходится лишь 4,2 г бериллия. Это, конечно, очень немного, но и не так уж мало, если вспомнить, например, что такого известного элемента как свинец, на Земле вдвое меньше, чем бериллия. Обычно бериллий встречается как незначительная примесь в различных минералах земной коры. И лишь ничтожная часть земного бериллия сконцентрирована в собственных бериллиевых минералах. Их известно более 30, но только шесть из них считаются более или менее распространенными (берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит). А серьезное промышленное значение приобрел пока только один берилл, известный человеку с глубокой древности.

Бериллы встречаются в гранитных пегматитах, имеющихся почти во всех странах земного шара. Это красивые зеленоватые кристаллы, достигающие иногда очень больших размеров; известны бериллы-гиганты весом до тонны и длиной до 9 м.

К сожалению, пегматитовые месторождения очень малы, и добывать там берилл в широких промышленных масштабах не удается. Однако есть и другие источники бериллия, в которых его концентрация гораздо выше. Это так называемые пневмато-гидротермальные месторождения (т.е. месторождения, образовавшиеся в результате взаимодействия высокотемпературных паров и растворов с определенными типами горных пород).

Природный бериллий состоит из единственного устойчивого изотопа 9 Be. Интересно, что бериллий – единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп. Известны еще несколько нестабильных, радиоактивных изотопов бериллия. (О двух из них – 10 Be и 7 Be – будет сказано ниже.)

Бериллий с точки зрения металлурга

Свойства бериллия чаще всего именуются «удивительными», «чудесными» и т.п. Отчасти это справедливо, причем главная «удивительность» заключается в сочетании противоположных, иногда, казалось бы, взаимоисключающих свойств. Бериллий обладает одновременно и легкостью, и прочностью, и теплостойкостью. Этот металл серебристо-серого цвета в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы не утрачивают полезных свойств при температуре 700...800°C и могут работать в таких условиях.

Чистый бериллий очень тверд – им можно резать стекло. К сожалению, твердости сопутствует хрупкость.

Бериллий очень устойчив против коррозии. Как и алюминий, он покрывается при взаимодействии с воздухом тонкой окисной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Лишь за порогом 800°C идет окисление бериллия в массе, а при температуре 1200°C металлический бериллий сгорает, превращаясь в белый порошок BeO.

Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Один из его сплавов – бериллиевая бронза – это материал, позволивший решить многие сложные технические задачи.

Бериллиевыми бронзами называют сплавы меди с 1...3% бериллия. В отличие от чистого бериллия они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. Еще одна примечательная деталь: с течением времени большинство материалов, в том числе и металлы, «устают» и теряют прочность. Бериллиевые бронзы – наоборот. При старении их прочность возрастает! Они немагнитные. Кроме того, они не искрят при ударе. Из них делают пружины, рессоры, амортизаторы, подшипники, шестерни и многие другие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в широком интервале температур, высокие электро- и теплопроводные характеристики. Одним из потребителей этого сплава стала авиационная промышленность: утверждают, что в современном тяжелом самолете насчитывается больше тысячи деталей из бериллиевой бронзы.

Добавки бериллия облагораживают сплавы на основе алюминия и магния. Это понятно: плотность бериллия всего 1,82 г/см 3 , а температура плавления – вдвое выше, чем у этих металлов. Самые небольшие количества бериллия (достаточно 0,005%) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Одновременно улучшается качество отливок, значительно упрощается технология.

Выяснилось, что с помощью бериллия можно увеличивать прочность, жесткость и жаростойкость других металлов, не только вводя его в те или иные сплавы. Чтобы предотвратить быстрый износ стальных деталей, их иногда бериллизуют – насыщают их поверхность бериллием путем диффузии. Делается это так: стальную деталь опускают в бериллиевый порошок и выдерживают в нем при 900...1100°C в течение 10...15 часов. Поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом. Этот прочный панцирь толщиной всего 0,15...0,4мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.

Интересными свойствами отличаются и бериллиды – интерметаллические соединения бериллия с танталом, ниобием, цирконием и другими тугоплавкими металлами. Бериллиды обладают исключительной твердостью и стойкостью против окисления. Лучшей технической характеристикой бериллидов служит тот факт, что они могут проработать более 10 часов при температуре 1650°C.

Бериллий с точки зрения физика

В истории многих элементов есть особые вехи – открытия, после которых значение этих элементов неизмеримо возрастает. В истории бериллия таким событием стало открытие нейтрона.

В начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа частицами, заметили так называемое бериллиевое излучение – очень слабое, но чрезвычайно проникающее. Оно, как было доказано позже, оказалось потоком нейтронов. А еще позже это свойство бериллия легло в основу «нейтронных пушек» – источников нейтронов, применяемых в разных областях науки и техники.

Так было положено начало изучению атомной структуры бериллия. Выяснилось, что его отличают малое сечение захвата нейтронов и большое сечение их рассеяния. Иными словами, бериллий (а также его окись) рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких величин, при которых цепная реакция может протекать более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов.

Кроме того, бериллий может выполнять роль отражателя нейтронов: менять их направление, возвращать нейтроны в активную зону реактора, противодействовать их утечка. Бериллию свойственна также значительная радиационная стойкость, сохраняющаяся и при очень высокой температуре.

На всех этих свойствах основано применение бериллия в атомной технике – он один из самых необходимых ей элементов.

Замедлители и отражатели из бериллия и его окиси позволяют намного уменьшить размеры активной зоны реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Поэтому, несмотря на высокую стоимость бериллия, его использование считают экономически оправданным, особенно в небольших энергетических реакторах для самолетов и морских судов.

Окись бериллия стала важным материалом для изготовления оболочек тепловыделяющих элементов (твэлов) атомных реакторов. В твэлах особенно велика плотность нейтронного потока; в них – самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из BeO.

Большая теплопроводность (в 4 раза выше, чем у стали), большая теплоемкость и жаропрочность позволяют использовать бериллий и его соединения в теплозащитных конструкциях космических кораблей. Из бериллия была сделана внешняя тепловая защита капсулы космического корабля «Фрэндшип-7», на котором Джон Гленн первым из американских космонавтов совершил (после Юрия Гагарина и Германа Титова) орбитальный полет.

В еще большей мере космическую технику привлекают в бериллии легкость, прочность, жесткость, и особенно – необыкновенно высокое отношение прочности к весу. Поэтому бериллий и его сплавы все шире используются в космической, ракетной и авиационной технике.

В частности, благодаря способности сохранять высокую точность и стабильность размеров бериллиевые детали используют в гироскопах – приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.

Элемент №4 применяется и в других областях современной техники, в том числе в радиоэлектронике. В частности, керамика на основе окиси бериллия стала материалом корпусов так называемых ламп бегущей волны – очень эффективных радиоламп, не утративших своего значения под натиском полупроводников.

Рентгенотехнике металлический бериллий дал прекрасные окна для рентгеновских трубок: благодаря малому атомному весу он пропускает в 17 раз больше мягких рентгеновских лучей, чем алюминий такой же толщины.

Бериллий с точки зрения химика

Типично амфотерен, т.е. обладает свойствами и металла, и неметалла. Однако металлические свойства все же преобладают.

С водородом бериллий не реагирует даже при нагревании до 1000°C, зато он легко соединяется с галогенами, серой и углеродом. Из галогенидов бериллия наибольшее значение имеют его фторид и хлорид, используемые в процессе переработки бериллиевых руд.

Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее как и от кислорода, бериллий защищен окисной пленкой.

Окись бериллия (ВеО) обладает ценными свойствами и в некоторых случаях конкурирует с самим бериллием.

Высокая тугоплавкость (температура плавления 2570°C), значительная химическая стойкость и большая теплопроводность позволяют применять окись бериллия во многих отраслях техники, в частности для футеровки бессердечниковых индукционных печей и тиглей для плавки различных металлов и сплавов. Интересно, что окись бериллия совершенно инертна по отношению к металлическому бериллию. Это единственный материал, из которого изготовляют тигли для плавки бериллия в вакууме.

Сравнительно давно используют окись бериллия в производстве стекла. Добавки ее увеличивают плотность, твердость, показатель преломления и химическую стойкость стекол. С помощью окиси бериллия создают специальные стекла, обладающие большой прозрачностью для ультрафиолетовых и инфракрасных лучей.

Стекловолокно, в состав которого входит окись бериллия, может найти применение в конструкциях ракет и подводных лодок.

При горении бериллия выделяется много тепла – 15 тыс. ккал/кг. Поэтому бериллий может быть компонентом высокоэнергетического ракетного горючего.

Некоторые соединения бериллия служат катализаторами химических процессов. Со щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя – почти все бериллаты ядовиты.

Многие ученые считают, что изотопы бериллия 10 Ве и 7 Be образуются не в недрах земли, а в атмосфере – в результате воздействия космических лучей на ядра азота и кислорода. Незначительные примеси этих изотопов обнаружены в дожде, снеге, воздухе, в метеоритах и морских отложениях.

Однако если собрать воедино весь 10 Ве, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра – около 800 т.

Изотоп 10 Be (период полураспада 2,5·10 6 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10 Ве вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10 Ве во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.

Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10 Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 10 5 ...10 8 лет (из-за большой разницы между периодами полураспада 14 С и долгоживущих изотопов 40 K, 82 Rb, 232 Th, 235 U и 238 U). Изотоп 10 Be как раз «заполняет» этот разрыв.

Жизнь другого радиоизотопа – бериллия-7 – значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7 Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7 Ве, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7 Be в других исследованиях: химики – в качестве радиоактивного индикатора, биологи – для изучения возможностей борьбы с токсичностью самого бериллия.

Бериллий с точки зрения биолога и медика

Бериллий обнаружен в растениях, произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани – это и есть причина болезни.

Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза – специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединений бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.

Допустимые пределы содержания бериллия в воздухе очень малы – всего 0,001 мг/м 3 . Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.

Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.

Три «но» бериллия

Эта глава не означает, что все предыдущее – только «теория». Но, к сожалению, факторы, ограничивающие применение бериллия, вполне реальны, и не учитывать их нельзя.

Это прежде всего хрупкость металла. Она намного усложняет процесс его механической обработки, затрудняет получение больших листов бериллия и сложных профилей, необходимых в тех или иных конструкциях. Предпринимаются упорные попытки устранить этот недостаток. Но, несмотря на некоторые успехи (изготовление металла высокой чистоты, различные технологические усовершенствования), получение пластичного бериллия продолжает оставаться трудной проблемой.

Второе – токсичность бериллия.

Тщательный контроль за чистотой воздуха, особые системы вентиляции, возможно большая автоматизация производства – все это позволяет успешно бороться с токсичностью элемента №4 и его соединений.

И наконец, третье и очень важное «но» бериллия – его высокая стоимость. Цена 1 кг бериллия в США сейчас около 150 долларов, т.е. бериллий в несколько раз дороже титана.

Однако рост потребления всегда приводит к технологическим усовершенствованиям, которые в свою очередь способствуют уменьшению издержек производства и цены. В будущем спрос на бериллий возрастет еще больше: ведь этот металл человечество начало применять чуть больше 40 лет назад. И, конечно, достоинства элемента №4 возьмут верх над его недостатками.

Из документов прошлого

Восьмидесятые годы прошлого века – время оживленных научных споров об атомном весе бериллия.

Д.И. Менделеев писал по этому поводу:

«Недоразумение длилось несколько лет. Не раз мне приходилось слышать о том, что вопрос об атомном весе бериллия грозит поколебать общность периодического закона, может потребовать глубоких в нем преобразований. В научном разноречии, касающемся бериллия, приняли участие многие силы, конечно, потому именно, что дело шло о предмете более многозначительном, чем атомность сравнительно редкого элемента; периодический закон разъяснялся в этих разноречиях, и взаимная связь элементов разных групп стала более очевидной, чем было когда-либо» .

Долгое время главными противниками двух валентности бериллия были шведские химики профессора Л.Ф. Нильсон и О. Петерсон. В 1878 г. они опубликовали статью «О получении и валентности бериллия», в конце которой были такие слова: «...наше мнение об истинном атомном весе и химической природе этого металла противоречит так называемому периодическому закону, который Менделеев предначертал для всех элементов, а именно не только потому, что при Be = 13,8 металл этот едва ли может быть помещен в менделеевскую систему, но и потому, что тогда элемент с атомным весом 9,2, как это требует периодический закон, в системе отсутствовал бы и, по-видимому, еще должен быть открыт».

В защиту периодического закона выступил чешский химик Богуслав Браунер, считавший, что известный закон Дюлонга и Пти, которым пользовались шведские химики, имеет некоторые отступления в области малых атомных весов, к которой собственно и относится бериллий. Кроме того, Браунер советовал Нильсону и Петерсону определить плотность паров хлористого бериллия, считая, что количественное определение этой характеристики поможет точно установить принадлежность элемента к той или иной группе периодической системы. Когда шведские химики повторили свои опыты и проделали то, что советовал им Браунер, они убедились в правоте Менделеева. В статье, отражавшей результаты этой работы, Нильсон и Петерсон написали: «...мы должны отказаться от ранее защищавшегося нами мнения о том, что бериллий трехвалентный элемент... Одновременно мы признаем правильность периодического закона и в этом важном случае».

В 1884 г. Нильсон писал Менделееву: «...не могу не выразить Вам моего сердечного поздравления по поводу того, что и в этом случае, как и во многих других, система оправдала себя».

Позднее в одном из изданий «Основ химии» Д.И. Менделеев отметил, что «Нильсон и Петерсон – одни из главных защитников трехатомности бериллия... доставили опытные доказательства в пользу двухатомности бериллия и, громко высказав это, показали, что в науке истина, даже при разноречиях, одинаково дорога всем, хотя бы сперва и отрицалась теми, кто ее утвердил».

Драгоценные бериллы

Основной минерал бериллия – берилл относится, как известно, к полудрагоценным камням. Но когда говорят о четырех его разновидностях – изумруде, аквамарине, воробьевите и гелиодоре, то приставку «полу» отбрасывают. Изумруды, особенно весом больше 5 каратов, ценятся не меньше бриллиантов.

Чем отличаются эти камни от обычного берилла? Ведь формула их та же – Al 2 Be 3 (Si 6 O 18). Но эта формула не учитывает примесей, которые, собственно, и превращают полудрагоценные камни в драгоценные. Аквамарин окрашен ионами двухвалентного железа, в изумруде (он же смарагд) кроме Fe 2+ есть незначительная примесь окиси хрома. Розовый цвет воробьевита объясняется примесью соединений цезия, рубидия и двухвалентного марганца, а золотисто-желтый гелиодор окрашен ионами трехвалентного железа.

Драгоценный металл из полудрагоценного камня

Высокая стоимость бериллия объясняется не только ограниченностью сырьевых ресурсов, но и сложностями технологии получения чистого металла. Основной метод производства бериллия – восстановление его фторида металлическим магнием. Фторид получают из гидроокиси, а гидроокись из бериллового концентрата. Уже первый прогон этой технологической лестницы состоит из нескольких ступеней: концентрат подвергают термообработке, измельчению, затем на него последовательно действуют серной кислотой, водой, растворами аммиака и едкого натра, специальными комплексообразователями.

Получившийся бериллат натрия гидролизуют и на центрифуге отделяют гидроокись.

Гидроокись превращается во фторид тоже лишь после нескольких операций, каждая из которых достаточно сложна и трудоемка. Восстановление магнием идет при температуре 900°C, ход процесса тщательно контролируется. Важная деталь: тепло, выделяющееся в реакции, поглощается с той же скоростью, что и выделяется. Полученный жидкий металл выливают в графитовые изложницы, но он загрязнен шлаком, и поэтому его еще раз переплавляют в вакууме.

Бериллий в быту

Сферы применения бериллия не ограничиваются «высокой» техникой. С изделиями из никель-бериллиевых сплавов (содержание Be не превышает 1,5%) можно встретиться и в повседневной жизни. Из этих сплавов изготавливают хирургические инструменты, иглы для подкожных инъекций, литые металлические зубы. Из сплава «элинвар» (никель, бериллий, вольфрам) в Швейцарии делают пружины для часов. Медно-бериллиевый сплав в США используют для изготовления втулок пишущего механизма шариковых ручек.

Искусственные изумруды

Получить изумруды искусственным путем гораздо труднее, чем большинство других драгоценных камней. Главная причина в том, что берилл – сложное комплексное соединение. Однако ученые смогли имитировать природные условия, в которых происходило образование минерала: изумруды «рождаются» при очень высоком давлении (150 тыс. атм.) и высокой температуре (1550°C). Искусственные изумруды могут использоваться в электронике.

Бериллий и сверхпроводимость

Сейчас известно более тысячи материалов, приобретающих при температуре, близкой к абсолютному нулю, свойство сверхпроводимости. В их числе – металлический бериллий. Будучи сконденсирован в виде тонкой пленки на холодную подложку, бериллий становится сверхпроводником при температуре около 8 К.

Бериллий в целебном средстве

В 1964 г. группа советских химиков во главе с вице-президентом Академии наук Таджикской ССР, доктором химических наук К.Т. Порошиным провела химический анализ древнего целебного средства «мумие». Оказалось, что это вещество сложного состава, причем в числе многих элементов, содержащихся в мумие, есть и бериллий.

География месторождений бериллия

Бериллиевое сырье имеется во многих странах мира. Наиболее крупные месторождения его находятся в Бразилии и Аргентине. На их долю приходится примерно 40% добычи берилла в капиталистических странах. Значительные запасы бериллиевых руд имеются также в странах Африки и в Индии.

Вплоть до последнего времени крупнозернистый берилл добывали вручную. В Бразилии таким кустарным способом и сейчас ежегодно добывается до 3000 т концентрата.

Лишь недавно были предложены новые методы флотации, позволяющие использовать нерентабельные ранее месторождения мелкозернистого берилла.

Бериллий и «атомная игла»

Теплоизоляционные свойства окиси бериллия могут пригодиться и при исследовании земных глубин. Так, существует проект взятия проб из мантии Земли с глубин до 32 км с помощью так называемой атомной иглы. Это миниатюрный атомный реактор диаметром всего 60 см. Реактор должен быть заключен в теплоизолирующий футляр из окиси бериллия с тяжелым вольфрамовым наконечником.

Принцип действия атомной иглы заключается в следующем: высокие температуры, создаваемые в реакторе (свыше 1100°C), вызовут плавление скальных пород и продвижение реактора к центру Земли. На глубине примерно 32 км тяжелое вольфрамовое острие должно отделиться, а реактор, став более легким, чем окружающие его породы, возьмет пробы с недостижимых пока глубин и «всплывет» на поверхность.

Прежде всего несколько (их может быть гораздо больше!) ответов на вопрос: «Что может нам дать бериллий?» ...Самолет, вес которого вдвое меньше обычного; .ракетное топливо с наивысшим удельным импульсом; .пружины, способные выдержать до 20 миллиардов (!) циклов нагрузки - пружины, не знающие усталости, практически вечные.
А в начале нашего века в справочниках и энциклопедиях о бериллии говорилось: «Практического применения не имеет». Открытый еще в конце XVIII в. бериллий 100 с лишним лет оставался «безработным» элементом, хотя химикам уже были известны его уникальные и очень полезные свойства. Для того чтобы эти свойства перестали быть «вещью в себе», требовался определенный уровень развития науки и техники. В 30-х годах академик А.Е. Ферсман называл бериллий металлом будущего. Сейчас о бериллии можно и должно говорить как о металле настоящего.

Бериллий и недоразумение с периодической системой

История элемента № 4 началась с того, что его долго не могли открыть. Многие химики XVIII в. анализировали берилл (основной минерал бериллия), но никто из них не смог обнаружить в этом минерале нового элемента.
Даже современному химику, вооруженному фотометрическим, полярографическим, радиохимическим, спектральным,
радиоактивационным и флуориметрическим методами анализа, нелегко выявить этот элемент, словно прячущийся за спину алюминия и его соединений, - настолько похожи их признаки. Первым исследователям бериллия приходилось, разумеется, гораздо труднее.

Открытие бериллия

В 1798 г. французский химик Луи Никола Воклен, занимаясь сравнительным анализом берилла и изумруда , открыл в них неизвестный окисел - «землю». Она была очень похожа на окись алюминия (глинозем), однако Воклен заметил и отличия. Окисел растворялся в углекислом аммонии (а окись алюминия не растворяется); сернокислая соль нового элемента не образовывала квасцов с сернокислым калием (а сернокислая соль алюминия такие квасцы образует). Именно этой разницей в свойствах Воклен и воспользовался для разделения окислов алюминия и неизвестного элемента. Редакция журнала «Annales de chimie», опубликовавшего работу Воклепа, предложила для открытой им «земли» название «глицина» (от греческого - сладкий) из-за сладкого вкуса ее солей. Однако известные химики М. Клапрот и А. Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее в научной литературе XIX в., вплоть до 60-х годов, элемент № 4 сплошь и рядом называется «глицием», «глицинием» или «глюцинием». Ныне это название сохранилось только во Франции.Луи Никола Воклен (1763-1820) - французский химик, член Парижской академии наук. В 1797 г. в сибирской красной свинцовой руде он открыл новый элемент - хром и выделил его в свободном состоянии. Спустя год (в 1798 г.) в драгоценном минерале берилле Воклен обнаружил окисел еще одного нового элемента, названного бериллием
Интересно отметить, что с предложением называть элемент № 4 бериллием еще в 1814 г. выступал харьковский профессор Ф. И. Гизе.
Окисел был получен, но еще долгое время никому не удавалось выделить бериллий в чистом виде . Только через 30 лет Ф. Вёлер и А. Бюсси получили немного порошкообразного металла действием металлического калия на хлористый бериллий, но металл этот содержал иного примесей.
Прошло еще почти 70 лет, прежде чем П. Лебо смог получить (в 1898 г.) чистый бериллий электролизом бериллиевофтористого натрия.
Сходство бериллия с алюминием принесло немало хлопот и автору периодического закона Д. И. Менделееву. Именно из-за этого сходства в середине прошлого века бериллий считали трехвалентным элементом с атомным весом 13,8. Но, будучи помещен в таблице между углеродом и азотом , как того требовал его атомный вес, бериллий вносил полную путаницу в закономерное изменение свойств элементов. Это было серьезной угрозой периодическому закону. Однако Менделеев был уверен в правильности открытой им закономерности и доказывал, что атомный вес бериллия определен неверно, что бериллий должен быть не трехвалентным, а двухвалентным элементом «с магнезиальными свойствами». Исходя из этого, Менделеев поместил бериллий во вторую группу периодической системы вместе с двухвалентными
щелочноземельными металлами, исправив его атомный вес на 9.


Первое подтверждение своих взглядов Менделеев нашел в одной из малоизвестных работ русского химика И. В. Авдеева, который считал, что окись бериллия химически подобна окиси магния . А в конце 70-х годов прошлого века шведские химики Ларе Фредерик Нильсон и Отто Петерсон (некогда бывшие самыми ярыми сторонниками мнения о трехвалентном бериллии), повторно определив атомный вес бериллия, нашли его равным 9,1.
Так бериллий, бывший первым камнем преткновения на пути периодического закона, только подтвердил его всеобщность. Благодаря периодическому закону стало более четким понятие о физической и химической сущности бериллия. Образно говоря, бериллий получил, наконец, свой «паспорт».
Сейчас бериллием интересуются люди многих профессий. В каждой из них - свой подход к элементу № 4, своя «бериллиевая» проблематика.
Типично редкий элемент. На тонну земного вещества в среднем приходится лишь 4,2 г бериллия. Это, конечно, очень немного, но и не так уж мало, если вспомнить, например, что такого известного элемента как свинец , на Земле вдвое меньше, чем бериллия. Обычно бериллий встречается как незначительная примесь в различных минералах земной коры. И лишь ничтожная часть земного бериллия сконцентрирована в собственных бериллиевых минералах. Их известно более 30, но только шесть из них считаются более или менее распространенными (берилл, хризоберилл , бертрандит, фенакит , гельвин , даналит). А серьезное промышленное значение приобрел пока только один берилл, известный человеку с доисторических времен.
Бериллы встречаются в гранитных пегматитах, имеющихся почти во всех странах земного шара. Это красивые зеленоватые кристаллы, достигающие иногда очень больших размеров; известны бериллы-гиганты весом до тонны и длиной до 9 м.
К сожалению, пегматитовые месторождения очень малы, и добывать там берилл в широких промышленных масштабах не удается. Однако есть и другие источники бериллия, в которых его концентрация гораздо выше. Это так называемые пневмато-гидротермальные месторождения (т. е. месторождения, образовавшиеся в результате взаимодействия высокотемпературных паров и растворов с определенными типами горных пород).
Природный бериллий состоит из единственного устойчивого изотопа 9 Be. Интересно, что бериллий - единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп. Известны еще несколько нестабильных, радиоактивных изотопов бериллия. (О двух из них - 10 Be и 7 Be - будет сказано ниже.)
Свойства бериллия чаще всего именуются «удивительными», «чудесными» и т. п. Отчасти это справедливо, причем главная «удивительность» заключается в сочетании противоположных, иногда, казалось бы, взаимоисключающих свойств. Бериллий обладает одновременно и легкостью, и прочностью, и теплостойкостью. Этот металл серебристо-серого цвета в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы не утрачивают полезных свойств при температуре 700- 800°С и могут работать в таких условиях.
Чистый бериллий очень тверд - им можно резать стекло. К сожалению, твердости сопутствует хрупкость.
Бериллий очень устойчив против коррозии. Как и алюминий, он покрывается при взаимодействии с воздухом гонкой окисной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Лишь за порогом 800°С идет окисление бериллия в массе, а при температуре 1200°С металлический бериллий сгорает, превращаясь в белый порошок BeO.
Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Один из его сплавов - бериллиевая бронза - это материал, позволивший решить многие сложные технические задачи.
Бериллиевыми бронзами называют сплавы меди с 1-3% бериллия. В отличие от чистого бериллия они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. Еще одна примечательная деталь: с течением времени большинство материалов, в том числе и металлы, «устают» и теряют прочность. Бериллиевые бронзы - наоборот. При старении их прочность возрастает! Они немагнитны. Кроме того, они не искрят при ударе. Из них делают пружины, рессоры, амортизаторы, подшипники, шестерни и многие другие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в широком интервале температур, высокие электро- и теплопроводные характеристики. Одним из потребителей этого сплава стала авиационная промышленность: утверждают, что в современном тяжелом самолете насчитывается больше тысячи деталей из бериллиевой бронзы.
Добавки бериллия облагораживают сплавы на основе алюминия и магния. Это понятно: плотность бериллия всего 1,82 г/см 3 , а температура плавления - вдвое выше, чем у этих металлов. Самые небольшие количества бериллия (достаточно 0,005%) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Одновременно улучшается качество отливок, значительно упрощается технология.
Выяснилось, что с помощью бериллия можно увеличивать прочность, жесткость и жаростойкость других металлов, не только вводя его в те или иные сплавы. Чтобы предотвратить быстрый износ стальных деталей, их иногда бериллизуют - насыщают их. поверхность бериллием путем диффузии. Делается это так: стальную деталь опускают в бериллиевый порошок и выдерживают в нем при 900 - 1100°С в течение 10 - 15 часов. Поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом . Этот прочный панцирь толщиной всего 0,15 - 0,4 мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.
Интересными свойствами отличаются и бериллиды - интерметаллические соединения бериллия с танталом , ниобием , цирконием и другими тугоплавкими металлами. Бериллиды обладают исключительной твердостью и стойкостью против окисления. Лучшей технической характеристикой бериллидов служит тот факт, что они могут проработать более 10 часов при температуре 1650°С.
В истории многих элементов есть особые вехи - открытия, после которых значение этих элементов неизмеримо возрастает. В истории бериллия таким событием стало открытие нейтрона.
В начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа-частицами, заметили так называемое бериллиевое излучение - очень слабое, но чрезвычайно проникающее. Оно, как было доказано позже, оказалось потоком нейтронов. А еще позже это свойство бериллия легло в основу «нейтронных пушек» - источников нейтронов, применяемых в разных областях науки и техники.
Так было положено начало изучению атомной структуры бериллия. Выяснилось, что его отличают малое сечение захвата нейтронов и большое сечение их рассеяния. Иными словами, бериллий (а также его окись) рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких величин, при которых цепная реакция может протекать более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов.
Кроме того, бериллий может выполнять роль отражателя нейтронов: менять их направление, возвращать нейтроны в активную зону реактора, противодействовать их утечке. Бериллию свойственна также значительная радиационная стойкость, сохраняющаяся и при очень высокой температуре.
На всех этих свойствах, основано применение бериллия в атомной технике - он один из самых необходимых ей элементов.
Замедлители и отражатели из бериллия и его окиси позволяют намного уменьшить размеры активной зоны реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Поэтому, несмотря на высокую стоимость бериллия, его использование считают экономически оправданным, особенно в небольших энергетических реакторах для самолетов и морских судов.
Окись бериллия стала важным материалом для изготовления оболочек тепловыделяющих элементов (твэлов) атомных реакторов. В твэлах особенно велика плотность нейтронного потока; в них - самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из BeO.
Большая теплопроводность (в 4 раза выше, чем у стали), большая теплоемкость и жаропрочность позволяют использовать бериллий и его соединения в теплозащитных конструкциях космических кораблей. Из бериллия была сделана внешняя тепловая защита капсулы космического корабля «Фрэндшип-7», на котором Джон Гленн первым из американских космонавтов совершил (после Юрия Гагарина и Германа Титова) орбитальный полет.
В еще большей мере космическую технику привлекают в бериллии легкость, прочность, жесткость, и особенно - необыкновенно высокое отношение прочности к весу. Поэтому бериллий и его сплавы все шире используются в космической, ракетной и авиационной технике.
В частности, благодаря способности сохранять высокую точность и стабильность размеров бериллиевые детали используют в гироскопах - приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.
Элемент № 4 применяется и в других областях современной техники, в том числе в радиоэлектронике. В частности, керамика на основе окиси бериллия стала материалом корпусов так называемых ламп бегущей волны - очень эффективных радиоламп, не утративших своего значения под натиском полупроводников.
Рентгенотехнике металлический бериллий дал прекрасные окна для рентгеновских трубок: благодаря малому атомному весу он пропускает в 17 раз больше мягких рентгеновских лучей, чем алюминий такой же толщины.
Типично амфотерен, т. е. обладает свойствами и металла, и неметалла. Однако металлические свойства все же преобладают.
С водородом бериллий не реагирует даже при нагревании до 1000°С, зато он легко соединяется с галогенами, серой и углеродом. Из галогенидов бериллия наибольшее значение имеют его фторид и хлорид, используемые в процессе переработки бериллиевых руд.
Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее, как и от кислорода, бериллий защищен окисной пленкой.
Окись бериллия (BeO) обладает ценными свойствами и в некоторых случаях конкурирует с самим бериллием.
Высокая тугоплавкость (температура плавления 2570°С), значительная химическая стойкость и большая теплопроводность позволяют применять окись бериллия во многих отраслях техники, в частности для футеровки бессердечниковых индукционных печей и тиглей для плавки различных металлов и сплавов. Интересно, что окись бериллия совершенно инертна по отношению к металлическому бериллию. Это единственный материал, из которого изготовляют тигли для плавки бериллия в вакууме.
Сравнительно давно используют окись бериллия в производстве стекла. Добавки ее увеличивают плотность, твердость, показатель преломления и химическую стойкость стекол» С помощью окиси бериллия создают специальные стекла, обладающие большой прозрачностью для ультрафиолетовых и инфракрасных лучей.
Стекловолокно, в состав которого входит окись бериллия, может найти применение в конструкциях ракет и подводных лодок.
При горении бериллия выделяется много тепла - 15 тыс. ккал/кг. Поэтому бериллий может быть компонентом высокоэнергетического ракетного горючего.
Некоторые соединения бериллия служат катализаторами химических процессов. С щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя - почти все бериллаты ядовиты.
Многие ученые считают, что изотопы бериллия 10 Be и 7 Be образуются не в недрах земли, а в атмосфере - в результате воздействия космических лучей на ядра азота и кислорода. Незначительные примеси этих, изотопов обнаружены в дожде, снеге, воздухе, в метеоритах и морских отложениях.
Однако если собрать воедино весь 10 Be, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра - около 800 т.
Изотоп 10 Be (период полураспада 2,5-106 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10 Be вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10 Be во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.
Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 105-108 лет (из-за большой разницы между периодами полураспада 14C и долгоживущих изотопов 40 K, 82 Rb, 232 Th, 235 U и 238 U). Изотоп 10 Be как раз «заполняет» этот разрыв.
Жизнь другого радиоизотопа - бериллия-7 - значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7 Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7 Be, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7 Be в других исследованиях: химики - в качестве радиоактивного индикатора, биологи - для изучения возможностей борьбы с токсичностью самого бериллия.

Бериллий в растениях

Бериллий обнаружен в растениях , произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани - это и есть причина болезни.
Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза - специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединении бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.
Допустимые пределы содержания бериллия в воздухе очень малы - всего 0,001 мг/м 3 . Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.
Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.

Изначально, бериллий звали глюцинием. С греческого переводится, как «сладкий». То, что кристаллы металла на вкус напоминают конфеты, впервые заметил Поль Лебо.

Французскому химику удалось синтезировать агрегаты бериллия в конце 19-го века. Помог метод электролиза. В металлической же форме элемент был получен еще в 1828-ом немцем Фридрихом Веллером. В бериллий встал на 4-е место и прослыл веществом с удивительными свойствами. Сладостью они не ограничиваются.

Химические и физические свойства бериллия

Формула бериллия отличается всего 4-мя электронами. Это не удивительно, учитывая место элемента в таблице Менделеева. Удивительно, что все они находятся на s-орбитах. Не остается свободных позиций для новых электронов.

Поэтому, бериллий – элемент , не желающий вступать в химические реакции. Исключения металл делает для веществ, способных отобрать, заместить его собственные электроны. На это, к примеру, способен галоген.

Бериллий – металл . Однако, у него есть и ковалентные связи. Это значит, что в атоме бериллия перекрываются, обобщаются некоторые пары электронных облаков, что характерно для неметаллов. Такая двойственность сказывается на механических параметрах вещества. Материал одновременно хрупкий и твердый.

Отличается бериллий и легкостью. Плотность металла всего 1,848 граммов на кубический сантиметр. Ниже планка лишь у некоторых щелочных металлов. Сходясь с ними в плотности, бериллий выгодно выделяется устойчивостью к коррозии.

От нее элемент спасает пленка в доли миллиметра толщиной. Это оксид бериллия . Он образуется на воздухе за 1,5-2 часа. В итоге блокируется доступ кислорода к металлу, и он сохраняет все первозданные характеристики.

Радуют и прочность бериллия . Проволока диаметром всего в 1 миллиметр способна держать навесу взрослого мужчину. Для сравнения, аналогичная нить рвется при нагрузке в 12 килограммов.

Бериллий, свойства которого обсуждаются, почти не теряет прочности при нагреве. Если довести температуру до 400-от градусов, «сила» металла ослабеет лишь вдвое. Дюралюминий, к примеру, становится менее прочным в 5 раз.

Предельная температура твердости бериллия – более 1 200-от по шкале Цельсия. Это непредсказуемо, ведь в периодической таблице 4-ый элемент стоит между и . Первый плавится при 180-ти, а второй – при 650-ти градусов.

По идее, температура размягчения бериллия должна быть около 400-от по шкале Цельсия. Но, 4-ый элемент попал в список относительно тугоплавких, уступив, к примеру, железу лишь 300 градусов.

Предельная реакция бериллия на температуру – кипения. Оно происходит при 2 450-ти градусах Цельсия. Закипая, металл превращается в единую серую массу. В обычном же виде, элемент , с выраженным, слегка маслянистым блеском.

Сияние красиво, но опасно для здоровья. Бериллий ядовит . Попадая в организм, металл замещает костный магний. Начинается бериллиоз. Его острая форма выражается отеком легких, сухим кашлем. Бывают летальные случаи.

Влияние на живые ткани – один из немногих недостатков бериллия. Достоинств больше. Они служат человечеству, в частности, в сфере тяжелой промышленности. Итак, настало время изучить, как применяется 4-ый элемент таблицы Менделеева.

Применение бериллия

Гидроксид бериллия и окись урана составляют ядерное топливо. 4-ый металл используют в атомных реакторов и для замедления нейтронов. Оксид бериллия добавляют не только в топливо, но и делают из него тигли. Это высокотеплопроводные, высокотемпературные изоляторы.

Кроме атомной техники соединения бериллия , на его основе пригождаются в авиастроении и космонавтике. Из 4-го металла делают тепловые экраны и системы наведения. Элемент нужен и для ракетного топлива, а так же, обшивки кораблей. Их корпуса делают из бериллиевых бронз.

По свойствам они превосходят легированные стали. Достаточно прибавить к всего 1-3% 4-го элемента, чтобы довести до максимума разрывную прочность. Со временем она не теряется. Другие же сплавы с годами устают, их эксплуатационные параметры снижаются.

Чистый бериллий плохо обрабатывается. Выступая в роли добавки к , металл становится податливым. Можно изготовить ленту толщиной всего в 0,1 миллиметра. Масса бериллия облегчает сплав, исключает его магнитность, искрение при ударах.

Все это пригождается в производстве пружин, подшипников, рессоров, амортизаторов, шестерней. Эксперты утверждают, что в современном самолете присутствует больше 1 000 деталей именно из бериллиевой бронзы.

В металлургии используют и пару бериллий-магний . Последний металл теряется при плавлении. Добавка 0,005% 4-го элемента сокращает испарение и окисление магния при плавке и .

По аналогии действуют, так же, с составами на основе алюминия. Если же сочетать 4-ый металл с или , получатся бериллиды. Это сплавы исключительной твердости, способные прослужить 10 часов при температуре в 1650 градусов Цельсия.

Хлорид бериллия необходим медикам. Они используют вещество при диагностике туберкулеза и вообще в рентгенотехническом оборудовании. 4-ый элемент – один из немногих, не взаимодействующих с лучами рентгеновского спектра.

Ядро бериллия , его атомы почти невесомы. Это позволяет пропускать в 17 раз больше мягких лучей, чем, к примеру, пропускает алюминий аналогичной толщины. Поэтому, окошки рентгеновских трубок делают именно из бериллия.

Добыча бериллия

Металл извлекают из руд. Измельченный бериллий спекают с известью, фторсиликатном натрия и мелом. Полученную смесь проводят через несколько химических реакций до получения гидроокиси 4-го элемента. В процессе участвует кислота.

Бериллия очистка трудоемка. Гидроокись требует прокаливания до состояния оксида. Его, в свою очередь, переводят в хлорид или же фторид. Из них-то путем электролиза и добывают металлический бериллий . Используют, так же, метод восстановления магнием.

Получение бериллия – это десятки перегонок и очисток. Избавится, главным образом, нужно от оксида металла. Вещество делает бериллий чрезмерно хрупким, непригодным для промышленного использования.

Процесс добычи 4-го элемента осложняется и его редкостью. На тонну земной коры приходится меньше 4-х граммов бериллия. Общемировые запасы оцениваются всего в 80 000 тонн. Ежегодно из недр извлекают около 300-от из них. Объем добычи постепенно растет.

Больше всего элемента в щелочных, богатых кремнеземом, породах. Их почти нет на Востоке. Это единственный регион, не добывающий бериллий. Больше всего металла в США, в частности, штате Юта. Богаты 4-ым элементом и Центральная Африка, Бразилия, Россия. На них приходятся 50% мировых запасов бериллия .

Цена бериллия

На бериллий цена обусловлена не только его редкостью, но и сложностью производства. В итоге, стоимость килограмма доходит до нескольких сотен долларов США.

На биржах цветных металлов торгуют фунтами. Английская мера веса равна примерно 450-ти граммам. За этот объем просят почти 230 условных единиц. Соответственно, килограмм оценивают чуть ли не в 500 долларов.

К 2017-му году мировой рынок бериллия, по прогнозам экспертов, достигнет 500-от тонн. Это свидетельствует о спросе на металл. Значит, его стоимость, наверняка, продолжит расти. Не зря бериллий – основа драгоценных камней , , .

Цена сырья приближается к запросам ювелиров за ограненные кристаллы. Они, кстати, могут быть материалом для добычи бериллия . Но, естественно, никто не пускает изумруды на переплавку, пока в природе есть залежи руд, содержащих 4-ый элемент. Как правило, он сопутствует алюминию. Так что, если удалось найти руды последнего, наверняка, удастся обнаружить в них и бериллий.

«Бериллий и сплавы, содержащие бериллий. Свойства, применение в химической технологии»


Введение

Применяемые в промышленности и быту металлические изделия редко состоят из чистых металлов, примером является алюминиевая или медная проволока с процентным содержанием металла около 99,9%, в большинстве других случаев идет речь о сплавах. Сплавы – системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие свойствами, присущими металлическому состоянию. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т. к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют стали различных составов. Для получения легированных сталей к железу, являющемуся главной составляющей сплава, добавляют кремний, медь, марганец, никель, хром, вольфрам, ванадий, молибден и другие компоненты.

В данной работе будут рассмотрены свойства и применение металла бериллия и содержащих бериллий сплавов.


Бериллий – светло-серый металл второй группы Периодической системы элементов Д.И. Менделеева. Порядковый номер 4, атомная масса 9,013. Символ Be (лат. Beryllium). Имеет один стабильный изотоп 9 Be, известны также радиоактивные изотопы бериллия 7 Be и 10 Be с периодами полураспада 53,29 дней и 1,6·10 6 лет соответственно. Открыт в 1798 в виде окиси BeO, выделенной из минерала берилла Л. Вокленом. Металлический Ве впервые получили в 1828 Ф. Вёлер и А. Бюсси независимо друг от друга. Так как некоторые соли Ве сладкого вкуса, его вначале называли «глюциний» (от греч. glykys – сладкий) или «глиций». Название Glicinium (знак GI) употребляется (наряду с Ве) только во Франции. Применение Ве началось в 40-х гг. 20 в., хотя его ценные свойства как компонента сплавов были обнаружены ещё ранее, а замечательные ядерные – в начале 30-х гг. 20 в.

Ве может существовать в двух полиморфных модификациях. Низкотемпературная модификация (α-Ве), существующая до 1250 °С, имеет гексагональную плотноупакованную решетку, высокотемпературная (β-Ве) – решетку объемно-центрированного куба.

Нахождение в природе

Редкий металл – содержание Ве в земной коре 5 · 10 -4 % (как и соседние с ним литий и бор, относительно мало распространен в земной коре). Типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Не является рассеянным, так как входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними закристаллизовались в гранитных куполах. Есть сообщения о гигантских бериллах длиной до 1 м и массой до нескольких тонн.

Известно 54 собственно бериллиевых минерала – из них наибольшее практическое значение имеет берилл 3BeO·Al 2 O 3 ·6SiO 2 , который после обработки переводят в форму хлорида или фторида. Этот минерал имеет много окрашенных разновидностей: изумруд (около 2% Cr придают ему зеленый цвет), аквамарин (примесь Fe(II) обуславливает его голубую окраску), воробьевит (розового цвета из-за примесей соединений Mn(II)), а гелиодор (золотисто-желтый – ионы Fe(III)). Перспективны и частично используются фенакит 2BeO·SiO 2 , гельвин (Mn, Fe, Zn) 4 3 S, хризоберилл BeAl 2 O 4 , бертрандит 4BeO·2SiO 2 ·H 2 O.

Мировые природные ресурсы Ве оцениваются более чем в 80 тыс. т (по содержанию Ве), из которых около 65% сосредоточено в США (основное Ве сырье – бертрандитовая руда). Подтвержденные запасы – на месторождении Spur Mountain (шт. Юта), являющемся основным в мире источником Ве, на конец 2000 составили примерно 19 тыс. т (по содержанию металла). Из других стран наибольшими запасами Ве обладают Китай, Россия и Казахстан. Во времена СССР Ве на территории России добывался на Малышевском (Свердловская область), Завитинском (Читинская область), Ермаковском (Бурятия), Пограничном (Приморский край) месторождениях. В связи с сокращением ВПК и прекращением строительства атомных электростанций его добыча была прекращена на Малышевском и Ермаковском и значительно сокращена на Завитимском месторождениях. При этом значительная часть добываемого Ве продается за рубеж, в основном, в Европу и Японию.

Физические свойства – по сравнению с другими легкими материалами бериллий обладает уникальным сочетанием физических и механических свойств.

Кристаллическая решётка Ве гексагональная плотноупакованная с периодами а = 2,855 Å и с= 3,5840 Å.

Плотность 1847,7 кг/м 3

Температура плавления 1551 °С

Температура кипения 3243 о С

Скрытая теплота плавления 250–275 кал/г (самая высокая среди всех металлов)

Коэффициент линейного расширения 10,3–131 (25–100 °С)

Модуль продольной упругости (модуль Юнга) 300ГН/м 2 (3.104 кг с/мм 2)

Предел прочности при растяжении 200–550 МН/м 2 (20–55 кг с/мм 2)

Предел текучести 250–600 МН/м 2 (25–60 кг с/мм 2)

Предел прочности в направлении вытяжки – до 400–800МН/м 2 (40–80 кг с/мм 2) Относительное удлинение – до 4–12%

Ударная вязкость 10–50 кДж/м 2 (0,1 – 0,5 кгс. м/см 2)

Температура перехода из хрупкого состояния в пластическое 200 – 400 °С

Твёрдость НВ 60–85 (для горячепрессованного Ве)

Теплоемкость для α-Ве 16,44 Дж/(моль К), для β-Ве – 30,0 Дж/(моль К)

Ве обладает: наиболее высокой из всех металлов удельной теплоёмкостью – 1,80 кДж/(кг. К) или 0,43 ккал/ (кг °С)

высокой теплопроводностью – 178 Вт/(м К) или 0,45 кал/см сек °С) (50 °С)

низким электросопротивлением – 3,6–4,5 мкОм см (20 °С)

Сравним некоторые свойства Ве с характеристиками других материалов.

Удельная прочность и жесткость материалов

Влияние температуры на удельный модуль упругости различных материалов

Свойства Ве зависят от качества и структуры металла и заметно меняются с температурой, механические – от чистоты металла, величины зерна и текстуры, определяемой характером обработки. Обработка давлением приводит к определённой ориентации кристаллов Ве, возникает анизотропия, становится возможным значительное улучшение свойств. Механические свойства в направлении, перпендикулярном вытяжке, почти не меняются. Ве – хрупкий металл (особенно литой) при комнатной температуре, что является главным препятствием к его широкому использованию в качестве конструкционного материала; к еще большей хрупкости материала приводит содержание даже незначительных примесей (например, введение в очищенный Ве всего 0,001% Si). Имеет низкую пластичность и хорошую коррозионную стойкость. Упругость паров Ве при температуре плавления очень мала.

Механические свойства Ве в литом и деформированном состояниях различаются в зависимости от направления проведения испытаний. Наилучшими механическими свойствами обладает Ве после тёплой обработки давлением, которая проводится при температурах ниже температуры рекристаллизации. Температура рекристаллизации Ве изменяется в пределах от 700 °С до 900 °С в зависимости от степени деформации и времени выдержки. Рекристаллизационный отжиг значительно повышает пластичность и уменьшает прочность Ве.

Отношение прочности к плотности у Be значительно выше, чем у авиационных сталей и сплавов на основе Ti и Al.

Важным специфическим свойством Ве является его высокая проницаемость для рентгеновских лучей, которая в 17 раз выше, чем у алюминия.

Высокие ядерные характеристики – самое низкое среди металлов эффективное поперечное сечение захвата тепловых нейтронов и самое высокое поперечное сечение их рассеяния.

Дает эвтектические сплавы с Al и Si. Растворимость примесных элементов в Ве чрезвычайно мала.

Химические свойства

Степени окисления +2 и +1 (последняя крайне неустойчива), конфигурация внешних электронов 2s 2 .

По химическим свойствам Be подобен Al. Сходство между этими элементами привело к существенному заблуждению относительно валентности и атомной массы Ве – долгое время Ве считали трехвалентным с относительной атомной массой 14 (что примерно равно утроенной массе одного эквивалента Ве 3 × 4,7); лишь через 70 лет после открытия Ве русский ученый Д.И. Менделеев пришел к выводу, что в его периодической таблице места для такого элемента нет, а вот двухвалентный элемент с относительной атомной массой 9 (приблизительно равной удвоенной массе одного эквивалента Ве 2 × 4,7) легко размещается между Li и B.

Металлический Ве относительно мало реакционноспособен при комнатной температуре (например, устойчив к кислороду воздуха благодаря плёнке окиси, образующейся на его поверхности), в данных условиях взаимодействует с F 2 . В компактном виде не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600° С. При 1200 °С металлический Ве горит, превращаясь в белый порошок ВеО. Галогены реагируют с Ве при температуре выше 600° С, а халькогены требуют еще более высокой температуры. Компактный Ве интенсивно реагирует с N 2 при температурах более 1000 градусов, а в порошкообразном состоянии – при температурах более 500 о С. Аммиак взаимодействует с Ве при температуре выше 1200° С с образованием нитрида Be 3 N 2 , а углерод дает карбид Ве 2 С при 1700° С. С Н 2 Ве непосредственно не реагирует, и гидрид ВеН 2 получают косвенным путем (получен при разложении бериллийорганических соединений, устойчив до 240 °С).

Ве легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной, плавиковой), слабо реагирует с концентрированной серной и разбавленной азотной кислотами, однако холодная концентрированная азотная кислота пассивирует металл. Реакция Ве с водными растворами щелочей сопровождается выделением Н 2 и образованием гидроксобериллатов:

Be + 2NaOH (р) + 2H 2 O = Na 2 + H 2

При проведении реакции с расплавом щелочи при 400–500° С образуются диоксобериллаты:

Be + 2NaOH (ж) = Na 2 BeO 2 + H 2

Металлический Ве быстро растворяется в водном растворе NH 4 HF 2 . Эта реакция имеет технологическое значение для получения безводного BeF 2 и очистки Ве: Be + 2NH 4 HF 2 = (NH 4) 2 + H 2

Мелкодисперсный порошок Ве сгорает в парах S, Se, Te. Расплавленный Be взаимодействует с большинством окислов, нитридов, сульфидов и карбидов.


Соединения бериллия

У Ве, в отличие от других элементов 2 группы, нет соединений с преимущественно ионными связями, в то же время для него известны многочисленные координационные соединения, а также металлоорганические соединения, в которых часто образуются многоцентровые связи.

Вследствие малого размера атома Ве почти всегда проявляет координационное число 4, что важно для аналитической химии.

Соли Ве сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, быстро гидролизуются с образованием ряда гидроксокомплексов неопределенной структуры, среда раствора кислая. Осаждение начинается при отношении OH – :Be 2+ > 1. Дальнейшее добавление щелочи приводит к растворению осадка.

Гидрид Ве ВеН 2 был впервые получен в 1951 восстановлением ВеCl 2 с помощью LiAlH 4 . Аморфное белое вещество, при нагревании до 250° С гидрид ВеН 2 выделять Н 2 . Это соединение умеренно устойчиво в воздухе и воде, но быстро разлагается кислотами. ВеН 2 полимеризован за счет трехцентровых связей ВеНВе.

BeHal : Безводные BeHalнельзя получить реакциями в водных растворах вследствие образования гидратов, таких как F 2 , и гидролиза. Лучшим способом для получения BeF 2 является термическое разложение (NH 4) 2 , а BeCl 2 удобно получать из оксида – для этого действуют Cl 2 на смесь BeO и СО 2 при 650–1000° С. BeCl 2 можно также синтезировать прямым высокотемпературным хлорированием металлического Ве или его карбида. Эти же реакции используются для получения безводных бромида и иодида.

BeF 2 – стекловидный материал, его структура состоит из неупорядоченной сетки из атомов Ве (КЧ 4), связанных мостиками из атомов F, и похожа на структуру кварцевого стекла. Выше 270° С BeF 2 самопроизвольно кристаллизуется. Подобно кварцу, он существует в низкотемпературной α-форме, которая при 227° С переходит в β-форму, кроме того, можно получить формы кристобалита и тридимита. Структурное сходство между BeF 2 и SiO 2 распространяется также на фторобериллаты (которые образуются при взаимодействии BeF 2 с фторидами щелочных элементов и аммония) и силикаты.

BeF 2 – компонент фторобериллатных стекол и солевой смеси, используемой в ядерных реакторах на расплавленных солях.

Хлорид и другие галогениды Ве можно рассматривать как полиядерные комплексные соединения, в которых координационное число Ве равно 4. В кристаллах BeCl 2 есть бесконечные цепочки с мостиковыми атомами Cl:

Даже при температуре кипения 550° С в газовой фазе содержится около 20% молекул димеров Be 2 Cl 4 .

Цепочечная структура BeCl 2 легко разрушается слабыми лигандами, такими, как диэтиловый эфир, с образованием молекулярных комплексов :

Более сильные доноры, такие, так вода или аммиак, дают ионные комплексы 2 + (Cl –) 2 . В присутствии избытка галогенид-ионов образуются галогенидные комплексы, например 2– .

Оксид Ве BeO встречается в природе в виде редкого минерала бромеллита.

Непрокаленный ВеО гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С – лишь 0,18%. ВеО, прокаленный не выше 500° С, легко взаимодействует с кислотами, труднее – с растворами щелочей, а прокаленный выше 727° С – лишь HF, горячей концентрированной серной кислотой и расплавами щелочей. BeO устойчив к воздействию расплавленных Li, Na, K, Ni и Fe.

BeO получают термическим разложением сульфата или гидроксида Be выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата выше 600° С.

BeO обладает очень высокой теплопроводностью – при 100° С она составляет 209,3 Вт/(м·К), что больше, чем у любых неметаллов и даже у некоторых металлов. ВеО сочетает высокую температуру плавления (2507° С) при с незначительным давлением пара при температуре ниже этой. Он служит в качестве химически стойкого и огнеупорного материала для изготовления тиглей, высокотемпературных изоляторов, труб, чехлов для термопар, специальной керамики. В инертной атмосфере или вакууме тигли из ВеО могут применяться при температурах до 2000° С.

Хотя оксид бериллия часто заменяют более дешевым и менее токсичным AlN, в этих случаях обычно наблюдается ухудшение рабочих характеристик оборудования. Ожидают, что в более отдаленной перспективе продолжится стабильный рост потребления ВеО, особенно в производстве компьютеров.

Гидроксид бериллия Be(OH) 2 осаждают из водных растворов солей Ве аммиаком или NaOH. Его растворимость в воде при комнатной температуре намного ниже, чем у его соседей по Периодической системе и составляет всего лишь 3·10 –4 г·л –1 . Be(OH) 2 – слабое амфотерное основание, вступает в реакции как с кислотами, так и со щелочами с образованием солей, в которых Be входит в состав катиона или аниона, соответственно:


Be(OH) 2 + 2H 3 O + = Be 2+ + 2H 2 O

Be(OH) 2 + 2OH – = 2–

(BeOH) 2 CO 3 – соединение переменного состава. Образуется при взаимодействии водных растворов солей Be с карбонатами натрия или аммония. При действии избытка растворимых карбонатов легко образует комплексные соединения, такие как (NH 4) 2 .

Карбоксилаты Be . Уникальность Be проявляется в образовании устойчивых летучих молекулярных оксид-карбоксилатов с общей формулой , где R = H, Me, Et, Pr, Ph и т.д. Эти белые кристаллические вещества, типичным представителем которых является основный ацетат бериллия (R =CH 3), хорошо растворимы в органических растворителях, включая алканы, и нерастворимы в воде и низших спиртах. Их можно получить простым кипячением гидроксида или оксида Be с карбоновой кислотой. Структура таких соединений содержит центральный атом O, тетраэдрически окруженный четырьмя атомами Be. На шести ребрах этого тетраэдра есть шесть мостиковых ацетатных групп, расположенных таким образом, что каждый атом Be имеет тетраэдрическое окружение из четырех атомов O. Ацетатное соединение плавится при 285° С и кипит при 330° С. Оно устойчиво к нагреванию и окислению в нежестких условиях, медленно гидролизуется горячей водой, но быстро разлается минеральными кислотами с образованием соответствующей соли Be и свободной карбоновой кислоты.

Нитрат Be Be(NO 3) 2 при обычных условиях существует в виде тетрагидрата. Он хорошо растворим в воде, гигроскопичен. При 60–100° С образуется гидроксонитрат переменного состава. При более высокой температуре он разлагается до BeO.

Основный нитрат имеет аналогичную карбоксилатам структуру с мостиковыми нитрогруппами. Это соединение образуется при растворении BeCl 2 в смеси N 2 O 4 и этилацетата с образованием кристаллического сольвата , который затем нагревают до 50° С, чтобы получить безводный нитрат Be(NO 3) 2 , быстро разлагающийся при 125° С на N 2 O 4 и .

Бериллийорганические соединения. Для Ве известны многочисленные соединения, содержащие связи Ве-С. Соединения состава ВеR 2 , где R – алкил, являются ковалентными и имеют полимерную структуру. Соединение (CH 3) 2 Be имеет цепочное строение с тетраэдрическим расположением метильных групп вокруг атома Ве. Он легко возгоняется при нагревании. В парах существует в виде димера или тримера.

Соединения R 2 Be самовоспламеняются на воздухе и в атмосфере СО 2 , бурно реагируют (некоторые со взрывом) с водой и спиртами, дают устойчивые комплексы с аминами, фосфинами, эфирами.

Синтезируют R 2 Be взаимодействием BeCl 2 с магнийорганическими соединениями в эфире или Ве с R 2 Hg. Для получения (C 6 H 5) 2 Be и (C 5 H 5) 2 Be используют реакцию BeCl 2 с соответствующими производными щелочных элементов.

Предполагают, что соединения состава RBeX (Х – галоген, OR, NH 2 , H) представляют собой R 2 Be·BeX 2 . Они менее реакционноспособны, в частности, на них не действует СО 2 .

Получение, производство, обработка

В промышленности Ве и его соединения получают переработкой берилла в гидроокись Be(OH) 2 или сульфат BeSO 4 .

1) фторидный способ: измельченный берилл спекают с Na 2 SiF 6 и Na 2 CO 3 при 700–750° С, при этом образуется тетрафторобериллат натрия:

3BeO·Al 2 O 3 ·6SiO 2 + 2Na 2 + Na 2 CO 3 = 3Na 2 + 8SiO 2 + Al 2 O 3 + CO 2 . Образующиеся фторбериллаты натрия Na 2 BeF 4 и NaBeF 3 выщелачивают из смеси водой. При добавлении к этому раствору NaOH (рН = 12) в осадок выпадает Be(OH) 2 .

2) сульфатный способ: берилл спекают при 750° С с известью или мелом (карбонатом Na или Ca), спек обрабатывают концентрированной горячей серной кислотой. На образовавшийся раствор BeSO 4 , Al 2 (SO 4) 3 и других металлов действуют (NH 4) 2 SO 4 – это приводит к выделению большей части Al в виде KAl(SO 4) 2 . Оставшийся раствор обрабатывают избытком NaOH, при этом образуется раствор, содержащий Na 2 и алюминаты Na; при кипячении этого раствора в результате разложения гидроксобериллата осаждается Be(OH) 2 (алюминаты остаются в растворе).

Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведётся с целью получения BeF 2 или BeCl 2 .

Металлический Ве получают восстановлением фторида магнием: BeF 2 + Mg = Be + MgF 2 , –при высокой температуре (900–1300 °С) или электролизом его хлорида в смеси с хлоридом натрия (350 о С). Полученный металл переплавляют в вакууме: металл высокой чистоты (до 99,98%.) получают дистилляцией, а в небольших количествах – зонной плавкой (пластичный бериллий, содержащий не более 10–4% примесей – многократное повторение зонной плавки (до 8 проходов) позволяет получать особо чистый Ве с чрезвычайно высокой пластичностью (δ = 140%)); применяют также электролитическое рафинирование. Из-за трудностей получения качественных отливок заготовки для изделий из Ве готовят методами порошковой металлургии. В безокислительной среде Ве измельчают в порошок и подвергают горячему прессованию в вакууме при 1140–1180 °С; чем мельче зерна порошка, тем выше прочностные и пластические свойства металла. Для предотвращения взаимодействия с воздухом горячепрессованные заготовки бериллия помещают в стальные оболочки, нагревают до температуры 800–1100 °С и в таком виде проводят обработку давлением. Прутки, трубы и др. профили получают выдавливанием при 800–1050 °С (горячее выдавливание) или при 400–500 °С (тёплое выдавливание). Листы из Ве (основной вид продукции, используемый в ракетной технике) получают прокаткой горячепрессованных заготовок или выдавленных полос при 760–840 °С. Степень обжатия при выдавливании 5:1 и более. Выдавливанием получают заготовки не только круглого или квадратного сечения, но и более сложного профиля.

Профили заготовок, выдавливаемых из бериллия

Свойства горячевыдавленного Ве значительно выше, чем свойства Ве после горячего прессования при исходной крупности порошка менее 70 мкм.

Применяют и др. виды обработки – ковку, штамповку, волочение. При механической обработке Ве пользуются твердосплавным инструментом (Ве плохо обрабатывается резанием).

Деформированные полуфабрикаты имеют развитую текстуру деформации, вызывающую сильную анизотропию свойств.

Получаемый Ве содержит в большом количестве кислород в виде окиси Ве (1–3%), а также другие примеси. Эти примеси, хотя и повышают прочность металла, но существенно снижают его пластичность, вызывая в сварных швах образование холодных трещин. Для обеспечения удовлетворительной свариваемости в техническом Ве ограничивается содержание вредных примесей до следующих количеств (в% по массе): ВеО до 0,3%; Fe до 0,04%; А1 до 0,02%; Si до 0,02%.

Увеличение содержания ВеО ухудшает формирование и повышает пористость швов. Однако и при наличии сравнительно небольшого количества примесей вследствие особенностей кристаллического строения (гексагональная решетка) Ве малопластичен, поскольку в его деформации участвует мало плоскостей скольжения. В этом отношении Ве уступает не только Al, но и Mg.

Для соединения деталей из Ве находит применение аргонодуговая сварка вольфрамовым электродом и электроннолучевая сварка. Предпочтительны соединения с отбортовкой кромок. При сварке стыковых соединений требуется введение в ванну присадочной проволоки.

Сварку неплавящимся электродом в инертных газах – Ar, He и их смесях производят преимущественно в камерах с контролируемой атмосферой вольфрамовым электродом на переменном токе. Техника и сварочная аппаратура те же, что и при сварке Al.

В процессе сварки заметно вырастает зерно в околошовной зоне, прочность сварного соединения составляет 0,5–0,6 прочности основного металла.

Техника электроннолучевой сварки также близка к технике сварки алюминиевых сплавов. Однако высокое давление паров Be создает определенные трудности в обеспечении устойчивого сварочного процесса.

Переработка Ве осложняется острой токсичностью летучих соединений, порошков, пыли и паров, содержащих Ве, поэтому при работе с Ве и его соединениями нужны специальные меры защиты – вместе с тем обработанные детали из бериллия вполне безопасны.

Биологическая роль

Ве присутствует в тканях многих растений и животных. Содержание в почвах – от 2 10 -4 до 1 10 -3 %, в золе растений – около 2 10 -4 %. У животных Ве распределяется во всех органах и тканях, в золе костей содержится от 5,10 -4 до 7.10 -3 % Б. Около 50% усвоенного животным Ве выделяется с мочой, около 30% поглощается костями, 8% обнаружено в печени и почках. Плохо всасывается в желудочно-кишечном тракте, большинство его выводится через кишечник и в меньшей степени через почки. Из того количества Ве, которое усваивается организмом, существенная часть (до 30%) депонируется (откладывается) в костях, а остальное – в легких, лимфатических узлах, печени, сердечной мышце.

Биологическое значение Ве мало выяснено, оно определяется участием элемента в обмене Mg и Р в костной ткани (способность Be(II) замещать Mg в магниесодержащих ферментах за счет его более сильной координационной способности). Не относится к биологически важным, но повышенное содержание Ве опасно для здоровья. При избытке в рационе Ве, по-видимому, происходит связывание в кишечнике ионов фосфорной кислоты в неусвояемый фосфат Ве. Активность некоторых ферментов (щелочной фосфатазы, аденозинтрифосфатазы) тормозится малыми концентрациями Ве. Под влиянием Ве при недостатке фосфора развивается не излечиваемый витамином D бериллиевый рахит, встречаемый у животных в биогеохимических, богатых Ве.

Соединения Ве очень ядовиты, особенно в виде пыли и дыма, обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки. При попадании в легкие могут вызвать хроническое заболевание – бериллиоз (легочная недостаточность). Заболевания легких, кожи и слизистых оболочек могут возникнуть через 10–15 лет после прекращения контакта с Ве.

Поступление Ве с пищей и водой незначительно. Предельно допустимые концентрации Ве в воздухе ≤0,001 мг/м 3 .

бериллий элемент химический сплав

Сплавы бериллия, их свойства и применение

Главная сложность при легировании Ве состоит в малых размерах его атомов, в результате чего большинство элементов при растворении сильно искажают кристаллическую решетку, сообщая сплаву повышенную хрупкость. Легирование возможно лишь теми элементами, которые образуют с Ве механические смеси с минимальной взаимной растворимостью.

Серьезный недостаток Ве, заключающийся в низкой ударной вязкости и хладноломкости, может быть преодолен использованием сплавов с Al. Из диаграммы состояния Al–Be видно, что эти элементы практически взаимно нерастворимы.

Диаграмма состояния системы Al–Be

В таких сплавах эвтектического типа твердые частицы Be равномерно распределены в пластичной алюминиевой матрице. Сплавы содержат 24–43% Al, остальное – Be. Фирмой «Локхид» (США) разработан сплав, содержащий 62% Be, названный локеллоем. Сплавы Be–Al имеют структуру, состоящую из мягкой пластичной эвтектики и твердых хрупких включений первичного Be. Эти сплавы сочетают высокую жесткость, прочность и малую плотность, характерные для Be, с пластичностью Al.


Зависимость механических свойств сплавов Al–Be от содержания Be

Благодаря пластичности матрицы снижается концентрация напряжений у частиц Be фазы и уменьшается опасность образования трещин, что позволяет использовать сплавы в условиях более сложного напряженного состояния.

Для получения Be-Al сплавов также используют методы порошковой металлургии. Деформацию осуществляют выдавливанием с последующей ковкой и штамповкой в оболочках. Механические свойства труб из локеллоя (Be + 38% Al) при комнатной температуре: σв = 600 МПа, σ0,2 = 570 МПа, δ = 1%.

Для увеличения прочности сплавы Be–Al дополнительно легируют Mg и Ag– элементами, растворимыми в Al фазе. В этом случае матрица представляет собой более прочный и вязкий сплав Al–Mg или Al–Ag.

Al–Be, Al–Be–Mg сплавы удовлетворительно деформируются при 380 – 420 о С, имеют высокий модуль упругости, малую скорость роста усталостных трещин, высокий предел выносливости, износоустойчивы, высоко электро- и теплопроводны. Круг сфер их использования широк – от авиакосмической промышленности до производства компьютеров.

Пластичную матрицу можно получить, используя композицию Be–Ag, содержащую до 60% Ag. Сплавы с Ag дополнительно легируют Li и La.

За исключением сплавов с пластичной матрицей, легирование другими элементами не устраняет хладноломкость Be. Максимальную пластичность имеет Be высокой чистоты.

Широкое распространение получили сплавы Cu с 2–5% Be, так называемые Be бронзы. В России широко применяется Be бронза БрБ2 с 2% Be. Из диаграммы состояния видно, что этот сплав дисперсионно-твердеющий и может упрочняться закалкой с последующим старением.

Диаграмма состояния системы Cu–Be

Закалка с 800 °С фиксирует пересыщенный α–твердый раствор, из которого в процессе старения при 300–350 °С выделяются дисперсные частицы CuBe, образуя регулярную, так называемую квазипериодическую структуру.


Электронно-микроскопическое изображение бериллиевой бронзы после сгорания (регулярное расположение выделений)

После закалки свойства Be бронзы БрБ2: σв = 500 МПа, δ = 30%, после старения – σв = 1200 МПа, δ = 4%.

Be бронзы обладают высокими упругими свойствами. Их используют для изготовления пружин, сохраняющих упругость в широком интервале температур, в том числе в криогенных условиях. Они хорошо сопротивляются усталости и коррозии.

Bе бронзы немагнитны и не искрят при ударе. Из них изготавливают инструменты для работы во взрывоопасных средах – шахтах, газовых заводах, где нельзя использовать обычные стали (например, ручной инструмент в нефтяной промышленности).

Неискрящие и немагнитные инструменты Cu - Be сплава

Литейные Be сплавы (ЛБС), состав которых приведен в таблице «Химические составы (%, остальное – Be) литейных Be сплавов, используют для деталей корпусов оснований, рам, кронштейнов и др. Be сплавы характеризуются высокими значениями теплоемкости, которые в 1,6 раза выше, чем у сплавов Al. Теплопроводность и температуропроводность сплавов лишь незначительно уступает литейным Al сплавам.

Совокупность теплофизических характеристик Be сплавов в целом выгодно отличает их от других материалов (например, силуминов) и определяет высокую размерную стабильность в условиях возникновения температурных градиентов при эксплуатации изделий.

Коррозионная стойкость Be сплавов находится на высоком уровне. Анодная оксидированная пленка на поверхности и лакокрасочные покрытия дополнительно обеспечивают надежную защиту сплавов ЛБС от коррозии. При этом Ве бронзам присуща также высокая электропроводность.

Механические свойства литейных Be сплавов при комнатной температуре приведены в таблице «Механические свойства литейных Be сплавов», а свойства при различных температурах испытания – в таблице «Механические свойства Be сплавов при различных температурах».

Химические составы (%, остальное – Be) литейных бериллиевых сплавов

Сплав Al Ni Mg Cu Zr, Sc, Y, Gd, РЗМ Примеси, не более
Si Fe Mn Ti O2
ЛБС-1 24–34 3–6 0,06–0,21* 0,1 0,15 0,1 0,05 0,1
ЛБС-2 36–24 3,5–4,5 0,6–0,8 0,03–0,12** 0,1 0,15 0,1 0,05 0,1
ЛБС-3 30–34 0,1–0,6 6–8 0,05–0,1 0,1 0,15 0,1

Механические свойства литейных бериллиевых сплавов

Свойство ЛБС-1 ЛБС-2 ЛБС-3
σв, МПа 220–250 250–320 270–280
σ0,2, МПа 180–220 220–270 250–270
δ, % 2–3 2–3 1,1–1,3
ψ, % 2–3 2–3,5
KCU, МДж/м2 0,025–0,035 0,033–0,040 0,025–0,045
E, ГПа 200 200 200

Механические свойства бериллиевых сплавов при различных температурах

Свойство Сплав Температура испытаний, °С
–100 0 100 200 300 400
σв, МПа ЛБС-1 255 225 186 147 112
ЛБС-2 274 255 235 176 118 70
σ0,2, МПа ЛБС-1 235 196 145 120 103
ЛБС-2 245 216 170 140 108 60
δ, % ЛБС-1 2,8 2,4 2,5 2,5 1–2,4
ЛБС-2 2,0 2,1 2,1 2,2 3,0 4,0

Деформированные Be сплавы обладают высокой жесткостью и низкой плотностью. Эти сплавы являются перспективными для использования в некоторых элементах самолетных двигателей. Для повышения жаропрочных свойств Be используется сложное последовательное легирование.

На первом этапе выбирают оптимальный бинарный сплав.

Механические свойства двойных сплавов (остальное – Be)


Из рассмотренных двойных систем сплавы системы Be–Ni характеризуются наиболее высокими механическими свойствами как при комнатной температуре, так и при 500 °С. Ni сплав, содержащий 2% Ве, используется также для высокотемпературных пружин, зажимов, мехов и электрических контактов.

Дальнейшее упрочнение осуществляется введением Ti, образующего высокопрочные интерметаллиды TiBe 12 .

Влияние Ti на прочность сплавов системы Be–Ni показано на графике.

бериллий элемент биологический сплав

Влияние Ti на прочность сплавов системы Be–Ni–Ti при 20 °С и в зависимости от содержания Ni: 1 – 4%; 2 – 6%; 3 – 8% (по И.Н. Фридляндеру)

На основе системы Be–Ni разработан сплав, имеющий марку ВБД-1 при изготовлении из литой заготовки и ВБД-1П при изготовлении из порошков со следующим химическим составом: (7,5–8,5%) Ni; (0,8–1,2%) Ti; остальное – Be.

Механические свойства сплава ВБД-1П приведены в таблице.

Механические свойства сплава ВБД-1П

Предел выносливости сплава ВБД-1П при 500 °С в два раза выше, чем у Ве; удельная жесткость (E/γ) при 20 °С ниже, а при 500 °С – на 10% выше, чем у Ве. Модуль упругости составляет 250 ГПа. Высокая жесткость сохраняется при температурах до 700 °С. Предел ползучести и длительная жаропрочность сплава ВБД-1П при 400 °С такие же, как у деформированного Ве при 300 °С.

Интерметаллические соединения Ве с Ta, Nb, Zr, и др. могут использоваться до температур ≈ 1650 o С и имеют исключительно высокую твердость и стойкость против окисления.

Одна из важнейших областей применения Ве бронз – это изготовление пружин, мембран, сильфонов, применяемых в точном приборостроении. Стоит отметить, что из-за высокой стоимости Ве эти бронзы используют лишь в изделиях небольшого сечения, имеющих особое значение.

Комплекс физических, химических и механических свойств позволяет отнести Ве к наиболее ценным конструкционным материалам, несмотря на ряд недостатков (хрупкость, хладноломкость). Высокие прочностные характеристики в сочетании с малой плотностью, относительно высокой температурой плавления, хорошей коррозионной стойкостью делают Ве и его соединения с тугоплавкими металлами в ряде случаев незаменимым конструкционным материалом для нужд авиационной, ракетной техники и в приборостроении. Находит достаточно широкое применение в конструкциях, к которым предъявляются требования высокой жесткости и легкости.

Еще несколько примеров применения Ве и его сплавов и соединений :

· Улучшение качества поверхности деталей машин и механизмов – для этого готовое изделие выдерживают в порошке Ве при 900–1000° С (бериллизация стали), и его поверхность делается тверже, чем у лучших сортов закаленной стали.

· Изготовление ядерных ректоров (Ве является одним из наиболее эффективных замедлителей и отражателей нейтронов из-за малого эффективного сечения захвата тепловых нейтронов и удовлетворительной стойкости в условиях радиации в сочетании с малой атомной массой), материал для окошек в рентгеновских трубках (Ве пропускает рентгеновские лучи в 17 раз лучше, чем Al и в 8 раз лучше, чем линдемановское стекло)

· Ве – интенсивный источник нейтронов при бомбардировке α-частицами, на этом свойстве основано использование Ве в нейтронных источниках на основе Ra, Po, Ac, Pu. Смесь соединений Ra и Ве долгое время использовалась как удобный лабораторный источник нейтронов, образующихся по ядерной реакции: 9Be + 4He = 12C + 1n. В 1932 при использовании именно этой смеси английским физиком Джеймсом Чедвиком был открыт нейтрон.

· Эффективный раскислитель в литейном деле.

· BeO обладает большой химической устойчивостью и теплопроводностью, сочетающейся с высоким электрическим сопротивлением и термостойкостью, что позволяет применять её в качестве огнеупорного материала для изготовления тиглей, футеровочных материалов, керамических покрытий и т.д.

· Бериллийорганические соединения используют как катализаторы димеризации и полимеризации олефинов, а также для получения металлического Ве высокой чистоты.

· Ве и некоторые его соединения рассматриваются как перспективное твёрдое ракетное топливо с наиболее высокими удельными импульсами.


Подготовка Ве и его сплавов под гальванопокрытия (травление)

Подготовка деталей ведется следующим образом:

1. Обработка абразивом;

2. Погружение в 10 –15%-ный раствор H 2 SO 4 на 5 –10 с и на 2 – 5 мин в раствор NaOH (450 – 500 г./л) и ZnO (100–150 г./л);

3. Промывка в холодной воде;

4. Стравливание Zn в 30 –35%-ном растворе HNO 3;

5. Повторная промывка;

6. Цинкатная обработка и ударное меднение в электролите (в г/л): NaCu(CN) 2 – 35–40; NaCN (свободный) – 3 – 5; Na 2 CO 3 – 7–10. В первую минуту iк = 2,5 ÷ 3 А/дм 2 , в последующие 10 мин iк = 1,0 ÷1,5 А/дм 2 . Детали загружают под током.

В большинстве случаев детали из Ве обезжиривают в органических растворителях, а затем в щелочи. Для Ве бериллия используют щелочи или кислоты, а для активирования – 1%-ный (по массе) раствор H 2 SO 4 . Температура комнатная, время выдержки 15 – 30 с.

С целью улучшения сцепления необходим отжиг Ве деталей в Ar или обработка в вакууме, но следует учитывать диффузию металлов внутрь Ве и его сплавов. Зона диффузии для Ni покрытия становится заметной после 18-часового нагрева при 350–400 °С, а для Fe– при 500 – 550 °С. Поэтому последние рекомендуются в качестве покрытий при работе Be при повышенных температурах.


Литература

1. Популярная библиотека химических элементов. Водород–хром. М., Наука, 1971

2. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. М., Химия, 1992

3. Greenwood N.N., Earnshaw A. Chemistry of the Elements, Oxford: Butterworth, 1997

4. Технология электрической сварки металлов т сплавов плавлением. Под ред. акад. Б.Е. Патона. М., Машиностроение, 1974

5. П.С. Мельников. Справочник по гальванопокрытиям в машиностроении, 1979.

6. Ю.П. Солнцев. Материаловедение: учебник для вузов. СПб., Химиздат, 2004.