Название числовых промежутков. Числовой интервал

Цели:

  • Обучающие : формировать умения работать с числовыми промежутками, изображать на координатной прямой промежуток и множество чисел, удовлетворяющих неравенству; прививать навыки графической культуры.
  • Развивающие : развитие логического мышления, способности самостоятельно решать учебные задачи, развитие любознательности учащихся, познавательного интереса к предмету.
  • Воспитательные : воспитание интереса к математике через использование и применение ИКТ; создание условий для формирования коммуникативных навыков.

Оборудование: Учебник “Алгебра-8” под ред. С.А.Теляковского; компьютер; проектор, экран, Презентация .

Тип урока: комбинированный

Формы работы: фронтальная, индивидуальная

ХОД УРОКА

1. Организационный момент (Презентация )

Здравствуйте, ребята, сегодня у нас на уроке гости, но мы не будем волноваться и продуктивно поработаем.

2. Актуализация опорных знаний, умений и навыков (слайды 2-4).

Устная работа

Проводится с помощью демонстрации презентации с заданиями.

1) Между какими целыми числами заключено число:

А) 1,3 Б) - 5,5 В)

2) Между какими целыми числами заключено число:

А) √3; Б) √15; В) √72.

Прочитайте неравенство и назовите несколько значений переменной, удовлетворяющее данному неравенству:

А) x < - 3;
Б) x > 7;
В) - 1 < x < 1

Как называется Множество всех чисел, удовлетворяющих данному условию?

3. Закрепление изученного материала (слайд 5)

1) Определение числового промежутка. Множество всех чисел, удовлетворяющих данному условию, называется числовым промежутком

2) (слайд 6) Тема нашего урока «Числовые промежутки».
(слайд 7) «Луч», «открытый луч», «отрезок», «интервал» - это всё числовые промежутки.
Часто при решении задачи мы рисуем схему по ее условию, а затем составляем уравнение. И схема и уравнение - это математические модели ситуации, описанной в задаче.
Схема - графическая модель, уравнение - аналитическая модель.
Аналогично дело обстоит и с числовыми промежутками.
Числовой промежуток - это все числа, соответствующие определенному условию.
Условие соответствует какой-либо математической ситуации. Можно построить как графическую, так и аналитическую модель, кроме того сделать еще и символическую запись.
Например, все числа меньшие 3.

В данном случае числовым промежутком будет открытый луч, графическая модель будет такая:
Аналитической моделью является строгое неравенство х < 3, а символическая запись (- ∞; 3).
Графическими моделями для числовых промежутков являются: луч, открытый луч, отрезок, интервал.
Аналитическими моделями: строгие, нестрогие неравенства, а так же двойные неравенства
3) (слайд 8) Проверка домашнего задания
4) (слайд 9) Работа с Цифровыми ресурсами из school-collection.edu.ru–71
а) изобразите на координатной прямой числовые промежутки (Задание 1)
б) запишите промежутки, изображенные на рисунке

4. Физминутка (слайды 10, 11)

5) (слайд 12) Светофор - разноуровневые задания
6) (слайд 14) - тестовые задания (сколько чисел принадлежит промежутку)
7) (слайд 15) - задания на сопоставления с последующей проверкой
8) работа по учебнику стр. 185

Работа по вариантам:

1 вар 2 вар

№815(а) №815(б)
№816(а) №816(б)
№819(а) №819(б)
№825(а) №825(б)
№823(а) №823(б)

Самопроверка

5. Итог урока

Итак, подведем итог нашего урока. Ответим на вопросы.
Дайте определение числового промежутка.
Перечислите виды числовых промежутков. Приведите примеры

Числовой интервал

Промежуток , открытый промежуток , интервал - множество точек числовой прямой, заключённых между двумя данными числами a и b , то есть множество чисел x , удовлетворяющих условию: a < x < b . Промежуток не включает концов и обозначается (a ,b ) (иногда ]a ,b [ ), в отличие от отрезка [a ,b ] (замкнутого промежутка), включающего концы, то есть состоящего из точек .

В записи (a ,b ) , числа a и b называют концами промежутка. Промежуток включает все вещественные числа , промежуток - все числа меньшие a и промежуток - все числа большие a .

Термин промежуток используется в составе сложных терминов:

  • при интегрировании - промежуток интегрирования ,
  • при уточнении корней уравнения - промежуток изоляции
  • при определении сходимости степенных рядов - промежуток сходимости степенного ряда .

Кстати, в английском языке словом interval называется отрезок . А для обозначения понятия интервала используется термин open interval .

Литература

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Числовой интервал" в других словарях:

    От лат. intervallum промежуток, расстояние: В музыке: Интервал отношение высот двух тонов; отношение звуковых частот этих тонов. В математике: Интервал (геометрия) множество точек прямой, заключённых между точками А и В,… … Википедия

    < x < b. Промежуток не включает концов и обозначается (a,b)… … Википедия

    Промежуток, открытый промежуток, интервал множество точек числовой прямой, заключённых между двумя данными числами a и b, то есть множество чисел x, удовлетворяющих условию: a < x < b. Промежуток не включает концов и обозначается (a,b)… … Википедия

    Промежуток, или более точно, промежуток числовой прямой множество вещественных чисел, обладающее тем свойством, что вместе с любыми двумя числами содержит любое, лежащее между ними. С использованием логических символов, это определение… … Википедия

    Напомним определения некоторых основных подмножеств действительных чисел. Если, то множество называется отрезком расширенной числовой прямой R и обозначается через, то есть В случае отрезок … Википедия

    Последовательность Числовая последовательность это последовательность элементов числового пространства. Числовые пос … Википедия

    МИКРОСКОП - (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

    ГОСТ Р 53187-2008: Акустика. Шумовой мониторинг городских территорий - Терминология ГОСТ Р 53187 2008: Акустика. Шумовой мониторинг городских территорий оригинал документа: 1 Дневной оценочный уровень звука. 2 Вечерний оценочный максимальный уровень звука. 3 Ночной оценочный уровень звукового давления … Словарь-справочник терминов нормативно-технической документации

    Отрезком может называться одно из двух близких понятий в геометрии и математическом анализе. Отрезок множество точек, к … Википедия

    Коэффициент корреляции - (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

Числовые промежутки. Контекст. Определение

Равенство (уравнение) имеет одну точку на числовой прямой (хотя это точка зависит от проделанных преобразований и выбранного корня). Само решение уравнения будет числовым множеством (иногда состоящим из одного числа). Однако, всё это на числовой прямой (визуализации множества вещественных чисел) будет отображаться лишь точечно, но существуют также более обобщённые типы отношений между двумя числами - неравенства . В них числовая прямая разделяется некоторым числом и от неё отсекается определённая часть - значения выражения или числовой промежуток.

Тему числовых промежутков логично обсуждать вместе с неравенствами, но это отнюдь не означает, что она связана лишь с ними. Числовые промежутки (интервалы, отрезки, лучи) являются множеством значений переменной, удовлетворяющих некоему неравенству. То есть, по сути, это множество всех точек на числовой прямой, ограниченной какими-то рамками. Поэтому наиболее тесно связана тема числовых промежутков с понятием переменной . Там, где есть переменная, или произвольная точка x на числовой прямой, и её применяют, используют, есть и числовые промежутки, интервалы - значения x. Часто значение может быть любым, но это тоже числовой промежуток, охватывающий всю числовую прямую.

Введём понятие числового промежутка . Среди числовых множеств, то есть множеств, объектами которых являются числа, выделяют так называемые числовые промежутки. Их ценность в том, что очень легко вообразить множество, соответствующее указанному числовому промежутку, и наоборот. Поэтому с их помощью удобно записывать множество решений неравенства. Тогда как множеством решения уравнения будет не числовой промежуток, а просто несколько чисел на числовой прямой, с неравенствами, иначе говоря, любыми ограничениями значения переменной появляются числовые промежутки.

Числовой промежуток - это множество всех точек числовой прямой, ограниченное данным числом или числами (точками на числовой прямой).

Числовой промежуток любого вида (множество значений x, заключённых между некоторыми числами) всегда можно представить тремя видами математических обозначений: специальными обозначениями промежутков, цепочками неравенств (одним неравенством или двойным неравенством) или геометрически на числовой прямой. По сути, все эти обозначения имеют один смысл. Они дают ограничение(-я) для значений какого-то математического объекта, переменной величины (некоторой переменной, любого выражения с переменной, функции и т.д.).

Из вышесказанного можно понять, что так как можно по-разному ограничить область числовой прямой (есть разные типы неравенств), то и типы числовых промежутков бывают разные.

Виды числовых промежутков

Каждый тип числового промежутка имеет собственное название, особое обозначение. Для обозначения числовых промежутков используют круглую и квадратную скобку. Круглая скобка означает, что конечная, определяющая границу, точка на числовой прямой (конец) у этой скобки не входит во множество точек данного промежутка. Квадратная скобка означает, что конец входит в промежуток. С бесконечностью (с этой стороны промежуток не ограничен) используют круглую скобку. Иногда вместо круглых скобок можно писать квадратные, повёрнутые в обратную сторону: (a;b) ⇔]a;b[

Вид промежутка (название) Геометрическое изображение (на числовой прямой) Обозначение Запись с помощью неравенств (для краткости всегда цепочками)
Интервал (открытый) (a;b) a < x < b
Сегмент (отрезок) a ≤ x ≤ b
Полуинтервал (полусегмент) a < x ≤ b
Луч x ≤ b
Открытый луч (a;+∞) x > a
Открытый луч (-∞;b) x < b
Множество всех чисел (на координатной прямой) (-∞;+∞) , хотя здесь следует указать конкретное множество-носитель алгебры, с которым производится работа; пример: ℝ x ∈ ℝ (обычно говорят о множестве вещественных чисел, для представления комплексных чисел используют уже комплексную плоскость, а не прямую)
Равенство или x=a x = a (частный случай нестрогого неравенства: a ≤ x ≤ a - интервал длины 1, где оба конца совпадают - отрезок, состоящий из одной точки)
Пустое множество Пустое множество тоже является промежутком - у переменной x нет значений (пустое множество). Обозначение: x∈∅⇔x∈{ } .

С названиями промежутков может возникнуть путаница: есть огромное количество вариантов. Поэтому лучше всегда точно их указывать. В англоязычной литературе используется только термин интервал ("interval" ) - открытый, замкнутый, полуоткрытый (полузамкнутый). Вариаций много.

С помощью промежутков в математике обозначается очень большое количество вещей: есть промежутки изоляции при решении уравнений, промежутки интегрирования, промежутки сходимости рядов. Промежутками принято всегда обозначать при при исследовании функции её область значений и область определения. Промежутки очень важны, например, есть теорема Больцано - Коши (можно узнать больше в "Википедии").

Системы и совокупности неравенств

Система неравенств

Итак, переменную x или значение некоторого выражения можно сравнить с какой-то постоянной величиной - это неравенство, но можно сравнивать это выражение с несколькими величинами - двойное неравенство, цепочка неравенств и т. д. Именно это было показано выше - как интервал и отрезок. И то, и то является системой неравенств .

Итак, если ставится задача найти множество общих решений двух или больше неравенств, то можно говорить о решении системы неравенств (также как с уравнениями — хотя можно сказать, что уравнения - это частный случай).

Тогда очевидно, что значение переменной, использованной в неравенствах, при котором каждое из них обращается в верное, называется решение системы неравенств.

Все неравенства, входящие в систему объединяют фигурной скобкой - "{". Иногда их записывают в виде двойного неравенства (как показано выше) или даже цепочкой неравенств . Пример типичной записи: f ⁡ x ≤ 30 g ⁡ x ≥ 5 .

Решение систем линейных неравенств с одной переменной в общем случае сводится к вот этим 4 видам: x > a x > b (1) x > a x < b (2) x < a x > b (3) x < a x < b (4) . Здесь предполагается, что b > a .

Любую систему можно решать графически с использованием числовой прямой. Там, где решения составляющих систему неравенств пересекаются и будет решение самой системы.

Представим для каждого случая графическое решение.

(1) x>b (2) aИтак, что же получается? В случае (1) решением является промежуток (a;+∞) . В случае (2) решение - промежуток (a;b) . Случай (3) - это пример открытого луча (-∞;a) . В случае (4) же решения отдельных неравенств не пересекаются - система не имеет решений.

Далее, системы неравенств можно классифицировать как равносильные, если они имеют общее множество решений. Отсюда (как можно видеть выше) следует, что более сложные системы можно упрощать (например, используя геометрическое решение).

Фигурную скобку можно условно, грубо говоря, назвать эквивалентом союза "И " для неравенств

Совокупность неравенств

Однако, бывают и другие случаи. Так кроме пересечения множеств решений бывает их объединение: если ставится задача найти множество всех таких значений переменной, каждое из которых является решением хотя бы одного из данных неравенств, то говорят, что надо решить совокупность неравенств.

Итак, все неравенства в совокупности объединяют скобкой совокупности "[". Если значение переменной удовлетворяет хотя бы одному неравенству из совокупности, то оно принадлежит множеству решений всей совокупности. Также и с уравнениями (опять же их можно назвать частным случаем).

Если фигурная скобка - и , то скобка совокупности - это, условно, говоря простым языком, эквивалент союза "ИЛИ " для неравенств (хотя это, конечно, будет логическое или, включающее случай, удовлетворяющий обоим условиям).

Итак, решение совокупности неравенств - это значение переменной, при котором хотя бы одно неравенство, обращается в верное.

Множество решений, как совокупности, так и системы неравенств, можно определить через две основные бинарные операции для работы с множествами - пересечение и объединение. Множество решений системы неравенств - это пересечение множеств решений неравенств, её составляющих. Множество решений совокупности неравенств - это объединение множеств решений неравенств, её составляющих. Это тоже можно проиллюстрировать. Допустим у нас есть система и совокупность из двух неравенств. Множество решений первого обозначим A , а множество решений второго обозначим B . Прекрасной иллюстрацией будет диаграмма Эйлера-Венна.

A ∪ B - решение системы неравенств A ∩ B - решение совокупности неравенств

Среди множеств чисел имеются множества, где объектами выступают числовые промежутки. При указывании множества проще определить по промежутку. Поэтому записываем множества решений, используя числовые промежутки.

Данная статья дает ответы на вопросы о числовых промежутках, названиях, обозначениях, изображениях промежутков на координатной прямой, соответствии неравенств. В заключение будет рассмотрена таблица промежутков.

Определение 1

Каждый числовой промежуток характеризуется:

  • названием;
  • наличием обычного или двойного неравенства;
  • обозначением;
  • геометрическим изображением на координатой прямой.

Числовой промежуток задается при помощи любых 3 способов из выше приведенного списка. То есть при использовании неравенства, обозначения, изображения на координатной прямой. Данный способ наиболее применимый.

Произведем описание числовых промежутков с выше указанными сторонами:

Определение 2

  • Открытый числовой луч. Название связано с тем, что его опускают, оставляя открытым.

Этот промежуток имеет соответствующие неравенства x < a или x > a , где a является некоторым действительным числом. То есть на такое луче имеются все действительные числа, которые меньше a - (x < a) или больше a - (x > a) .

Множество чисел, которые будут удовлетворять неравенству вида x < a обозначается виде промежутка (− ∞ , a) , а для x > a , как (a , + ∞) .

Геометрический смыл отрытого луча рассматривает наличие числового промежутка. Между точками координатной прямой и ее числами имеется соответствие, благодаря которому прямую называем координатной. Если необходимо сравнить числа, то на координатной прямой большее число находится правее. Тогда неравенство вида x < a включает в себя точки, которые расположены левее, а для x > a – точки, которые правее. Само число не подходит для решения, поэтому на чертеже обозначают выколотой точкой. Промежуток, который необходим, выделяют при помощи штриховки. Рассмотрим рисунк, приведенный ниже.

Из вышеприведенного рисунка видно, что числовые промежутки соответствуют части прямой, то есть лучам с началом в a . Иначе говоря, называется лучами без начала. Поэтому он и получил название открытый числовой луч.

Рассмотрим несколько примеров.

Пример 1

При заданном строгом неравенстве x > − 3 задается открытый луч. Эту запись можно представить в виде координат (− 3 , ∞) . То есть это все точки, лежащие правее, чем - 3 .

Пример 2

Если имеем неравенство вида x < 2 , 3 , то запись (− ∞ , 2 , 3) является аналогичной при задании открытого числового луча.

Определение 3

  • Числовой луч. Геометрический смысл в том, что начало не отбрасывается, иначе говоря, луч оставляет за собой свою полноценность.

Его задание идет с помощью нестрогих неравенств вида x ≤ a или x ≥ a . Для такого вида приняты специальные обозначения вида (− ∞ , a ] и [ a , + ∞) , причем наличие квадратной скобки имеет значение того, что точка включена в решение или в множество. Рассмотрим рисунок, приведеный ниже.

Для наглядного примера зададим числовой луч.

Пример 3

Неравенство вида x ≥ 5 соответствует записи [ 5 , + ∞) , тогда получаем луч такого вида:

Определение 4

  • Интервал. Задавание при помощи интервалов записывается при помощи двойных неравенств a < x < b , где а и b являются некоторыми действительными числами, где a меньше b , а x является переменной. На таком интервале имеется множество точек и чисел, которые больше a , но меньше b . Обозначение такого интервала принято записывать в виде (a , b) . Наличие круглых скобок говорит о том, что число a и b не включены в это множество. Координатная прямая при изображении получает 2 выколотые точки.

Рассмотрим рисунок, приведенный ниже.

Пример 4

Пример интервала − 1 < x < 3 , 5 говорит о том, что его можно записать в виде интервала (− 1 , 3 , 5) . Изобразим на координатной прямой и рассмотрим.

Определение 5

  • Числовой отрезок. Данный промежуток отличается тем, что он включает в себя граничные точки, тогда имеет запись вида a ≤ x ≤ b . Такое нестрогое неравенство говорит о том, что при записи в виде числового отрезка применяют квадратные скобки [ a , b ] , значит, что точки включаются во множество и изображаются закрашенными.

Пример 5

Рассмотрев отрезок, получим, что его задание возможно при помощи двойного неравенства 2 ≤ x ≤ 3 , которое изображаем в виде 2 , 3 . На координатной прямой данный точки будут включены в решение и закрашены.

Определение 6 Пример 6

Если имеется полуинтервал (1 , 3 ] , тогда его обозначение можно в виде двойного неравенства 1 < x ≤ 3 , при чем на координатной прямой изобразится с точками 1 и 3 , где 1 будет исключена, то есть выколота на прямой.

Определение 7

Промежутки могут быть изображены в виде:

  • открытого числового луча;
  • числового луча;
  • интервала;
  • числового отрезка;
  • полуинтервала.

Чтобы упростить процесс вычисления, необходимо пользоваться специальной таблицей, где имеются обозначения всех видов числовых промежутков прямой.

Название Неравнство Обозначение Изображение
Открытый числовой луч x < a - ∞ , a
x > a a , + ∞
Числовой луч x ≤ a (- ∞ , a ]
x ≥ a [ a , + ∞)
Интервал a < x < b a , b
Числовой отрезок a ≤ x ≤ b a , b

Полуинтервал