Применение одноатомных спиртов кратко. Химические свойства спиртов одноатомных и многоатомных

Предельные одноатомные спирты

Номенклатура. Для названия спиртов используют рациональную и систематическую номенклатуры.

По рациональной номенклатуре названия спиртов образуются от названия соответствующего радикала, связанного с гидроксильной группой и добавлением слова «спирт».

По систематической номенклатуре название дается от названия углеводорода с добавлением суффикса –ол.

Изомерия в спиртах обусловлена изменениями в структуре углеводородного скелета и положением ОН- группы.

Способы получения спиртов. Существуют различныеспособы получения спиртов. Здесь приводятся лишь некоторые из них.

1. Ферментивный гидролиз и брожение углеводов. По этому способу этиловый спирт получают из продуктов, содержащих глюкозу или другие сахара. При брожении глюкозы под действием ферментов дрожжей образуется этанол:

Брожение фруктовых соков, особенно виноградного, дает спиртовые растворы с содержанием этанола 10 – 15 %, которые называют винами.

Для получения этанола в больших количествах в качестве исходного вещества берется более дешевый углевод – крахмал. Образование спирта из крахмалсодержащих продуктов складывается из следующих стадий:

а) осахаривание крахмала:

Процесс образования мальтозы протекает под действием фермента амилазы, содержащегося в солоде - проросших и высушенных зернах ячменя.

б) брожение осахаренного раствора. Этот процесс протекает под действием ферментов, которые содержатся в дрожжах:

Обе стадии являются результатом совместного действия самых различных ферментов, содержащихся в дрожжах. Эти ферменты называют еще энзимы. Полученный в результате брожения раствор содержит 18 % этанола. Эту смесь подвергают перегонке и получают спирт-сырец с содержанием этанола 90 %. Дополнительная перегонка дает спирт-ректификат с содержанием этанола 95,5 %. Абсолютный спирт (100% этанола) можно получить путем азеотропной перегонки с бензолом.

В процессе брожения наряду с этанолом получаются сивушные масла, которые понижают качество спирта. Они представляют собой смесь изомерных спиртов с числом углеродных атомов С 3 - С 5 .

Сивушные масла получаются за счет разложения белковых компонентов входящих в состав исходного крахмалсодержащего сырья.

Этанол, полученный по этой технологии, после дополнительной очистки, используется для изготовления алкогольной продукции. Если в качестве исходного сырья, вместо крахмала, использовать целлюлозу, то получают «гидролизный» спирт, который используют только для технических нужд. Процесс получения этанола из целлюлозы складывается из следующих стадий:

а) гидролиз целлюлозы:

б) брожение под действием ферментов дрожжей:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

В качестве исходного сырья используются отходы деревоперерабатывающей промышленности и гидролиз проводят в жестких условиях в присутствии H 2 SO 4 .

2. Гидратация алкенов. В присутствии катализаторов олифины присоединяют воду, образуя спирты. Присоединение воды к несимметричным алкенам происходит по правилу Морковникова с образованием вторичных и третичных спиртов.

3. Гидролиз галогенпроизводных:

4. Восстановление альдегидов и кетонов:

Восстановление альдегидов дает первичные спирты, восстановление кетонов – вторичные.

5. Восстановление сложных эфиров:

6. Гидролиз сложных эфиров. Реакция обратима и требует регулирования для повышения выхода спиртов:

7. Синтез альдегидов через металлоорганические соединения:

Химические свойства спиртов. Основным структурным элементом, определяющим реакционную способность спиртов является гидроксогруппа. Основными направлениями реакционной способности являются реакции с разрывом связей по направлениям I и II. Акцепторные свойства кислорода обеспечивают высокую полярность связей по этим направлениям.

I направление.

За счет полярности связи О-Н спирты обладают определенной кислотностью и диссоциируют по схеме:

Большей кислотностью обладают первичные спирты, меньшей – третичные и соблюдается последовательность:

Меньшая кислотность третичных спиртов обясняется положительными индукционными эффектами алкильных групп, которые увеличивают электронную плотность на углероде и кислороде.

1. Взаимодействие с металлами:

2. Реакция этерификации:

3. Реакции окисления. В зависимости от природы спирта реакции окисления протекают по-разному. Эти реакции могут проходить как реакции дегидрирования и как реакции окисления. Окисление первичных спиртов дает альдегиды:

Окисление вторичных спиртов дает кетоны:

Третичные спирты окисляются с разрывом углеводородной цепочки и образованием смеси кислот и кетонов:

II направление.

1. Гидрогалогенирование спиртов. Реакцию проводят в присутствии водоотнимающих веществ:

Реакционная способность спиртов изменяется в последовательности:

третичный > вторичный > первичный

2. Взаимодействие с галогенидами фосфора:

3. Внутримолекулярная и межмолекулярная дегидратация спиртов. В жестких условиях, при t > 180 0 С, проходит внутримолекулярная дегидратация в соответствии с правилом Зайцева:

В мягких условиях идет межмолекулярная дегидратация с образованием эфиров:

Физические свойства спиртов и их применение. Спирты с числом углеродных атомов С 1 – С 10 – жидкости, выше – твердые вещества. Растворимость спиртов с увеличением молекулярной массы понижается, температура кипения увеличивается. Аномально высокие температуры кипения для спиртов объясняяются возможностью образования ассоциатов за счет водородных связей

Спирты изостроения имеют более высокие температуры кипения, чем спирты нормального строения.

Метанол. Основное его количество получали путем сухой перегонки древесины. В настоящее время в промышленности метанол получают по следующей схеме:

Метанол имеет широкое и разностороннее применение. Значительные количества его потребляются для получения формальдегида, метиламина, красителей, фармакологических препаратов. Метанол – хороший растворитель и используется для растворения щелочи, употребляется для очистки бензинов, в лакокрасочной промышленности и др. Надо помнить, что метанол – сильнейший яд, вызывающий слепоту и паралич.



Коварность метилового спирта состоит в том, что он очень похож на этанол.

Этанол. Используется в пищевой промышленности для изготовления ликеро-водочной продукции, для получения сложных эфиров, применяемых в кондитерском производстве. В парфюмерии этанол используют как растворитель. Его содержание в кремах – 5-10 %, лосьонах – 10 – 60%, дезодорантах – до 80%).

Высокомолекулярные первичные спирты.

Цетиловый спирт (С 15 Н 31 СН 2 ОН) в составе сложного эфира входит в состав спермацета, выделяемого из черепных костей китов. Спермацет используется в парфюмерии и получении синтетических моющих средств.

Мирициловый спирт (С 30 Н 61 -СН-ОН) в связанном состоянии входит в состав пчелиного воска:

Двухатомные спирты (гликоли)

Двухатомные спирты содержат в своем составе две гидроксильные группы. Общая формула гликолей С n H 2 n (OH) 2 .

По систематической номенклатуре названия двухатомных спиртов образуются от названия соответствующих алканов с прибавлением окончания «диол», положение -ОН групп указывается цифрами

Производные углеводородов с одним или несколькими водородными атомами в молекуле, замещенными на группу -OH (гидроксильная группа или оксигруппа), — это спирты. Химические свойства определяются углеводородным радикалом и гидроксильной группой. Спирты образуют отдельный в нем каждый последующий представитель отличается от предыдущего члена на гомологическую разность, соответствующую =CH2. Все вещества этого класса могут быть представлены формулой: R-OH. Для одноатомных предельных соединений общая химическая формула имеет вид CnH2n+1OH. По международной номенклатуре названия могут быть образованы от углеводорода с добавлением окончания -ол (метанол, этанол, пропанол и так далее).

Это очень разнообразный и обширный класс химических соединений. В зависимости от количества групп -OH в молекуле, он подразделяется на одно-, двух- трехатомные и так далее — многоатомные соединения. Химические свойства спиртов зависят также от содержания оксигрупп групп в молекуле. Эти вещества являются нейтральными и не диссоциируют на ионы в воде, как, например, сильные кислоты или сильные основания. Однако могут слабо проявлять как кислотные (снижаются с увеличением в ряду спиртов молекулярной массы и разветвленности углеводородной цепи), так и основные (растут с увеличением молекулярной массы и разветвленности молекулы) свойства.

Химические свойства спиртов зависят от вида и пространственного расположения атомов: молекулы бывают с изомерией цепи и изомерией положения. В зависимости от максимального количества одинарных связей углеродного атома (связанного с оксигруппой) с другими атомами углерода (с 1-м, 2-мя или 3-мя) различают первичные (нормальные), вторичные или третичные спирты. У первичных спиртов гидроксильная группа присоединена к первичному углеродному атому. У вторичных и третичных — ко вторичному и третичному соответственно. Начиная с пропанола, появляются изомеры, которые отличаются положением гидроксильной группы: пропиловый спирт C3H7—OH и изопропиловый спирт CH3—(CHOH)—CH3.

Нужно назвать несколько основных реакций, которые характеризуют химические свойства спиртов:

  1. При взаимодействии со или их гидроокисями (реакция депротонирования) образуются алкоголяты (атом водорода замещается на атом металла), в зависимости от углеводородного радикала получаются метилаты, этилаты, пропилаты и так далее, например, пропилат натрия: 2CH3CH2OH + 2Na → 2CH3CH2ONa + H2.
  2. При взаимодействии с концентрированными галогенводородными кислотами образуются HBr + CH3CH2OH ↔ CH3CH2Br + H2O. Эта реакция является обратимой. В результате происходит нуклеофильное замещение ионом галогена гидроксильной группы.
  3. Спирты могут окисляться до диоксида углерода, до альдегидов или до кетонов. Спирты горят в присутствии кислорода: 3O2 + C2H5OH →2CO2 + 3H2O. Под действием сильного окислителя (хромовая кислота, и так далее) первичные спирты преобразуются в альдегиды: C2H5OH → CH3COH + H2O, а вторичные — в кетоны: CH3—(CHOH)—CH3 → CH3—(CHO)—CH3 + H2O.
  4. Реакция дегидратации протекает при нагревании в присутствии водоотнимающих веществ серная кислота и так далее). В результате образуются алкены: C2H5OH → CH2=CH2 + H2O.
  5. Реакция этерификации протекает также при нагревании в присутствии водоотнимающих соединений, но, в отличие от предыдущей реакции, при более низкой температуре и с образованием 2C2H5OH → C2H5—O—C2H5O. С серной кислотой реакция происходит в две стадии. Сначала образуется эфир кислоты серной: C2H5OH + H2SO4 → C2H5O—SO2OH + H2O, затем при нагревании до 140 °С и в избытке спирта образуется диэтиловый (его часто называют серный) эфир: C2H5OH + C2H5O—SO2OH → C2H5—O—C2H5O + H2SO4.

Химические свойства многоатомных спиртов, по аналогии с их физическими свойствами, зависят от типа углеводородного радикала, образующего молекулу, и, конечно, количества гидроксильных групп в ней. Например, этиленгликоль CH3OH—CH3OH (температура кипения 197 °С), являющийся 2-х атомным спиртом, представляет собой жидкость бесцветную (имеет сладковатый вкус), которая смешивается с H2O, а также низшими спиртами в любых соотношениях. Этиленгликоль, как и его высшие гомологи, вступают во все реакции, характерные для одноатомных спиртов. Глицерин CH2OH—CHOH—CH2OH (температура кипения 290 °С) является простейшим представителем 3-х атомных спиртов. Это густая сладкая на вкус жидкость, которая но смешивается с ней в любых соотношениях. Растворяется в спирте. Для глицерина и его гомологов также характерны все реакции одноатомных спиртов.

Химические свойства спиртов определяют направления их применения. Их используют в качестве топлива (биоэтанол или биобутанол и другие), в качестве растворителей в различных отраслях промышленности; как сырье для производства ПАВ и моющих средств; для синтеза полимерных материалов. Некоторые представители этого класса органических соединений широко используются как смазочные материалы или гидравлические жидкости, а также для изготовления лекарственных средств и биологически активных веществ.

Производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH .

Все спирты делятся на одноатомные и многоатомные

Одноатомные спирты

Одноатомные спирты - спирты, у которых имеется одна гидроксильная группа .
Бывают первичные, вторичные и третичные спирты:

У первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных - у второго, и т.д.

Свойства спиртов , которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному.

Сравнивая относительную молекулярную массу спиртов (Mr) c относительными атомными массами углеводородов, можно заметить, что спирты имеют более высокую температуру кипения. Это объясняется наличием водородной связи между атомом H в группе ОН одной молекулы и атомом O в группе -ОН другой молекулы.

При растворении спирта в воде образуются водородные связи между молекулами спирта и воды. Этим объясняется уменьшение объёма раствора (он всегда будет меньше, чем сумма объёмов воды и спирта по отдельности).

Наиболее ярким представителем химических соединений этого класса является этиловый спирт . Его химическая формула C 2 H 5 -OH. Концентрированный этиловый спирт (он же - винный спирт или этанол ) получают из разбавленных его растворов путём перегонки; действует опьяняюще, а в больших доза - это сильный яд, который разрушает живые ткани печени и клетки мозга.

Муравьиный спирт (метиловый)

При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата. Ещё один не менее известный представитель этого класса - метиловый спирт (его ещё называют - древесный или метанол ). В отличии от этанола метанол смертельно опасен даже в самых малых дозах! Сначала он вызывает слепоту, затем просто "убивает"!

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Двухатомными спиртами называются спирты ,содержащие две гидроксильные группы (группа ОН); спирты содержащие три гидроксильные группы - трёхатомные спирты . В их молекулах две или три гидроксильные группы никогда не оказываются присоединёнными к одному и тому же атому углерода.

Многоатомный спирт - глицерин

Двухатомные спирты ещё называют гликолями , так как они обладают сладким вкусом, - это характерно для всех многоатомных спиртов

Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты .

Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:

C 2 H 12 O 6 => C 2 H 5 -OH + CO 2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза , получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы . Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты

CH 2 =CH 2 + KOH => C 2 H 5 -OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Кстати, глицерин входит в состав многих косметических средств как консервант и как средство, предотвращающее замерзание и высыхание!

Свойства спиртов

1) Горение : Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:

C 2 H 5 -OH + 3O 2 -->2CO 2 + 3H 2 O

При их горении выделяется много теплоты, которую часто используют в лабораториях (лабораторные горелки). Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами

C 2 H 5 -OH + 2Na --> 2C 2 H 5 -ONa + H 2

При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами!

3) Реакция с галогеноводородом
C 2 H 5 -OH + HBr --> CH 3 -CH 2 -Br + H 2 O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H 2 SO 4)

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит . В процессе реакции образуется непредельный углеводород и вода.
Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Эта реакция является межмолекулярной реакцией дегидратации . Например, так:

В процессе реакции происходит образование простого эфира и воды.

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO 4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.

Что касается многоатомных спиртов , то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты , при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.

Взаимодействуют с азотной кислотой:

С точки зрения практического применения наибольший интерес представляет реакция с азотной кислотой. Образующийся нитроглицерин и динитроэтиленгликоль используют в качестве взрывчатых веществ, а тринитроглицерин - ещё и в медицине, как сосудорасширяющее средство.

Этиленгликоль

Этиленгликоль - типичный представитель многоатомных спиртов . Его химическая формула CH 2 OH - CH 2 OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.


Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы ). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Все мы видели глицерин . Он продаётся в аптеках в тёмных пузырьках и представляет собой вязкую бесцветную жидкость, сладковатую на вкус. - это трёхатомный спирт . Он очень хорошо растворим в воде, кипит при температуре 220 0 C.

Химические свойства глицерина во многом сходны со свойствами одноатомных спиртов, но глицерин может реагировать с гидроксидами металлов (например, гидроксидом меди Cu(OH) 2), при этом образуются глицераты металлов - химические соединения, подобные солям.

Реакция с гидроксидом меди - типовая для глицерина. В процессе химической реакции образуетс ярко-синий раствор глицерата меди

Эмульгаторы

Эмульгаторы - это высшие спирты , эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами , образуют стойкие эмульсии. Кстати, все косметические средства также являются эмульсиями! В качестве эмульгаторов часто используют вещества, представляющие собой искусственный воск (пентол, сорбитанолеат), а также триэтаноламин, лицетин.

Растворители

Растворители - это вещества, используемые в основном для приготовления лаков для волос и ногтей. Они представлены в небольшой номенклатуре, так как большинство таких веществ легко воспламенимо и вредно для организма человека. Наиболее распространённым представителем растворителей является ацетон , а также амилацетат, бутилацетат, изобутилат.

Есть также вещества, называемые разбавители . Они, в основном применяются вместе с растворителями для приготовления различных лаков .

ОПРЕДЕЛЕНИЕ

Предельные одноатомные спирты можно рассматривать как производные углеводородов ряда метана, в молекулах которых один атом водорода замещен на гидроксильную группу.

Итак, предельные одноатомные спирты состоят из углеводородного радикала и функциональной группы -OH. В названиях спиртов гидроксильная группа обозначается суффиксом -ол.

Общая формула предельных одноатомных спиртов C n H 2 n +1 OH или R-OH или C n H 2 n +2 O. Молекулярная формула спирта не отражает строения молекулы, поскольку одной и той же брутто-формуле могут соответствовать два абсолютно разных вещества, например молекулярная формула C 2 H 5 OH является общей и для этилового спирта и для ацетона (диметилкетона):

CH 3 -CH 2 -OH (этанол);

CH 3 -O-CH 3 (ацетон).

Так же как и углеводороды ряда метана предельные одноатомные спирты образуют гомологический ряд метанола.

Составим этот ряд гомологов и рассмотрим закономерности изменения физических свойств соединений этого ряда в зависимости от увеличения углеводородного радикала (табл. 1).

Гомологический ряд (неполный) предельных одноатомных спиртов

Таблица 1. Гомологический ряд (неполный) предельных одноатомных спиртов.

Предельные одноатомные спирты легче воды, поскольку их плотность меньше единицы. Низшие спирты смешиваются с водой во всех отношениях, с увеличением углеводородного радикала эта способность уменьшается. Большинство спиртов хорошо растворимы в органических растворителях. Спирты имеют более высокие температуры кипения и плавления, чем соответствующие углеводороды или галогенпроизводные, что обусловлено возможностью образования ими межмолекулярных связей.

Важнейшими представителями предельных одноатомных спиртов являются метанол (CH 3 OH) и этанол (C 2 H 5 OH).

Примеры решения задач

ПРИМЕР 1

Задание В натуральном жемчуге массовые отношения кальция, углерода и кислорода равны 10:3:12. Какова простейшая формула жемчуга?
Решение Для того, чтобы узнать, в каких отношениях находятся химические элементы в составе молекулы необходимо найти их количество вещества. Известно, что для нахождения количества вещества следует использовать формулу:

Найдем молярные массы кальция, углерода и кислорода (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Известно, что M = Mr, значит M(Ca)= 40 г/моль, Ar(C)=12 г/моль, а М(O) = 32 г/моль.

Тогда, количество вещества этих элементов равно:

n (Ca) = m (Ca) / M (Ca);

n (Ca) = 10 / 40 = 0,25моль.

n (C) = m (C) / M (C);

n (C) = 3 / 12 = 0,25 моль.

n (O) = m (O) / M (O);

n (O) = 12 / 16 = 0,75 моль.

Найдем мольное отношение:

n(Ca) :n(C):n(O) = 0,25: 0,25: 0,75= 1: 1: 3,

т.е. формула соединения жемчуга имеет вид CaCO 3 .

Ответ CaCO 3

ПРИМЕР 2

Задание Оксид азота содержит 63,2% кислорода. Какова формула оксида
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Вычислим массовую долю азота в оксиде:

ω (N) = 100% — ω(O) = 100% — 63,2% = 36,8%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (азот) и «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y = ω(N)/Ar(N) : ω(O)/Ar(O);

x:y= 36,8/14: 63,2/16;

x:y= 2,6: 3,95 = 1: 2.

Значит формула соединения азота и кислорода будет иметь вид NO 2 . Это оксид азота (IV).

Ответ NO 2

Вещества, образованные от предельных углеводородов и содержащие гидроксильную группу (-ОН), называются насыщенными или предельными одноатомными спиртами. Названия спиртов совпадают с названиями алканов в гомологическом ряду с суффиксом «-ол».

Строение

Общая формула предельных одноатомных спиртов - C n H 2n+1 -OH. Гидроксил является функциональной группой и определяет физические и химические свойства спиртов.

Основные одноатомные спирты (гомологический ряд метанола):

  • метанол или метиловый спирт - CH 3 OH;
  • этанол или этиловый спирт - C 2 H 5 OH;
  • пропанол - C 3 H 7 OH;
  • бутанол - C 4 H 9 OH;
  • пентанол - C 5 H 11 OH.

Рис. 1. Гомологический ряд одноатомных спиртов.

Насыщенным спиртам свойственна структурная и межклассовая изомерия. В зависимости от расположения гидроксильной группы в молекуле вещества различают:

  • первичные спирты - гидроксил прикреплён к первому атому углерода;
  • вторичные спирты - гидроксил находится у второго атома углерода;
  • третичные спирты - гидроксил соединён с третьим атом углерода.

Начиная с бутанола, наблюдается изомерия углеродного скелета. В этом случае название спирта записывается с двумя цифрами: первая указывает на положение метильной группы, вторая - гидроксила.

Рис. 2. Изомерия углеродного скелета насыщенных спиртов.

Одноатомные спирты образуют межклассовые изомеры с простыми эфирами - этиловый спирт (CH 3 CH 2 -OH), диметиловый эфир (CH 3 -O-CH 3).

Несмотря на то, что пропанол содержит три атома углерода, он может образовывать только два изомера по гидроксильной группе - пропанол-1 и пропанол-2.

Свойства

В зависимости от количества атомов углерода меняется агрегатное состояние одноатомных спиртов. Если в молекуле до 15 атомов углерода, то это жидкость, больше 15 - твёрдое вещество. Хорошо смешиваются с водой первые два спирта из гомологического ряда - метанол и этанол, а также структурный изомер пропанол-2. Все спирты плавятся и кипят при высоких температурах.

Активность спиртов объясняется наличием О-Н и С-О связей, которые легко разрываются. Основные химические свойства одноатомных спиртов приведены в таблице.

Реакция

Описание

Уравнение

С металлами

Реагируют только со щелочными и щелочноземельными металлами с разрывом связи О-Н

2C 2 H 5 OH + 2К → 2С 2 Н 5 ОК + Н 2

С кислородом

Горят в присутствии перманганата или дихромата калия (KMnO 4 , K 2 Cr 2 O 7)

C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O

C галогеноводородами

Гидроксильная группа вытесняется галогеном

C 2 H 5 OH + HBr → C 2 H 5 Br + H 2 O

С кислотами

Реагируют с минеральными и органическими кислотами с образованием сложных эфиров

C 2 H 5 OH + CH 3 COOH → CH 3 COOC 2 H 5

С оксидами металлов

Качественная реакция с образование альдегида

C 2 H 5 OH + CuO → CH 3 COH + H 2 O + Cu

Дегидратация

Протекает в присутствии сильной кислоты при высокой температуре

C 2 H 5 OH → C 2 H 4 + H 2 O

С карбоновыми кислотами

Реакция этерификации - образование сложных эфиров

C 2 H 5 OH + CH 3 COOH → CH 3 COOC 2 H 5 + H 2 O

Рис. 3. Качественная реакция одноатомных спиртов.

Одноатомные спирты имеют широкое применение в промышленности. Наиболее активно применяется этанол. Его используют для изготовления парфюмерии, уксусной кислоты, лекарств, лаков, красителей, растворителей и других веществ.

Что мы узнали?

Из урока химии узнали, что предельные или насыщенные одноатомные спирты являются производными предельных углеводородов с одной гидроксильной группой (гидроксилом). Это жидкости или твёрдые вещества в зависимости от количества атомов углерода. Одноатомные спирты образуют изомеры по гидроксильной, метильной группе и с простыми эфирами. Предельные одноатомные спирты реагируют со щелочными металлами, кислотами, оксидами. Используются для изготовления лекарств, растворителей, кислот.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 173.