Скорость распространения звуковой волны в металле. Скорость звуковых волн в разных химических средах

Мы знаем, что звук распросраняется по воздуху. Именно потому мы и можем слышать. В вакууме никаких звуков существовать не может. Но если звук передается по воздуху, вследствие взаимодействия его частиц, не будет ли он передаваться и другими веществами? Будет.

Распространение и скорость звука в разных средах

Звук передается не только воздухом. Наверное, все знают, что если приложить ухо к стене, то можно услышать разговоры в соседней комнате. В данном случае звук передается стеною. Звуки распространяются и в воде, и в других средах. Более того, распространение звука в различных средах происходит по-разному. Скорость звука различается в зависимости от вещества.

Любопытно, что скорость распространения звука в воде почти в четыре раза выше, чем в воздухе. То есть, рыбы слышат «быстрее», чем мы. В металлах и стекле звук распространяется еще быстрее. Это происходит потому, что звук это колебания среды, и звуковые волны передаются быстрее в средах с лучшей проводимостью.

Плотность и проводимость воды больше, чем у воздуха, но меньше, чем у металла. Соответственно, и звук передается по-разному. При переходе из одной среды в другую скорость звука меняется.

Длина звуковой волны также меняется при ее переходе из одной среды в другую. Прежней остается лишь ее частота. Но именно поэтому мы и можем различить, кто конкретно говорит даже сквозь стены.

Так как звук это колебания , то все законы и формулы для колебаний и волн хорошо применимы к звуковым колебаниям . При расчете скорости звука в воздухе следует учитывать и то, что эта скорость зависит от температуры воздуха. При увеличении температуры скорость распространения звука возрастает. При нормальных условиях скорость звукав воздухе составляет 340 344 м/с.

Звуковые волны

Звуковые волны, как известно из физики, распространяются в упругих средах. Именно поэтому звуки хорошо передаются землей. Приложив ухо к земле, можно издалека услышать звук шагов, топот копыт и так далее.

В детстве все наверняка развлекались, прикладывая ухо к рельсам. Стук колес поезда передается по рельсам на несколько километров. Для создания обратного эффекта звукопоглощения, используют мягкие и пористые материалы.

Например, чтобы защитить от посторонних звуков какое-либо помещение, либо, наоборот, чтобы не допустить выхода звуков из комнаты наружу, помещение обрабатывают, звукоизолируют. Стены, пол и потолок обивают специальными материалами на основе вспененных полимеров. В такой обивке очень быстро затихают все звуки.

Звук является спутником человека в течение всей его жизни, но мало кто задумывается, что он собой представляет. С физической точки зрения звук можно определить как колебательные движения частиц в упругой среде, вызванные каким-либо источником, коротко - упругие волны. Скорость звука зависит от свойств среды, в которой он распространяется: в газах скорость звука растет с ростом температуры и давления, в жидкостях при росте температуры наоборот снижается (исключением является вода, в которой скорость звука достигает максимума при 74°С и начинает снижаться только при увеличении данной температуры). Для воздуха такая зависимость выглядит так:

С = 332 + 0,6t c

где t c - температура окружающей среды, °С.

Таблица 1. Скорость звука в газах, при температуре 0 °С и давление 1 атм.

Таблица 2. Скорость звука в жидкостях при температуре 20 °С.

В твердых телах скорость звука определяется модулем упругости вещества и его плотностью, при этом в продольном и поперечном направлении в неограниченных изотропных твердых телах она различается.

Таблица 3. Скорость звука в твердом теле.

Из таблиц наглядно видно, что скорость звука в газах значительно ниже, чем в твердых телах, именно поэтому в приключенческих фильмах часто можно увидеть, как люди прикладывают ухо к земле, чтобы определить наличие погони за собой, также это явление заметно рядом с железной дорогой, когда звук приходящего поезда, слышится дважды - в первый раз он передается по рельсам, а второй - по воздуху.

Процесс колебательного движения звуковой волны в упругой среде, можно описать на примере колебания частицы воздуха:

На частицу воздуха, вынужденную сдвинуться со своей начальной позиции, из-за воздействия источника звука, действуют упругие силы воздуха, которые пытаются вернуть ее на свое первоначальное место, но из-за действия сил инерции, возвращаясь, частица не останавливается, а начинает удаляться от начальной позиции в противоположную сторону, где в свою очередь на нее также действуют упругие силы и процесс повторяется.

Рисунок 1. Процесс колебания частицы воздуха

На рисунке (рисунок №2) маленькими точками образно представлены молекулы воздуха (в кубометре воздуха их более миллиона). Давление в области компрессии несколько превышает атмосферное, а в области разрежения, наоборот, - ниже атмосферного. Направление малых стрелочек показывает, что, в среднем, молекулы движутся направо из области высокого давления и налево из области низкого. Любая из представленных молекул сначала проходит определенное расстояние в правую сторону, а затем такое же расстояние в левую, относительно своей первоначальной позиции, в то время как звуковая волна двигается равномерно в правую сторону.


Рисунок 2. Перемещение звуковой волны

Логично задать вопрос - почему звуковая волна перемещается вправо? Ответ можно найти при внимательном рассмотрении стрелочек на предыдущем рисунке: в месте, где стрелочки сталкиваются с друг другом образуется новое скопление молекул, которое будет находится с правой стороны от первоначальной области компрессии, при удалении от места столкновения стрелочек плотность молекул снижается и образуется новая область разрежения, следовательно постепенное перемещение области высокого и низкого давления приводит к движению звуковой волны в правую сторону.


Рисунок 3. Процесс перемещения звуковой волны

Волновое движение такого рода называется гармоническими или синусоидальными колебаниями, которое описывается следующим образом:

x(t) = Asin(wt + φ)

Простая гармоническая или синусоидальная волна изображена на рисунке (Рисунок №4):



Рисунок 4. Синусоидальная волна

Длина волны зависит от частоты и скорости звука:

Длина волны (м) = Скорость волны (м/с) / Частота (Гц)

Cоответственно частота определяется следующим образом:

Частота (Гц) = Скорость волны (м/с) / Длина волны (м)

Из этих уравнений видно, что с увеличением частоты - длина волны уменьшается.

Таблица 4. Длина волны в зависимости от частоты звука (при температуре воздуха 20 °С)

Интенсивность звука снижается по мере увеличения расстояния от источника звука. Если звуковая волна на своем пути не встречает преград, то звук из источника распространяется во всех направлениях. На рисунке (рисунок №5) изображен характер изменения интенсивности звука - сила звука остается постоянной, но площадь воздействия увеличивается, именно поэтому в отдельно взятой точке интенсивность звука снижается.


Рисунок 5. Процесс распространения звуковой волны

В зависимости от вида источника звука - существует несколько видов звуковых волн: плоские, сферические и цилиндрические.


Рисунок 6. Виды источников звука и схематическое изображение фронта волны
а - протяженная пластина; б - точечный источник; в - линейный источник.

Плоские волны при распространении не меняют форму и амплитуду, сферические не меняют форму (амплитуда уменьшается как 1/r), цилиндрические меняют и форму, и амплитуду (убывает как 1/№r).

Белорусский государственный университет

Физический факультет Кафедра общей физики

Методические указания к лабораторной работе 23н

« ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В МЕТАЛЛЕ»

Утверждены на заседании

Кафедры общей физики

«____»__________2002 г.

Жолнеревич И.И. – зав. кафедрой общей физики, доцент Перковский Т. А.. – старший преподаватель

Задание : определить скорость звука в стальной пластинке с предельной относительной погрешностью, не превышающей 5 %.

Оборудование и принадлежности : установка для определения скорости звука стальной пластинке, микрометр.

ОПИСАНИЕ УСТАНОВКИ Установка (рис. 1) состоит из

двух частей: генератора электромагнитных колебаний и стойки.

В основании стойки закреплена колонка 1 и телефон 2 (без мембраны) . Вдоль колонки можно перемещать и фиксировать в произвольном положении кронштейн 3 с тисками 4, которые служат для закрепления

пластинки 5. Ее длину можно изменять. При этом кронштейн необходимо перемещать так, чтобы нижний конец пластинки находился против телефона. С помощью винта 6 можно изменять расстояние от телефона до нижнего конца пластинки.

На передней панели генератора находится регулятор амплитуды напряжения 7, регулятор частоты 8 и дисплей 9, на котором отображаются значения амплитуды напряжения и частоты. На задней панели генератора (рис. 2) находится выключатель сети 10.

ЭЛЕМЕНТЫ ТЕОРИИ Общие сведения. Волной называют колебания, распространяющиеся в простран-

стве с течением времени. В механической волне колебания совершают частицы вещества. Вэлектромагнитной волне происходят колебания электрического и магнитного полей.Волновым фронтом называется множество точек, до которых дошли колебания.

Это «передний край» волны. Волновой поверхностью называется множество точек, в которых колебания происходят в одинаковой фазе. В зависимости от формы волновой по-

верхности различают плоские, сферические, цилиндрическиеи т.д. волны. Длиной волны

() называется расстояние между волновыми поверхностями, колебания которых происходят с разностью фаз 2 . Период (T) – это время, за которое происходит одно колебание.Частота () – это число колебаний в единицу времени. Частота измеряется в герцах (Гц). 1 Гц – это частота, при которой происходит одно колебание в секунду. Скорость электромагнитных волн в вакууме равна 3 108 м/с. Скорость механических волн зависит от свойств вещества. За один период волна распространяется на расстояние, равное ее длине:

Волна, в которой колебания происходят с единственной частотой, называется монохроматической волной. Например, монохроматическую звуковую волну издает камертон. В большинстве случаев в волне присутствуют колебания нескольких частот.

Механические волны в веществе называются упругими волнами. Упругие волны с большой амплитудой называютсяударными волнами. Упругие волны с малой амплитудой, которые воспринимаются человеческим ухом, называютсязвуком . Частота звука лежит в интервале приблизительно от 16Гц до 20000Гц .

Упругие волны в жидкостях и газах являются продольными. В них колебания частиц вещества происходятвдоль направления распространения волны. (Волны на поверхности жидкости не являются упругими. Они вызваны либо силами поверхностного натяжения, либо силами тяжести.) В твёрдых телах могут распространяться как продольные, так ипоперечные волны. В поперечной волне колебания частиц происходятперпендикулярно направлению распространения волны.

Скорость продольных звуковых волн в твёрдых телах определяется соотношени-

где E – модуль Юнга, – плотность тела.

Теория метода. В упругом теле конечных размеров (например, струна или камертон) могут происходить колебания с определенными частотами. В этом можно убедиться, ударив молоточком по струне, камертону или другому упругому телу. Этособственные колебания упругого тела, их частоты связаны между собой. Амплитуда колебаний минимальной частоты (основного тона или первой гармоники), наибольшая. Эта частота определяет звучание тела. Амплитуда колебаний второй, третьей т.д. гармоник, или обертонов, меньше. От них зависит тембр звучания.

В упругом теле, на которое действует периодически изменяющаяся внешняя сила, возникают вынужденные колебания той же частоты. Если частота внешней силы совпадет с частотой одной из гармоник собственных колебаний тела, наступитрезонанс . При этом амплитуда колебаний тела резко возрастет.

Аналогичная зависимость наблюдается и для стальной пластинки, один конец которой жестко закреплен (рис. 3). Амплитуда колебаний пластинки резко возрастает, когда частота внешней силы, приложенной к нижнему концу пластинки, совпадает с одной из частот ν i

ее собственных колебаний (i = 1, 2, 3 … – номер гармоники колебаний). Частота ν i зависит от размеров и физических свойств (модуля Юнга и плотности) материала пластинки. Скорость звука (см. соотношение 3) также определяется физическими свойствами материала пластинки.

Теоретический анализ показывает, что скорость звука в пластинке выражается через ее длину L , толщину d , собственную частоту колебаний i и безразмерный параметр b i :

Численное значение b i определяется номером гармоники колебаний:b 1 =

1,87510; b 2

4,69410; b k

(2k 1)

K 3,4,....

Из (4) следует, что собственная частота колебаний пластинки обратно пропорциональна квадратуее длины (остальные величины в (4) постоянные):

b2 cd

Порядок выполнения задания

1. С помощью регуляторов 7 и 8 (рис. 1) установить нулевые значения амплитуды напряжения и частоты. Установить длину пластинки L = 11 см. Это максимальная длина пластинки, которой соответствует минимальная частота собственных колебаний. Про уменьшении длины пластинки собственная частота колебаний будет возрастать.

2. Включить генератор электромагнитных колебаний. Установить некоторое значение выходного напряжения (в интервале от 5 В до 9 В).

3. Увеличивая частоту (с шагом 1 Гц), определить, в каком интервале частот становятся особенно заметными вынужденные колебания пластинки. После этого, уменьшая напряжение, изменяя расстояние между нижним концом пластинки и телефоном и плавно изменяя частоту (с шагом 0,1 Гц), определить резонансную частоту (первую гармоникусобственных колебаний пластинки).

4. Определить частоту второй гармоники при данной длине пластинки. Для ускорения поиска 2 следует учесть, что2 = (b 2 /b 1 ) 2 1 = 6,267 1 (это вытекает из соотноше-

5. Уменьшая длину пластинки до 8 см через 0,5 см, определить соответствующие каждому значению L собственные частоты колебаний1 и2 . Результаты измерений занести в таблицу1.

6. Из соотношения (4) оценить минимальную относительную погрешность косвенных измерений величины c . Приборную погрешность считать равной 0,1 Гц.

Таблица 1.

Результаты измерения зависимости собственной частоты колебаний стальной пластинки от ее длины.

L , м

1 , Гц

2 , Гц

7. Обозначив в формуле (5) 1/L 2 =x, i , =y, k i =a, определить методом наименьших квадратов среднее значение и относительную случайную погрешностьk i для 1-й и 2-й гармоник (см. приложение, формулы (11) и (13)). Из соотношения (7) определить среднее значение и относительную случайную погрешностьс на 1-й и 2-й гармониках.

8. Определить полную относительную погрешность косвенных измерений скорости звука в стальной пластинке.

На основании проделанных измерений сформулировать цель работы и сделать выводы.

Контрольные вопросы.

1. От чего зависит скорость распространения волн в упругой среде?

2. Имеются ли среды, в которых скорость распространения поперечных волн больше, чем продольных?

3. Как определить собственные частоты колебаний упругого тела (стальной пластинки, струны рояля, столба воздуха в трубе органа)?

ЛИТЕРАТУРА

1. Кембровский Г.С. Приближённые вычисления и методы обработки результатов измерений в физике. -Минск: Изд-во "Университетское", 1990.

2. Матвеев А.Н. Механика и теория относительности. -М.: Высшая школа, 1986.

3. Петровский И.И. Механика. -Минск: Изд-во БГУ, 1973.

4. Савельев И.В. Курс общей физики. -М.: Наука, 1982. Т. 1. Механика. Молекулярная физика.

5. Сивухин Д.В. Общий курс физики. М.: Наука, 1989 Т. 1. Механика.

6. Стрелков С.П. Механика. -М.: Наука, 1975.

7. Физический практикум. Под ред. Кембровского Г.С. -Минск: Изд-во "Универ-

ситетское", 1986.

ПРИЛОЖЕНИЕ

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Пусть некоторая величина y прямо пропорциональна величинех, т.е.

y = ax. (8)

Экспериментально независимыми способами измерен ряд значений x i ,i = 1, 2, ...,n , одной величины и соответствующие им значенияy i другой величины. При графической обработке результатов измерений полученные данные по соответствующим правилам изображаются в виде точек (рис. 1п). Дальнейшая задача сводится к подбору такого угла наклона проводимой прямой, при котором она располагалась бы возможно ближе ко всем точкам и по обе ее стороны оказывалось бы приблизительно равное их коли-

чество. Понятно, что выполнение подобной операции “на глаз” не может обеспечить высокую точностью Более точное математическое правило проведения прямой линии заключается в нахождении такого значения параметра а , при котором сумма квадратов отклонений всех экспериментальных точек от линии графика была бы наименьшей.

Обычно случайные погрешности в определении аргумента х незначительны (как правило, в ходе эксперимента значенияx i задаются и устанавливаются на приборах самим экспериментатором). Поэтому отклонения экспериментальных точек от прямой, т.е. случайные погрешностиy i , будут равны разностям ординат данных точек и соответствующих точек на прямой (см. рис. 1п). Согласно методу наименьших квадратов наилучшей будет та прямая, для которой будет минимальной величина

y i 2n

(ax iy i) 2 .

По условию минимума производная от величины S по параметруa должна быть равна нулю:

При количестве измерений n 10 абсолютную случайную погрешность принимают равнойa c = 3a , приn = 7a c = 4a , приn = 5 величинаa c = 5a .

Относительная случайная погрешность a,c =a c /a, или в процентах

a, c

Инструментальные и другие погрешности оценивают так же, как и при косвенных измерениях.

1.25. 3ВУКОВЫЕ ВОЛНЫ

Понятие звуковой волны. Скорость звука в различных средах. Физические характеристики звука: интенсивность, спектр, высота тона, громкость, затухание. Ультразвук и его применение. Эффект Доплера. Ударные волны.

Звуковые волны.

Важным видом продольных волн являются звуковые волны . Так называются волны с частотами 17 – 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц – ультразвуком.

Звуковые волны – упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах .

Избыточное звуковое давление. Уравнение звуковой волны.

Уравнение упругой волны позволяет вычислить смещение любой точки пространства, по которому проходит волна, в любой момент времени. Но как говорить о смещении частиц воздуха или жидкости от положения равновесия? Звук, распространяясь в жидкости или газе, создает области сжатия и разряжение среды, в которых давление соответственно повышается или понижается по сравнению с давлением невозмущенной среды.

Если - давление и плотность невозмущенной среды (среды, по которой не проходит волна), а - давление и плотность среды при распространении в ней волнового процесса, то величина называется избыточным давлением . Величина есть максимальное значение избыточное давление (амплитуда избыточного давления ).

Изменение избыточного давления для плоской звуковой волны (т.е. уравнение плоской звуковой волны) имеет вид:

где y – расстояние от источника колебаний точки, избыточное давление в которой мы определяем в момент времени t.

Если ввести величину избыточной плотности и ее амплитуды так же, как мы вводили величину избыточного звукового давления, то уравнение плоской звуковой волны можно было бы записать так:

. (30.2)

Скорость звука - скорость распространения звуковыхволн в среде. Как правило, вгазахскорость звука меньше, чем вжидкостях, а вжидкостяхскорость звука меньше, чем в твёрдых телах. Чем больше плотность, тем больше скорость звука. Скорость звука в любой среде вычисляется по формуле: гдеβ - адиабатическаясжимаемостьсреды;ρ - плотность.

Объективные и субъективные характеристики звука.

Само слово “звук” отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук – то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные , которые могут быть измерены физической аппаратурой, и с убъективные , определяемые восприятием данного звука человеком.

К объективным (физическим) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу1. включены сравнительные данные объективных и субъективных характеристик.

Таблица1.

Частота звука измеряется числом колебаний частиц среды, участвующих в волновом процессе, в 1 секунду.

Интенсивность волны измеряется энергией, переносимой волной в единицу времени через единичную площадь (расположенную перпендикулярно направлению распространению волны).

Спектральный состав (спектр) звука указывает из каких колебаний состоит данный звук и как распределены амплитуды между отдельными его составляющими.

Различают сплошные и линейчатые спектры . Для субъективной оценки громкости используются величины, называемые уровнем силы звука и уровнем громкости .

Таблица 2 -Объективные характеристики механических волновых процессов.

Величина и ее обозначение

Уравнение для определения единицы измерения

Единица измерения

Сокращенное обозначение

Частота

Звуковое давление р

ньютон на квадратный метр

(паскаль)

Плотность звуковой энергии

джоуль на кубический метр

Поток звуковой энергии (звуковая мощность)

Интенсивность звука I

Ватт на квадратный метр

Для характеристики величин, определяющих восприятие звука, существенными являются не столько абсолютные значения интенсивности звука и звукового давления, сколько их отношение к некоторым пороговым значениям. Поэтому вводятся понятие относительных уровней интенсивности и звукового давления.

Для того, чтобы звуковая волна воспринималась на слух, необходимо, чтобы ее интенсивность превышала бы минимальную величину, называемую п орогом слышимости . Величина различная для разных частот. Для частоты порог слышимости составляет величину порядка. Опытом установлено, что на каждой частоте есть верхняя граница силы звука , при превышении которого у человека возникают болевые ощущения. Величина называется порогом болевого ощущения.

Уровень интенсивности (уровень силы звука) равен десятичному логарифму отношения интенсивности звука при данной частоте к интенсивности звука при той же частоте на пороге слышимости:

.

Громкость звука - субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления и частоты звуковых колебаний. Также на громкость звука влияют его тембр, длительность воздействия звуковых колебаний и другие факторы. Уровень громкости равен десятичному логарифму отношения интенсивности звука при данной частоте к интенсивности звука при частоте 1000 Гц на пороге слышимости:

.

Единицей измерения уровня интенсивности является бел (Б): . Одна десятая часть бела называется децибел (дБ): 0,1Б = 1дБ. Формула для определения уровня интенсивности в децибелах примет вид:

.

Если записать формулу для уровня громкости в виде , то единицей измерения в СИ при таком определении величины является, единица, имеющая название фон. При частоте 1000 Гц шкала фонов и децибел совпадают, для других частот они различны.

Уровень звукового давления равен произведению 20 на логарифм отношения звукового давления при данной частоте к звуковому давлению на пороге слышимости. Единицей измерения в данном случае является децибел.

.

Ультразвук: Механические волны с частотой колебания, большей 20000Гц, не воспринимаются человеком как звук.

Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды и характеризуется рядом отличительных особенностей по сравнению с колебаниями слышимого диапазона. В ультразвуковом диапазоне частот сравнительно легко получить направленное излучение; ультразвуковые колебания хорошо поддаются фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний в определенных зонах воздействия. При распространении в газах, жидкостях и твердых телах ультразвук порождает уникальные явления, многие из которых нашли практическое применение в различных областях науки и техники. Прошло чуть более ста лет с начала исследований в области применения ультразвуковых колебаний. За это время в активе человечества появились десятки высокоэффективных, ресурсосберегающих и экологически безопасных ультразвуковых технологий. К их числу относятся: технологии закалки, лужения и пайки металлов, предотвращения образования накипи на теплообменных поверхностях, сверления хрупких и особо твердых материалов, сушки термолабильных веществ, экстрагирования животного и растительного сырья, растворения, стерилизации жидких веществ, мелкодисперсного распыления лекарственных препаратов, тяжелых топлив, получения эмульсий и сверхтонких суспензий, диспергирования красителей, сварки металлов и полимеров, мойки, очистки деталей без применения горючих и токсичных растворителей.

В последние годы ультразвук начинает играть все большую роль в промышленности и научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе. В настоящее время формируется новое направление химии – ультразвуковая химия, позволяющая ускорить многие химико-технологические процессы и получить новые вещества. Научные исследования способствовали зарождению нового раздела акустики – молекулярной акустики, изучающей молекулярное взаимодействие звуковых волн с веществом. Возникли новые области применения ультразвука: интроскопия, голография, квантовая акустика, ультразвуковая фазомерия, акустоэлектроника.

Наряду с теоретическими и экспериментальными исследованиями в области ультразвука выполнено много практических работ. Разработаны универсальные и специальные ультразвуковые станки, установки, работающие под повышенным статическим давлением, ультразвуковые механизированные установки для очистки деталей, генераторы с повышенной частотой и новой системой охлаждения, преобразователи с равномерно распределенным полем.

Эхолот-прибор для определения глубины моря. Ультразвуковой локатор используется для определения расстояния до препятствия на пути. При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость. Это используют для ускорения самых различных технологических процессов (например, приготовления растворов. Отмывки деталей, дубления кож и т.д.). Ультразвук применяется для обнаружения дефектов в металлических деталях.В медицине проводится ультразвуковое исследование внутренних органов.

Эффектом Доплера называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга.

Для рассмотрения эффекта Доплера предположим, что источник и приемник звука движутся вдоль соединяющей их прямой; v ист и v пр - соответственно скорости движения источника и приемника, причем они положительны, если источник (приемник) приближается к приемнику (источнику), и отрицательны, если удаляется. Частота колебаний источника равнаv 0 .

1. Источник и приемник покоятся относительно среды, т. е. v ист = v пр =0. Если v - скорость распространения звуковой волны в рассматриваемой среде, то длина волны l = vT = v / v 0 . Распространяясь в среде, волна достигнет приемника и вызовет колебания его звукочувствительного элемента с частотой

Следовательно, частота v звука, которую зарегистрирует приемник, равна частоте v 0 , с которой звуковая волна излучается источником.

2. Приемник приближается к источнику, а источник покоится, т. е. v пр >0, v ист =0. В данном случае скорость распространения волны относительно приемника станет равной v + v пр. Так как длина волны при этом не меняется, то

(30.4)

т. е. частота колебаний, воспринимаемых приемником, в (v + v пр)/ v раз больше частоты колебаний источника.

3. Источник приближается к преемнику, а приемник покоится, т. е. v ист >0, v пр =0.

Скорость распространения колебаний зависит лишь от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направле­нии к приемнику расстояние vT (равное длине волны l ) независимо от того, движется ли источник или покоится. За это же время источник пройдет в направлении волны расстояние v ист T (рис. 224), т. е. длина волны в направлении движения сократится и станет равной l "=l -v ист Т =(v -v ист)T , тогда

(30.5)

т. е. частота n колебаний, воспринимаемых приемником, увеличится в v /(v v ист) раз. В случаях 2 и 3, если v ист <0 и v пр <0, знак будет обратным.

4. Источник и приемник движутся относительно друг друга. Используя результаты, полученные для случаев 2 и 3, можно записать выражение для частоты колебаний, воспринимаемых приемником:

(30.6)

причем верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак - в случае их взаимного удаления.

Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или приемник. Если направления скоростей v пр и v ист не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (30.6) надо брать их проекции на направление этой прямой.

Ударная волна: поверхность разрыва, которая движется относительно газа/жидкости/твёрдых тел и при пересечении которой давление, плотность,

температура и скорость испытывают скачок.

Ударные волны возникают при взрывах, детонации, при сверхзвуковых движениях тел, при мощных электрич. разрядах и т. д. Например, при взрыве ВВ образуются высоконагретые продукты взрыва, обладающие большой плотностью и находящиеся под высоким давлением. В начальный момент они окружены покоящимся воздухом при нормальной плотности и атмосферном давлении. Расширяющиеся продукты взрыва сжимают окружающий воздух, причём в каждый момент времени сжатым оказывается лишь воздух, находящийся в определённом объёме; вне этого объёма воздух остаётся в невозмущённом состоянии. С течением времени объём сжатого воздуха возрастает. Поверхность, которая отделяет сжатый воздух от невозмущённого, и представляет собой фронт ударной волны. В ряде случаев сверхзвукового движения тел в газе (артиллерийские снаряды, спускаемые космич. аппараты) направление движения газа не совпадает с нормалью к поверхности фронта ударной волны, и тогда возникают косые ударные волны.

Примером возникновения и распространения ударной волны может служить сжатие газа в трубе поршнем. Если поршень вдвигается в газ медленно, то по газу со скоростью звука а бежит акустич. (упругая) волна сжатия. Если же скорость поршня не мала по сравнению со скоростью звука, возникает ударная волна, скорость распространения которой по невозмущённому газу больше, чем скорость движения частиц газа (т. н. массовая скорость), совпадающая со скоростью поршня. Расстояния между частицами в ударной волне меньше, чем в невозмущённом газе, вследствие сжатия газа. Если поршень сначала вдвигают в газ с небольшой скоростью и постепенно ускоряют, то ударная волна образуется не сразу. Вначале возникает волна сжатия с непрерывными распределениями плотности r и давления р. С течением времени крутизна передней части волны сжатия нарастает, т. к. возмущения от ускоренно движущегося поршня догоняют её и усиливают, вследствие чего возникает резкий скачок всех гидродинамич. величин, т. е. ударная волна

Ударная волна в реальных газах. В реальном газе при высоких температурах происходят возбуждение молекулярных колебаний, диссоциация молекул, химические реакции, ионизация и т. д., что связано с затратами энергии и изменением числа частиц. При этом внутренняя энергия e сложным образом зависит от p и ρ и параметры газа за фронтом.

Для перераспределения энергии газа, сжатого и нагретого в сильном скачке уплотнения, по различным степеням свободы требуется обычно очень много соударений молекул. Поэтому ширина слоя Dx, в котором происходит переход из начального в конечное термодинамически равновесное состояние, т. е. ширина фронта ударной волны, в реальных газах обычно гораздо больше ширины вязкого скачка и определяется временем релаксации наиболее медленного из процессов: возбуждения колебаний, диссоциации, ионизации и т. д. Распределения

Рис. 25.1 Распределение температуры (a) и плотности (б) в ударной волне, распространяющейся в реальном газе.

температуры и плотности в ударной волне при этом имеют вид, показанный на рис. 25.1 где вязкий скачок уплотнения изображён в виде взрыва.

Ударная волна в твёрдых телах. Энергия и давление в твёрдых телах имеют двоякую природу: они связаны с тепловым движением и с взаимодействием частиц (тепловые и упругие составляющие). Теория междучастичных сил не может дать общей зависимости упругих составляющих давления и энергии от плотности в широком диапазоне для разных веществ, и, следовательно, теоретически нельзя построить функцию, связывающие (p ,ρ) до и за фронтом ударной волны. Поэтому расчеты для твёрдых (и жидких) тел определяются из опыта или полуэмпирически. Для значительного сжатия твёрдых тел нужны давления в миллионы атмосфер, которые сейчас достигаются при экспериментальных исследованиях. На практике большое значение имеют слабые ударные волны с давлениями 10 4 -10 5 атм. Это давления, которые развиваются при детонации, взрывах в воде, ударах продуктов взрыва о преграды и т. д.. В ряде веществ - железе, висмуте и других в ударной волне происходят фазовые переходы - полиморфные превращения. При небольших давлениях в твёрдых телах возникают упругие волны , распространение которых, как и распространение слабых волн сжатия в газах, можно рассматривать на основе законов акустики.