Что такое выражение и равенство. Что такое равенство? Первый признак и принципы равенства

Пусть даны 2 числовых выражения А иВ . Соединив их знаком равенства, получим некоторое высказывание, называемое числовым равенством.

Равенство А =В считается истинным тогда и только тогда, когда оба выраженияА иВ имеют числовые значения, причем эти значения одинаковы.

Пример . 1) 16: 2 = 3 + 5 – истинное числовое равенство, т.к. левая и правая части этого неравенства имеют значение 8;

2) 3 ∙ 4 = 15 – 4 – ложное равенство, т.к. значение левой части равно 12, а правой 11;

3) 15: (10 – 10) = 15 – ложно, т.к. выражение в левой части не имеет значения.

Из данного выше определения вытекает, что если истинны равенства А =В иС =D , гдеА ,В ,С, D – числовые выражения, то при условии выполнимости соответствующих операций, истинны и равенства (А ) + (С ) = (В ) + (D ), (А ) – (С ) = (В ) – (D ), (А ) ∙ (С ) = (В ) ∙ (D ), (А ) : (С ) = (В ) : (D ), т.е. числовые равенства можно почленно складывать, вычитать, умножать, делить.

Отношение равенства числовых выражений обладает свойствами:

1) рефлексивности (А =А );

2) симметричности (А =В В =А );

3) транзитивности (А =В В =С А =С ), т.о. данное отношение является отношением эквивалентности и множество числовых выражений разбивается на классы эквивалентности, состоящие из выражений, имеющих одно и то же значение;

4) если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) + (С ) = (В ) + (С ));

5) если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) ∙ (С ) = (В ) ∙ (С ));

6) если обе части истинного числового равенства возвести в одну и ту же нечетную степень, то получим истинное числовое равенство (если п А =В (А ) п = (В ) п ;

7) если обе части истинного числового равенства, левая и правая части которого имеют неотрицательное значение, возвести в одну и ту же четную степень, то получим истинное числовое равенство (если п – четное натуральное число, значения числовых выраженийА иВ неотрицательны, тоА =В (А ) п = (В ) п . Если снять условие, что значения числовых выраженийА иВ неотрицательны, то вместо эквивалентности будем иметь лишь импликациюА =В (А ) п = (В ) п .

§ 3. Числовые неравенства и их свойства

Пусть А иВ – два числовых выражения. Соединив их знаком > или <, получим некоторое высказывание, называемое числовым неравенством. НеравенствоА <В считается истинным, еслиА иВ имеют числовые значения, причем числовое значение выраженияА меньше числового значения выраженияВ .

Пример . 2 + 5 < 3 ∙ 4 – истинное неравенство, т.к. левая часть имеет значение 7, правая имеет значение 12 и 7 < 12.

Неравенство А В является дизъюнкцией неравенстваА <В и равенстваА =В. Оно истинно тогда и только тогда, когда истинно хотя бы одно из данных элементарных высказываний.

Неравенство А <В <С является конъюнкцией неравенствА <В иВ <С. Оно истинно тогда и только тогда, когда истинны оба неравенства.

Выполнив указанные в числовых выражениях действия, мы получим в левой и правой части неравенства соответствующие числа. Пусть а , b ,с ,d – соответствующие значения числовых выраженийА ,B ,C ,D .

Свойства числовых неравенств

1) если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство (А <В (А ) + (С ) < (В ) + (С ));

2) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее положительное значение, то полученное числовое неравенство будет также истинным (А <В (А ) ∙ (С ) < (В ) ∙ (С ));

3) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее отрицательное значение, то, чтобы получить истинное числовое неравенство, необходимо знак неравенства поменять на противоположный (А <В (А ) ∙ (С ) > (В ) ∙ (С ));

4) неравенства одного знака можно почленно складывать (А <В ,С <D (А ) + (С ) < (В ) + (D ));

5) неравенства одного знака, имеющие положительные значения, можно почленно перемножать (если А <В ,С <D , причема , b ,с ,d > 0, то (А ) ∙ (С ) < (В ) ∙ (D ));

6) обе части истинного числового неравенства можно возвести в одну и ту же нечетную степень (если п – нечетное натуральное число, тоА <В (А ) п < (В ) п );

7) возводить в четную степень обе части неравенства можно лишь в том случае, если обе они имеют неотрицательные значения (если п – четное натуральное число иа , b ≥ 0, тоА <В (А ) п < (В ) п );

8) если а , b < 0,А <В  > .

На бумаге написано следующее:

Три и два - это пять.

К трем прибавить два будет пять.

Складываем три и два, в результате получаем пять.

Три увеличить на два станет пять.

Сумма чисел три и два равна пяти.

Кстати, «роли», которые играют числа в этой записи, имеют такие названия:

первое слагаемое + второе слагаемое = сумма

Подобным же образом,

это не только «пять минус два равно три», но и:

Пять без двух - это три.

От пяти отнять два будет три.

Из пяти вычесть два получится три.

Пять уменьшить на два составит три.

Разность чисел пять и два равна трем.

Если уменьшаемое равно 5, а вычитаемое равно 2, то разность равна 3.

«Роли» чисел в примерах на вычитание называются так:

уменьшаемое − вычитаемое = разность

Семь - это столько же, сколько четыре плюс три.

Рассмотрим такую ситуацию. У Дениса есть 5 конфет. Его младший брат Матвей просит:

Денис раскладывает конфеты на две кучки. Одну кучку оставляет себе, другую дает Матвею. Спрашивается: как 5 конфет можно поделить на две кучки? Возможные ответы:

5 = 1 + 4 (Денис оставляет одну конфету себе, а четыре дает Матвею);
5 = 2 + 3;
5 = 3 + 2;
5 = 4 + 1.

Но это еще не все возможные варианты. Может оказаться так, что Денису эти конфеты вообще не нравятся, и он все их отдает Матвею:

А, может быть, Денис вовсе не захочет делиться конфетами, и тогда следует написать так:

Все эти ответы можно объединить в одну строчку:

Допустим, что какой-нибудь взрослый дядя - непрошеный экзаменатор - спросит у Дениса:

Денис теперь смело может ответить:

Это равно три плюс два.

И Денис будет совершенно прав. Действительно,

Но как же тогда грамотно попросить вычислить «два плюс три», чтобы ответом было одно-единственное число?

Грамотный вопрос звучит так:

Чему равно значение выражения 2 + 3?

Математическим выражением называется всё, про что можно спросить: «Это сколько? Какому числу это равно?» Мы уже встречались с такими выражениями, как «2 + 3», «5 − 2». Числа сами по себе тоже являются выражениями. Ведь не будет ошибкой утверждать, что

Значит, «2» - это выражение.

Ответ на вопрос: «Это сколько? Какому числу это равно?» - называется значением выражения. Например, значением выражения «2 + 3» является «5». Записывается это уже знакомым нам способом:

Если два выражения имеют одно и то же значение, то между ними ставится знак «=» и полученная запись называется равенством , например:

1 + 4 = 2 + 3;
7 = 2 + 5.

Мы уже знаем, что равенства могут образовывать цепочки:

5 = 0 + 5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5 + 0.

Если два выражения имеют разные значения, то ставить знак «=» между ними было бы неверно, но можно поставить другой знак, а именно «≠». Например,

1 ≠ 2 (читается: один не равен двум);
3 + 2 ≠ 4 (три плюс два не равно четырем);
10 ≠ 7 − 3 (десять не равно семи минус три).

Такие записи называются неравенствами . Однако такого рода неравенства часто оставляют некоторую неудовлетворенность. Вряд ли Денис скажет:

Мой возраст неравен возрасту Матвея.

Скорее всего, он выразится так:

Я старше Матвея. Мне больше лет, чем ему. Матвей младше меня. Ему меньше лет, чем мне.

Мы знаем, что Денису 7 лет, а Матвею 5. Мы можем записать так:

7 > 5 (читается: семь больше пяти; или: семь больше, чем пять)

5 < 7 (пять меньше семи; пять меньше, чем семь).

Через три года оба будут взрослее, но Денис так и останется старше Матвея:

7 + 3 > 5 + 3 (семь плюс три больше, чем пять плюс три);
5 + 3 < 7 + 3 (пять плюс три меньше, чем семь плюс три).

Записи, в которых присутствует символ «>» («больше») или «<» («меньше») тоже называются неравенствами . Неравенства могут образовывать цепочки:

0 < 1 < 2 < 3;
3 > 2 > 1 > 0.

Допустимы также смешанные цепочки, в которых присутствуют как равенства, так и неравенства. Пусть, например, спрашивается: что больше:

7 + 3 или 5 + 3?

Ответ на этот вопрос удобно представить в следующем виде:

7 + 3 = 10 > 8 = 5 + 3.

Вероятно, иногда Денису захочется сказать так:

Я старше Матвея на два года. Мне на два года больше, чем ему. Матвей младше меня на два года. Ему на два года меньше, чем мне.

Чтобы это записать с помощью чисел, снова понадобятся равенства. Такую запись можно сделать разными способами:

7 = 5 + 2;
5 = 7 − 2;
2 = 7 − 5.

Теперь поговорим о словах, которые принято употреблять, когда мы говорим об умножении и делении нацело. Пусть дано равенство

3 умножить на 5 равно 15;
произведение чисел 3 и 5 равно 15;
число 3 увеличили в 5 раз и получили 15;
число 5 увеличили в 3 раза и получили 15;
число 15 в 5 раз больше числа 3;
число 3 в 5 раз меньше числа 15;

«Роли» распределяются таким образом:

первый сомножитель ∙ второй сомножитель = произведение

В школе произведения всех чисел, которые меньше или равны десяти, записывают в виде большой скучной таблицы, называемой таблицей умножения. Эту таблицу заставляют учить наизусть. Для облегчения зубрежки, в русском языке для произведений из таблицы умножения имеются специальные названия, например,

2 ∙ 2 - дважды два;
3 ∙ 6 - трижды шесть;
4 ∙ 5 - четырежды пять;
5 ∙ 8 - пятью восемь
и тому подобное.

Рассмотрим теперь равенство

Прочесть эту запись можно так:

15 поделить на 3 равно 5;
15 разделить на 3 равно 5;
частное от деления числа 15 на число 3 равно 5;
отношение чисел 15 и 3 равно 5;
число 15 в 3 раза больше числа 5;
число 5 в 3 раза меньше числа 15.

«Роли» распределяются так:

делимое / делитель = частное

Задачи

2.1.1. Какие два числа надо сложить, чтобы результат был равен четырем? Выписать все возможные ответы.

2.1.2. Какое число надо вычесть из какого, чтобы результат был равен двум? Написать один из возможных ответов.

2.1.3. Указать, что из следующих записей является выражением, что равенством, что неравенством, что бессмыслицей. Какие из равенств и неравенств являются верными, а какие нет?

1
10
10 +
10 + 8
10 + 8 =
10 + 8 = 1
10 + 8 = 18
2
25
25 −
25 − 5
25 − 5 >
25 − 5 > 1
25 − 5 > 10
25 − 5 > 10 +
25 − 5 > 10 + 2
25 − 5 > 10 + 20

2.1.4. Найти значение выражений

37 + 54
98 − 73
и т.п.

2.1.5. Сравнить выражения (поставить между ними знак «=», «>» или «<»):

45 + 18 __ 71 − 16
78 − 14 __ 13 + 56
и т.п.

Пример записи решения:

63 = 45 + 18 > 71 − 16 = 55.

2.1.6. У Дениса 25 конфет, а у Матвея на 3 конфеты меньше. Сколько конфет у Матвея?

2.1.7. У Дениса 25 конфет, а у Матвея на 3 конфеты больше. Сколько конфет у Матвея?

2.1.8. У Дениса 25 конфет, а у Матвея 23 конфеты. У кого конфет больше и насколько?

2.1.9. У Дениса 33 конфеты, а у Матвея 35 конфет. У кого конфет меньше и насколько?

2.1.10. У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 4 конфеты. У кого конфет теперь больше и насколько?

2.1.11. (Маленькая провокация) У Дениса было 25 конфет, а у Матвея было 23 конфеты. Денис съел 2 конфеты. У кого конфет теперь меньше и насколько?

2.1.12. У Дениса было 25 конфет, а у Матвея 23 конфеты. Денис съел 14 конфет, а Матвей съел 10 конфет. У кого конфет стало больше и насколько?

2.1.14. Денису 7 лет, а Матвею 5 лет. Сколько лет будет Матвею, когда Денису будет 10 лет? Сколько лет будет Денису, когда Матвею будет 10 лет?

2.1.15. У Дениса 20 конфет, а у Матвея в два раза меньше. Сколько конфет у Матвея?

2.1.16. У Дениса 5 конфет, а у Матвея в 3 раза больше. Сколько конфет у Матвея?

2.1.17. Начиная с этого этапа, задачи можно брать из пособий и задачников, официально рекомендованных для школьников и продающихся в книжных магазинах. Однако такие задачи часто сформулированы весьма заумно и требуют дополнительного редактирования. Например, имеется следующая задача (О. В. Узорова. 3000 задач и примеров по математике: 3-4 кл. Москва, 2001):

«Камни, которые врезаются в атмосферу Земли и полностью в ней сгорают, называются метеорами. Они загораются на высоте 100 км, и, горя, летят еще 30 км. Сколько километров до Земли остается пролететь пыли и пеплу от этого метеора?»

Если предложить ребенку задачу именно в таком виде, то есть риск погрязнуть в объяснениях относительно того, откуда берутся метеоры, чем они отличаются от метеоритов, что такое атмосфера, почему тела нагреваются при трении о воздух, и, вообще, как устроена Вселенная. Это всё вещи, конечно, интересные, но, раз уж мы решили заниматься математикой, то лучше ту же самую задачу перевести на более привычный язык. Вот один из возможных вариантов:

«От подъезда дома до магазина, где продается мороженое, 100 шагов. Папа отправился в магазин, чтобы купить Денису мороженое. Он прошел уже 30 шагов. Сколько шагов ему осталось пройти?»

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

Определение 1

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

Свойства равенств

Запишем три основных свойства равенств:

Определение 2

  • свойство рефлексивности, гласящее, что объект равен самому себе;
  • свойство симметричности: если первый объект равен второму, то второй равен первому;
  • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

Буквенно сформулированные свойства запишем так:

  • a = a ;
  • если a = b , то b = a ;
  • если a = b и b = c , то a = c .

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 - двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | - пример четвертного равенства.

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

«Равенство» - это тема, которую ученики проходят еще в начальной школе. Сопутствует ей также ей «Неравенства». Эти два понятия тесно взаимосвязаны. Кроме того, с ними связывают такие термины, как уравнения, тождества. Итак, что такое равенство?

Понятие равенства

Под этим термином понимают высказывания, в записи которых есть знак «=». Равенства разделяются на верные и неверные. Если в записи вместо = стоит <, >, тогда речь идет о неравенствах. Кстати, первый признак равенства говорит о том, что обе части выражения идентичны по своему результату или записи.

Кроме понятия равенства, в школе изучают также тему «Числовое равенство». Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака =. К примеру, 2*5+7=17. Обе части записи равны между собой.

В числовых выражениях подобного типа могут использоваться скобки, влияющие на порядок действий. Итак, существует 4 правила, которые следует учесть при вычислении результатов числовых выражений.

  1. Если в записи нет скобок, тогда действия выполняются с высшей ступени: III→II→I. Если есть несколько действий одной категории, тогда они выполняются слева направо.
  2. Если в записи есть скобки, тогда действие выполняется в скобках, а затем с учетом ступеней. Возможно, в скобках будет несколько действий.
  3. Если выражение представлено в виде дроби, тогда вычислять нужно сначала числитель, потом знаменатель, затем числитель делится на знаменатель.
  4. Если в записи есть вложенные скобки, тогда вычисляется сначала выражение во внутренних скобках.

Итак, теперь понятно, что такое равенство. В дальнейшем будут рассмотрены понятия уравнения, тождества и способы их вычисления.

Свойства числовых равенств

Что такое равенство? Изучение этого понятия требует знания свойств числовых тождеств. Приведенные ниже текстовые формулы позволяют лучше изучить данную тему. Конечно, эти свойства больше подходят для изучения математики в старших классах.

1. Числовое равенство не будет нарушено, если в обеих его частях прибавить одно и то же число к существующему выражению.

А = В ↔ А + 5 = В + 5

2. Не будет нарушено уравнение, если обе его части умножить или разделить на одно и то же число или выражение, которые отличны от нуля.

Р = О ↔ Р ∙ 5 = О ∙ 5

Р = О ↔ Р: 5 = О: 5

3. Прибавив к обеим частям тождества одинаковую функцию, которая имеет смысл при любых допустимых значениях переменной, мы получим новое равенство, равносильное первоначальному.

F(X) = Ψ (X) F(X) + R(X) = Ψ (X) + R(X)

4. Любое слагаемое или выражение можно перенести по другую сторону знака равенства, при этом нужно поменять знаки на противоположные.

Х + 5 = У - 20 Х = У - 20 - 5 Х = У - 25

5. Умножив или разделив обе части уравнения на одну и ту же функцию, отличную от нуля и имеющую смысл для каждого значения Х из ОДЗ, мы получим новое уравнение, равносильное первоначальному.

F(X) = Ψ(X) F(X) ∙ R(X) = Ψ(X) ∙ R(X)

F(X) = Ψ (X) F(X) : G(X) = Ψ (X) : G(X)

Приведенные правила в явной степени указывают на принцип равенства, который существует при определенных условиях.

Понятие пропорции

В математике существует такое понятие, как равенство отношений. В этом случае подразумевается определение пропорции. Если разделить А на В, то результатом будет отношение числа А к числу В. Пропорцией называют равенство двух отношений:

Иногда пропорция записывается следующим образом: A: B = C: D. Отсюда вытекает основное свойство пропорции: A * D = D * C , где A и D - крайние члены пропорции, а В и С - средние.

Тождества

Тождеством называют равенство, которое будет верно при всех допустимых значениях тех переменных, которые входят в задание. Тождества могут быть представлены как буквенные или числовые равенства.

Тождественно равными называются выражения, содержащие в обеих частях равенства неизвестную переменную, которая способна приравнять две части одного целого.

Если проводить замены одного выражения другим, которое будет равно ему, тогда речь идет о тождественном преобразовании. В этом случае можно воспользоваться формулами сокращенного умножения, законами арифметики и прочими тождествами.

Чтобы сократить дробь, нужно провести тождественные преобразования. К примеру, дана дробь. Чтобы получить результат, следует воспользоваться формулами сокращенного умножения, разложением на множители, упрощением выражений и сокращением дробей.

При этом стоит учесть, что данное выражение будет тождественным тогда, когда знаменатель не будет равен 3.

5 способов доказать тождество

Чтобы доказать равенство тождественное, нужно провести преобразование выражений.

I способ

Необходимо провести равносильные преобразования в левой части. В результате получается правая часть, и можно говорить о том, что тождество доказано.

II способ

Все действия по преобразованию выражения происходят в правой части. Итогом проделанных манипуляций является левая часть. Если обе части идентичны, то тождество доказано.

III способ

«Трансформации» происходят в обеих частях выражения. Если в результате получатся две идентичные части, тождество доказано.

IV способ

Из левой части вычитается правая. В результате равносильных преобразований должен получиться нуль. Тогда можно говорить о тождественности выражения.

V способ

Из правой части вычитается левая. Все равносильные преобразования сводятся к тому, чтобы в ответе стоял нуль. Только в таком случае можно говорить о тождественности равенства.

Основные свойства тождеств

В математике зачастую используют свойства равенств, чтобы ускорить процесс вычисления. Благодаря основным алгебраическим тождествам процесс вычисления некоторых выражений займет считанные минуты вместо долгих часов.

  • Х + У = У + Х
  • Х + (У + С) = (Х + У) + С
  • Х + 0 = Х
  • Х + (-Х) = 0
  • Х ∙ (У + С) = Х∙У + Х∙С
  • Х ∙ (У - С) = Х∙У - Х∙С
  • (Х + У) ∙ (С + Е) = Х∙С + Х∙Е + У∙С + У∙Е
  • Х + (У + С) = Х + У + С
  • Х + (У - С) = Х + У - С
  • Х - (У + С) = Х - У - С
  • Х - (У - С) = Х - У + С
  • Х ∙ У = У ∙ Х
  • Х ∙ (У ∙ С) = (Х ∙ У) ∙ С
  • Х ∙ 1 = Х
  • Х ∙ 1/Х = 1, где Х ≠ 0

Формулы сокращенного умножения

По своей сути формулы сокращенного умножения являются равенствами. Они помогают решить множество задач в математике благодаря своей простоте и легкости в обращении.

  • (А + В) 2 = А 2 + 2∙А∙В + В 2 - квадрат суммы пары чисел;
  • (А - В) 2 = А 2 - 2∙А∙В + В 2 - квадрат разности пары чисел;
  • (С + В) ∙ (С - В) = С 2 - В 2 - разность квадратов;
  • (А + В) 3 = А 3 + 3∙А 2 ∙В + 3∙А∙В 2 + В 3 - куб суммы;
  • (А - В) 3 = А 3 - 3∙А 2 ∙В + 3∙А∙В 2 - В 3 - куб разности;
  • (Р + В) ∙ (Р 2 - Р∙В + В 2) = Р 3 + В 3 - сумма кубов;
  • (Р - В) ∙ (Р 2 + Р∙В + В 2) = Р 3 - В 3 - разность кубов.

Формулы сокращенного умножения зачастую применяются, если необходимо привести многочлен к привычному виду, упростив его всеми возможными способами. Представленные формулы доказываются просто: достаточно раскрыть скобки и привести подобные слагаемые.

Уравнения

После изучения вопроса, что такое равенство, можно приступать к следующему пункту: Под уравнением понимается равенство, в котором присутствуют неизвестные величины. Решением уравнения называют нахождение всех значений переменной, при которых обе части всего выражения будут равны. Также встречаются задания, в которых нахождение решений уравнения невозможно. В таком случае говорят, что корней нет.

Как правило, равенства с неизвестными в качестве решения выдают целые числа. Однако возможны случаи, когда корнем являются вектор, функция и другие объекты.

Уравнение является одним из важнейших понятий в математике. Большинство научных и практических задач не позволяют измерить или вычислить какую-либо величину. Поэтому необходимо составлять соотношение, которое удовлетворит все условия поставленной задачи. В процессе составления такого соотношения появляется уравнение или система уравнений.

Обычно решение равенства с неизвестным сводится к преобразованию сложного уравнения и сведению его к простым формам. Необходимо помнить, что преобразования нужно проводить относительно обеих частей, в противном случае на выходе получится неверный результат.

4 способа решить уравнение

Под решением уравнения понимают замену заданного равенства другим, которое равносильно первому. Подобная подмена известна как тождественное преобразование. Чтобы решить уравнение, необходимо воспользоваться одним из способов.

1. Одно выражение заменяется другим, которое в обязательном порядке будет тождественно первому. Пример: (3∙х+3) 2 =15∙х+10. Это выражение можно преобразовать в 9∙х 2 +18∙х+9=15∙х+10.

2. Перенесение членов равенства с неизвестным из одной стороны в другую. В таком случае необходимо правильно менять знаки. Малейшая ошибка сгубит всю проделанную работу. В качестве примера возьмем предыдущий «образец».

9∙х 2 + 12∙х + 4 = 15∙х + 10

9∙х 2 + 12∙х + 4 - 15∙х - 10 = 0

3. Перемножение обеих частей равенства на равное число или выражение, которые не равняются 0. Однако стоит напомнить, что если новое уравнение не будет равносильным равенству до преобразований, тогда количество корней может существенно измениться.

4. Возведение в квадрат обеих частей уравнения. Этот способ просто замечательный, особенно когда в равенстве есть иррациональные выражения, то есть и выражение под ним. Тут есть один нюанс: если возвести уравнение в четную степень, тогда могут появиться посторонние корни, которые исказят суть задания. И если неправильно извлечь корень, тогда смысл вопроса в задаче будет неясен. Пример: │7∙х│=35 → 1) 7∙х = 35 и 2) - 7∙х = 35 → уравнение будет решено верно.

Итак, в этой статье упоминаются такие термины, как то уравнения и тождества. Все они происходят от понятия «равенство». Благодаря различного рода равносильным выражениям решение некоторых задач в значительной мере облегчено.


Интерактивный список. Начните вводить искомое слово.

РАВЕНСТВО

РА́ВЕНСТВО, -а, ср.

1. Полное сходство, подобие (по величине, качеству, достоинству). Р. сил.

2. Положение людей в обществе, обеспечивающее их одинаковое отношение к закону, одинаковые политические и гражданские права, равноправие. Социальное р.

3. В математике: соотношение между величинами, показывающее, что одна величина равна другой. Знак равенства (=). Ставить знак равенства между кем-чем-н. (перен. : признавать равноценным, уравнивать).

| прил. равенственный , -ая, -ое (ко 2 знач. ; устар. ).

Что такое РАВЕНСТВО , РАВЕНСТВО это, значение слова РАВЕНСТВО , происхождение (этимология) РАВЕНСТВО , синонимы к РАВЕНСТВО , парадигма (формы слова) РАВЕНСТВО в других словарях

Парадигма, формы слова РАВЕНСТВО - Полная акцентуированная парадигма по А. А. Зализняку

Синонимы к РАВЕНСТВО - Словарь русских синонимов 4

РАВЕНСТВО синонимы

равенство

Синонимы:

альтернат, единство, муссават, общность, одинаковость, паритет, паритетность, подобие, равновеликость, равноправие, равноправность, совпадение, соответствие, сходство, тождество, уравнение, эквивалентность