Как обозначается механическая работа в физике. Механическая работа и мощность силы

Это идеальное место для пляжного отдыха, где находятся самые красивые белоснежные пляжи с мелким коралловым песком. Мальдивы - мечта многих людей, грезящих о тихих голубых лагунах и прекрасных зеленых пальмах, способных перенести путешественников в сказочный блаженный рай хоть на несколько дней.

Здесь практически нет машин, и всегда тихо и спокойно. Частично и из-за этого Мальдивы считаются одним из самых лучших мест для отдыха.

Где расположены Мальдивы на карте мира?

Координаты Мальдивских островов: 3°28´36´´N,72°50´12´´E.
Мальдивские острова находятся практически на самом экваторе, а потому тут всегда тепло, и температура держится в пределах +28-30ºС.
Архипелаг вытянулся с севера на юг на 820 км и с запада на восток на 120 км. А из-за того, что это просто коралловые образования без гор и вулканов, Мальдивские острова возвышаются над морем не более чем на 3 метра. В будущем это грозит полным уничтожением островов, где находятся самые шикарные отели мира, из-за постоянного повышения уровня моря. Возможно, что Мальдивы могут исчезнуть уже через 30 лет.

Мальдивы на карте мира

Отыскать место, где находятся острова не так просто. Мальдивы - очень маленький архипелаг, затерянный в Индийском океане к юго-западу от Индии и Шри-Ланки на 700 км. Мальдивский архипелаг находится на 19 коралловых атоллах, состоящих из более, чем 1000 островов. Но они далеко не все обитаемы, курортными считается всего лишь 88 из них. Есть острова для коренных жителей Мальдив, но это не самое туристическое место, куда приезжие никогда не заглядывают. А есть маленькие необитаемые острова, на которые можно попасть, арендовав яхту.

Острова расположены вдали от других государств, не имея сухопутных границ ни с одной страной. У Мальдив, омываемых Индийским океаном, есть только морская граница:

  • со Шри-Ланкой;
  • и Индией.

Популярные курортные острова Мальдив

Самые лучшие пляжи расположены на атоллах, являющихся самыми посещаемыми курортными островами:

  • Даалу - остров Даалу облюбовали поклонники дайвинга;

  • Ари - остров привлекает своим шикарным разнообразием флоры и фауны, где находятся черепашьи бухты. Здесь обеспеченные туристы, приехавшие на Мальдивы, могут покататься на водных лыжах, съездить на морскую рыбалку или просто отдохнуть в дорогом отеле на уединенном берегу;

  • Фаафу - рай для тех, кто стремиться к комфортному проживанию. Здесь очень много ресторанов и спа центров;

  • Мале - это столица Мальдивских островов. Площадь города, занимающего весь остров, всего лишь 2км², но даже на этой крохотном участке есть, что посмотреть. Например, старинную мечеть "Великой пятницы", Президентский дворец, национальный музей и различные колоритные рынки. Правда никаких развлечений кроме прогулок по набережной и улочкам здесь нет.

Острова отличаются еще и тем, что тут не так много возможностей для размещения. Отели на Мальдивах имеют следующую особенность: на одном острове обычно всего одна вилла, где находятся лучшие и самые комфортные номера. Но надо помнить, что Мальдивы - это дорогой рай. А поселиться можно не только в номерах отеля, а в различных прибрежных бунгало с соломенными крышами и стеклянным дном.

Острова расположены вдали от других государств, не имея сухопутных границ ни с одной страной. У Мальдив, омываемых Индийским океаном, есть только морская граница с Шри-Ланкой и Индией. Добраться до этих райских островов не так просто, а потому отдых на Мальдивах остается для многих людей очень дорогой и несбыточной мечтой.

Многие грезят о белоснежном песке, закрытых лагунах и прекрасных отелях. Благодаря уединенному расположению этот рай просто создан для романтического путешествия, где находятся самые уединенные уголки планеты. Влюбленные мечтают провести здесь несколько незабываемых мгновений, сбежать от суеты мегаполисов к тихому безмятежному отдыху. А свадьба на Мальдивах - это предел мечтаний многих невест.


При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называетсязамкнутой .

Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и третьегозаконов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, то есть векторную сумму импульсов всех тел, входящих в эту систему.

Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы и перемещения (рис. 1.1.9):

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).

Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Если проекция силы на направление перемещения не остается постоянной, работу следует вычислять для малых перемещений и суммировать результаты:

Примером силы, модуль которой зависит от координаты, может служить упругая сила пружины, подчиняющаяся закону Гука . Для того, чтобы растянуть пружину, к ней нужно приложить внешнюю силу модуль которой пропорционален удлинению пружины (рис. 1.1.11).

Зависимость модуля внешней силы от координаты x изображается на графике прямой линией (рис. 1.1.12).

По площади треугольника на рис. 1.18.4 можно определить работу, совершенную внешней силой, приложенной к правому свободному концу пружины:

Этой же формулой выражается работа, совершенная внешней силой при сжатии пружины. В обоих случаях работа упругой силы равна по модулю работе внешней силы и противоположна ей по знаку.

Если к телу приложено несколько сил, то общая работа всех сил равна алгебраической сумме работ, совершаемых отдельными силами, и равна работе равнодействующей приложенных сил.

Работа силы, совершаемая в единицу времени, называется мощностью . Мощность N – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа.

1. Из курса физики 7 класса вы знаете, что если на тело действует сила и оно перемещается в направлении действия силы, то сила совершает механическую работу A , равную произведению модуля силы и модуля перемещения:

A =Fs .

Единица работы в СИ -джоуль (1 Дж ).

[A ] = [F ][s ] = 1 H 1 м = 1 Н м = 1 Дж.

За единицу работы принимают такую работу, которую совершает сила 1 Н на пути 1 м.

Из формулы следует, что механическая работа не совершается, если сила равна нулю (тело покоится или движется равномерно и прямолинейно) или перемещение равно нулю.

Предположим, что вектор силы, действующей на тело, составляет некоторый угол a с вектором перемещения (рис. 65). Так как в вертикальном направлении тело не перемещается, то проекция силы F y на ось Y работу не совершает, а проекция силы F x на ось X совершает работу, которая равна A = F x s x .

Поскольку F x = F cos a, а s x = s , то

A = Fs cos a.

Таким образом,

работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.

2. Проанализируем полученную формулу работы.

Если угол a = 0°, то cos 0° = 1 и A = Fs . Совершенная работа положительна и ее значение максимально, если направление силы совпадает с направлением перемещения.

Если угол a = 90°, то cos 90° = 0 и A = 0. Сила не совершает работу, если она перпендикулярна направлению перемещения тела. Так, работа силы тяжести равна нулю при движении тела по горизонтальной плоскости. Нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта силав любой точке траектории перпендикулярна направлению движения тела.

Если угол a = 180°, то cos 180° = –1 и A = –Fs . Данный случай имеет место тогда, когда сила и перемещение направлены в противоположные стороны. Соответственно совершенная работа отрицательна и ее значение максимально. Отрицательную работу совершает, например, сила трения скольжения, поскольку она направлена в сторону, противоположную направлению перемещения тела.

Если угол a между векторами силы и перемещения острый, то работа положительна; если угол a тупой, то работа отрицательна.

3. Получим формулу для расчета работы силы тяжести. Пусть тело массой m свободно падает на землю из точки A , находящейся на высоте h относительно поверхности Земли, и через некоторое время оказывается в точке B (рис. 66, а ). Работа силы тяжести при этом равна

A = Fs = mgh .

В данном случае направление движения тела совпадает с направлением действу.щей на него силы, поэтому работа силы тяжести при свободном падении положительна.

Если тело движется вертикально вверх из точки B в точку A (рис. 66, б ), то его перемещение направлено в сторону, противоположную силе тяжести, и работа силы тяжести отрицательна:

A = –mgh

4. Работу силы можно вычислить, используя график зависимости силы от перемещения.

Предположим, под действием постоянной силы тяжести тело совершает перемещение. Графиком зависимости модуля силы тяжести F тяж от модуля перемещения тела s является прямая, параллельная оси абсцисс (рис. 67). Найдем площадь выделенного прямоугольника. Она равна произведению двух его сторон: S = F тяж h = mgh . С другой стороны, этой же величине равна работа силы тяжестиA = mgh .

Таким образом, работа численно равна площади прямоугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке h .

Рассмотрим теперь случай, когда сила, действующая на тело, прямо пропорциональна перемещению. Такой силой, как известно, является сила упругости. Ее модуль равен F упр = k Dl , где Dl - удлинение тела.

Предположим, пружину, левый конец которой закреплен, сжали (рис. 68, а ). При этом ее правый конец сместился на Dl 1 .В пружине возник сила упругости F упр 1 , направленная вправо.

Если теперь предоставить пружину самой себе, то ее правый конец переместится вправо (рис. 68, б ), удлинение пружины будет равно Dl 2 , а сила упругости F упр 2 .

Вычислим работу силы упругости при перемещении конца пружины из точкис координатой Dl 1 в точку с координатой Dl 2 . Используем для этого график зависимости F упр (Dl ) (рис. 69). Работа силы упругости численно равна площади трапеции ABCD . Площадь трапеции равна произведению полусуммы оснований и высоты, т. е. S = AD . В трапеции ABCD основания AB = F упр 2 = k Dl 2 , CD = F упр 1 = k Dl 1 , а высота AD = Dl 1 – Dl 2 . Подставим в формулу площади трапеции эти величины:

S = (Dl 1 – Dl 2) =– .

Таким образом, мы получили, что работа силы упругости равна:

A =– .

5 * . Предположим, что тело массой m перемещается из точки A в точку B (рис. 70), двигаясь сначала без трения по наклонной плоскости из точки A в точку C , а затем без трения по горизонтальной плоскости из точки C в точку B . Работа силы тяжести на участке CB равна нулю, поскольку сила тяжести перпендикулярна перемещению. При движении по наклонной плоскости работа силы тяжести равна:

A AC = F тяж l sin a. Так как l sin a = h , то A AC = Ft тяж h = mgh .

Работа силы тяжести при движении тела по траектории ACB равна A ACB = A AC + A CB = mgh + 0.

Таким образом, A ACB = mgh .

Полученный результат показывает, что работа силы тяжести не зависит от формы траектории. Она зависит только от начального и конечного положений тела.

Предположим теперь, что тело движется по замкнутой траектории ABCA (см. рис. 70). При перемещении тела из точки A в точку B по траектории ACB работа силы тяжести равна A ACB = mgh . При перемещении тела из точки B в точку A сила тяжести совершает отрицательную работу, которая равна A BA = –mgh . Тогда работа силы тяжести на замкнутой траектории A = A ACB + A BA = 0.

Нулю равна и работа силы упругости на замкнутой траектории. Действительно, предположим, что недеформированную вначале пружину растянули и ее длина увеличилась на Dl . Сила упругости при этом совершила работу A 1 = . При возвращении в состояние равновесия сила упругости совершает работу A 2 = . Суммарная работа силы упругости при растяжении пружины и ее возвращении в недеформированное состояние равна нулю.

6. Работа силы тяжести и силы упругости на замкнутой траектории равна нулю.

Силы, работа которых на любой замкнутой траектории равна нулю (или не зависит от формы траектории), называют консервативными.

Силы, работа которых зависит от формы траектории, называют неконсервативными.

Неконсервативной является сила трения. Например, тело перемещается из точки 1 в точку 2 сначала по прямой 12 (рис. 71), а затем по ломаной линии 132 . На каждом участке траектории сила трения одинакова. В первом случае работа силы трения

A 12 = –F тр l 1 ,

а во втором -

A 132 = A 13 + A 32 , A 132 = –F тр l 2 – F тр l 3 .

Отсюда A 12 A 132 .

7. Из курса физики 7 класса вы знаете, что важной характеристикой устройств, которые совершают работу, является мощность .

Мощностью называют физическую величину, равную отношению работы к промежутку времени, за который она совершена:

N = .

Мощность характеризует быстроту выполнения работы.

Единица мощности в СИ - ватт (1 Вт ).

[N ] === 1 Вт.

За единицу мощности принимают такую мощность, при которой работа 1 Дж совершается за 1 с.

Вопросы для самопроверки

1. Что называют работой? Какова единица работы?

2. В каком случае сила совершает отрицательную работу; положительную работу?

3. По какой формуле вычисляют работу силы тяжести; силы упругости?

5. Какие силы называют консервативными; неконсервативными?

6 * . Докажите, что работа силы тяжести и силы упругости не зависит от формы траектории.

7. Что называют мощностью? Какова единица мощности?

Задание 18

1. Мальчика массой 20 кг везут равномерно на санках, прикладывая силу 20 Н. Веревка, за которую тянут санки, составляет угол 30° с горизонтом. Чему равна работа силы упругости, возникающей в веревке, если санки переместились на 100 м?

2. Спортсмен массой 65 кг прыгает в воду с вышки, находящейся на высоте 3 м над поверхностью воды. Какую работу совершает сила тяжести, действующая на спортсмена, при его движении до поверхности воды?

3. Под действием силы упругости длина деформированной пружины жесткостью 200 Н/м уменьшилась на 4 см. Чему равна работа силы упругости?

4 * . Докажите, что работа переменной силы численно равна площади фигуры, ограниченной графиком зависимости силы от координаты и координатными осями.

5. Чему равна сила тяги двигателя автомобиля, если при постоянной скорости 108 км/ч он развивает мощность 55 кВт?

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α (4)

3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты h н до конечной высоты h к.

Если тело движется вниз (h н > h к, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (h н < h к, рис. 28.2, б), то работа силы тяжести отрицательна.

В обоих случаях работа силы тяжести

A = mg(h н – h к). (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

A т = mg(h н – h к),

где h н – начальная высота тела, h к – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx 2)/2. (7)


8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x н до x к работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv. (10)

13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м 3 , а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

Каждое тело, совершающее движение, можно охарактеризовать работой. Иными словами, она характеризует действие сил.

Работа определяется как:
Произведение модуля силы и пути пройденного телом, умноженное на косинус угла между направлением силы и движения.

Работа измеряется в Джоулях:
1 [Дж] = = [кг* м2/c2]

К примеру, тело A под действием силы в 5 Н, прошло 10 м. Определить работу совершенную телом.

Так как направление движения и действия силы совпадают, то угол между вектором силы и вектором перемещения будет равен 0°. Формула упроститься, потому что косинус угла в 0° равен 1.

Подставляя исходные параметры в формулу, находим:
A= 15 Дж.

Рассмотрим другой пример, тело массой 2 кг, двигаясь с ускорением 6 м/ с2, прошло 10 м. Определить работу проделанную телом, если оно двигалось по наклоненной плоскости вверх под углом 60°.

Для начала, вычислим какую силу нужно приложить, что бы сообщить телу ускорение 6 м/ с2.

F = 2 кг * 6 м/ с2 = 12 H.
Под действием силы 12H, тело прошло 10 м. Работу можно вычислить по уже известной формуле:

Где, а равно 30°. Подставляя исходные данные в формулу получаем:
A= 103, 2 Дж.

Мощность

Множество машин механизмов выполняют одну и ту же работу за различный промежуток времени. Для их сравнения вводится понятие мощности.
Мощность – это величина, показывающая объем работы выполненный за единицу времени.

Мощность измеряется в Ватт, в честь Шотландского инженера Джеймса Ватта.
1 [Ватт] = 1 [Дж/c].

К примеру, большой кран поднял груз весом 10 т на высоту 30 м за 1 мин. Маленький кран на эту же высоту за 1 мин поднял 2 т кирпича. Сравнить мощности кранов.
Определим работу выполняемую кранами. Груз поднимается на 30м, при этом преодолевая силу тяжести, поэтому сила, затрачиваемая на поднятие груза, будет равна силе взаимодействия Земли и груза(F = m * g). А работа – произведению сил на расстояние пройденное грузами, то есть на высоту.

Для большого крана A1 = 10 000 кг * 30 м * 10 м / с2 = 3 000 000 Дж, а для маленького A2 = 2 000 кг * 30 м * 10 м / с2 = 600 000 Дж.
Мощность можно вычислить, разделив работу на время. Оба крана подняли груз за 1 мин (60 сек).

Отсюда:
N1 = 3 000 000 Дж/60 c = 50 000 Вт = 50 кВт.
N2 = 600 000 Дж/ 60 c = 10 000 Вт = 10 к Вт.
Из выше приведенных данных наглядно видно, что первый кран в 5 раз мощнее второго.