Делимость суммы что такое kl. Свойства деления натуральных чисел

Теорема 1 (признак делимости суммы). Если каждое слагаемое делится на нат. число с, то и сумма чисел делится на с. Док-во: пусть а⋮с и в⋮с. Тогда существуют нат.числа q 1 и q 2 такие, что а=сq 1 и в=сq 2 . Имеем: а+в=сq 1 +cq 2 = c(q 1 +q 2). Так как числа q 1 и q 2 натуральные, то q 1 +q 2 также число натуральное. Тогда из равенства а+в=с(q 1 +q 2) следует, что (а+в)⋮с. П: Числа 96 и 48 делятся на 12,значит,их сумма 96+48=144 также делится на 12. Утверждение, обратное данной теореме неверно,т.е. если двух чисел a и b делится на некоторое число с, то это не значит, что каждое слагаемое, из которых состоит эта сумма, делится на число с. Теорема 2 (о делимости разности). Если каждое из чисел а и в делится на натуральное число с и в ≤ а, то разность этих чисел делится на с. Теорема 3 (о делимости произведения). Если хотя бы один из множителей делится на число с, то и произведение делится на это число с. Док-во. Пусть а ⋮ с.Тогда по определению отношения делимости существует натуральное число q такое, что а= сq. Рассмотрим число а ∙ в = (сq) ∙ в =с ∙ (qв). Поскольку число qв-натуральное, то из последнего равенства следует, что (ав) ⋮ с. Теорема4 (о делимости произведения). Если в произведении ав двух множителей первый множитель делится на натуральное число с, а второй множитель делится на натуральное число d, то это произведение делится на сd. Док-во.По условию a=cq 1 и b=dq 2 ,где q 1 , q 2 ∈ N. Тогда ab =(cq 1)(dq 2) =с (q 1 (dq 2)=c ((q 1 ∙ d) q 2)= с ((dq 1) ∙ q 2)= c (d(q 1 q 2))= (cd)(q 1 ∙q 2), где q 1 ∙ q 2 ∈ N. Следовательно,(ав) ⋮ (с d). П: т.к.число 30 делится на 5, а число 14 делится на 7, то произведение 30 и 14 делится на произведение 5 и7, т.ею(30 14) делится на(5 7). Действительно, 30 14=420; 5 7=35, и 420:35=12,т.е.420 35.

21.Признак делимости паскаля .Теорема: нат.число а, заданное в десятичной системе счисления, делится на натуральное число в тогда и только тогда, когда на в делится сумма произведений каждой цифры числа а на остатки от деления на в соответствующих разрядных единиц (1,10,10 2 ,10 3 , …,10 п). Док-во: пусть а =а п а п-1 …а 2 а 1 а 0 . Пусть при делении на в числа 10, 10 2 , 10 3 , …, 10 п дают остатки r 1 , r 2 , r 3 , …, r п-1 , r п. По теореме о делении с остатком имеем: 10=вq 1 +r 1 , 10 2 =вq 2 +r 2 , 10 3 =вq 3 +r 3, …, 10 п-1 =вq п-1 +r п-1 , 10 п =вq п +r п. Преобразуем данное число а к виду: а=а п а п-1 …а 2 а 1 а 0 = а п 10 п +а п-1 10 п-1 +…+а 2 10 2 +а 1 10 1 +а 0 = а п (вq п +r п)+ а п-1 (вq п-1 +r п-1)+ …+ а 2 (вq 2 +r 2)+ а 1 (вq 1 +r 1) +а 0 = (а п q п +а п-1 q п-1 +… +а 2 q 2 +а 1 q 1) в+ (а п r п +а п-1 r п-1 + …+ а 2 r 2 + а 1 r 1 +а 0). Видим, что первое слагаемое делится на в, т.к.содержит мн.в. Для того чтобы данное число а делилось на в, необходимо и достаточно, чтобы и второе слагаемое делилось на в,т.е.на в должно делиться число с=а 0 +а 1 r 1 + а 2 r 2 + …+ а п-1 r п-1 +а п r п. Это число и есть сумма произведений каждой цифры числа а на остатки от деления на в соответствующих разрядных единиц. П: покажем, что число 65345 делится на 7. Найдём остатки от деления на 7 разрядных единиц 10 1 , 10 2 , …, 10 5 . Если остаток будет близок к числу 7, то будем заменять его недостатком, то есть числом единиц, недостающих для делимости нацело на 7. 10 1:7, r 1 =3; 10 2:7, r 2 =2; 10 3:7, r 3 = -1; 10 4:7, r 4 =-3. Тогда с=5+4 3+3 2+ 5 (-1)+ 6 (-3)= 5+12+6-5-18=0. Т.к.0 делится на 7, то и число 65345 делится на 7.

Понятие о рациональном числе. Отношения между множествами натуральных, целых и рациональных чисел .

Рациональное число - число, представляемое обыкновенной дробью , числитель м - целое число, а знаменатель п - натуральное число, к примеру 2/3. Множество положительных рациональных чисел обозначают Q + . Покажем, что все нат.числа содержатся в этом множестве, т.е.что N c Q + .Пусть длина отрезка а при единице длины е выражается нат.числом м. Разобьём отрезок е на п равных частейю Тогда п-я доля отрезка е будет укладываться в отрезке а м п раз, т.е.длина отрезка а будет выражаться дробями вида . Но мн.этих дробей есть положит.рациональное число. Следовательно, длина отрезка а, с одной стороны, выражается нат.числом м, а с другой- полож.рациональным числом . Но это должно быть одно и то же число. Поэтому целесообразно считать, что дроби вида яв-ся записями нат.числа м. Из этого следует, что любое нат.число м можно представить в виде дроби , следовательно N c Q + . Все нат.числа содержатся в мн.полож.рац.чисел. Числа, которые дополняют мн.нат.чисел до мн.полож.рацион.чисел, называют дробными числами.

Сложение и вычитание рациональных чисел. Законы сложения .

Суммой рациональных чисел и называют рациональное число . Т.к.любые две дроби могут быть приведены к общему знаменателю, то сумма рациональных чисел и будет равна: + = + = . Сумма рациональных чисел всегда существует и единственная. Теорема: операция сложения рациональных чисел обладает коммутативным и ассоциативным свойствами, т.е. 1. ( а,в Q) а+в= в+а (коммутативность сложения); 2. ( а,в,с Q)(a+в)+с= а+(в+с) (ассоциативность сложения). Законы сложения: переместительный- а+в=в+а для любых а,в Q + ; сочетательный- (а+в)+с= а+(в+с) для любых а, в, с Q + . Разность дробей и называется дробь такая, что + = . Согласно определению - = + = . Выведем правило вычитания дробей, т.е.найдём значение дроби . Т.к. + = , то = . Отсюда: (py+xq) n= (qy) m или pyn+xqn=qум, х(qп)= у(qм-pn). Из последнего равенства будем иметь: = . Таким образом, получили: - = . В частности, - = . Для рациональных чисел верно утверждение: разность рациональных чисел всегда существует и единственная. Это значит, что каких бы два рациональных числа ни были даны, разность их всегда можно найти, т.е.вычитание обыкновенных дробей всегда выполнимая операция.

Отношение порядка на множестве рациональных чисел. Свойства множества рациональных чисел (бесконечность, упорядоченность, счётность, плотность) .

Mq np или mq np. Для целых чисел это также верно: а в или а 1 в 1. П: сравним дроби и . 19 27=513 и 23 25= 575 и сравним их. Т.к. 513 575, то . Теорема: отношение «меньше» на мн.рацион.чисел транзитивно, асимметрично и антирефлексивно, т.е. 1) и , то - транзитивность; 2) , то неверно, что - асимметричность; 3)неверно, что - антирефлексивность. Из теорем следует, что отношение «меньше» на множестве Q рациональных чисел яв-ся отношением строгого линейного порядка, а само мн.Q- линейно упорядоченным множеством. Свойства мн.рацион.чисел : 1.Мн.Q рациональных чисел счётное, т.е.его элементы можно пронумеровать с помощью нат.чисел.

N: 1,2, 3, 4, 5, 6.

Из графика видим, что Q N, значит, мн.Q счётное.

2.Мн.Q рациональных чисел бесконечное. Это вытекает из того, что Q N, а мн.N бесконечное. 3.Во мн.положительных рац.чисел нет наименьшего числа. 4.Мн.Q рац.чисел плотное. Это значит, что между любыми двумя различными рац.числами а и в мн.Q лежит бесконечное мн.рац.чисел. 5.Каждому рац.числу соответствует единственная точка координатной прямой, но не каждой точке будет соответствовать рац.число. Соответствие между мн.Q рац.чисел и мн.точек координатной прямой не яв-ся биективным.

Понятие иррационального числа. Множество положительных действительных чисел .

Иррациональное число- это число, которое выражается бесконечной десятичной непериодической дробью. Иррац.числа получаются не только при извлечении корней из некоторых чисел ( ; ), не только при измерении длин отрезков, но и при решении практических задач, например, при измерении площади, вычислении отношения длины окружности к её диаметру (). П: числа 0,0100100010000100…; 45,3232232223222232…; =3,141592…; =1,732050…; =1,414213… яв-ся иррац., т.к.они яв-ся бесконечными непериодическими десятичными дробями (в них невозможно выделить период). Мн.полож.иррац.чисел обозначают I + . Объединение мн.полож.рац.чисел и мн.полож.иррац.чисел образует мн.полож.действительных чисел, которое обозначается R + , т.е. R + =Q + I + , причём Q + c R + , I + c R + , Q + I + = . Мн. R + делится на два класса: 1.класс бесконечных периодических десятичных дробей; 2.класс бесконечных непериодических десятичных дробей. Конечные десятичные дроби можно также считать бесконечными периодическими дробями с периодом равным 0. Н: 0,4=0,40000… Кроме того, любое рациональное число можно записать в виде бесконечной периодической дроби с периодом, равным 9.

Упорядоченность множества положительных действительных чисел. Свойства множества положительных действительных чисел .

Отношение «меньше» на мн.R + яв-ся отношением строгого линейного порядка, это значит, оно асимметрично (если х у, то у х), транзитивно (если х у, у z, то х z) и связно (либо х=у, либо х у, либо у х). Из этого следует, что мн.R + положительных действительных чисел яв-ся упорядоченным множеством. Его элементы можно упорядочить с помощью отношения «меньше». Мн. R + плотно в себе, т.е.между любыми двумя действительными числами лежит бесконечное мн.действительных чисел. Н: между числами 1,2 и 1,3 лежат числа 1,21; 1,211 и т.д. Мн. R + яв-ся непрерывным, т.е.если числовое множество Х располагается слева от числового мн.Y, то найдётся хотя бы одно число, которое разделяет эти множества. Мн.полож.действ.чисел несчётно. Док-во (методом от противного): докажем, что ни при каком упорядочивании мн. R + пронумеровать его числа невозможно. Предположим, что элементы мн. R + удалось пронумеровать: 1 м 1 ,а 1 а 2 а 3 …; 2 м 2 , в 1 в 2 в 3 …; 3 м 3 ,с 1 с 2 с 3 …; …., где м i - целая часть числа, буквы а,в,с,… представляют собой десятичные знаки после запятой. Предположим, что эта последовательность дробей описывает все действительные числа. Возьмём число z=0, авс…, где а а 1 , в в 2 , с с 3 и т.д. Это новое число z отличается от первого числа десятыми долями, от второго- сотыми, от третьего- тысячными и т.д. Оно отличается от п-го числа в последовательности п-ой цифрой дробной части. Значит, появилось новое число z, которое не пронумеровали. Это противоречит предположению о том, что пронумеровали все действительные числа. Таким образом, доказано, что мн. R + несчётное. Мн. R + бесконечное(доказывается методом от противного).

Арифметические операции на множестве всех действительных чисел .

Суммой двух дейст.чисел х и у называется дейст.число, которое удовлетворяет след.условиям: 1)сумма полож.чисел есть число положительное, модуль которого равен сумме модулей слагаемых: |х+у|=|х|+|у|; 2)сумма отриц.чисел есть число отрицательное, модуль которого равен сумме модулей слагаемых: (-х)+(-у)=-(х+у); 3)сумма двух чисел с разными знаками есть число, которого совпадает со знаком слагаемого, имеющего больший модуль, а модуль суммы равен разности большего и меньшего модулей слагаемых: если х у, то х+(-у)=х-у; если х у, то х+(-у)= -(у-х). Операции сложения во мн.R коммутативна ( х,у R) х+у=у+х и ассоциативна ( х,у,z R)(x+y)+z= x+(y+z). Число 0 яв-ся нейтральным элементом относительно сложения, т.е.х+0=0+х=х. Операция вычитания во мн.R определяется как операция, обратная сложению. Т.к.для каждого в R существует число- в такое, что в+(-в)=0, то вычитание равносильно сложению с числом-в, т.е.а-в=а+(-в). Произведением двух действительных чисел х и у называется дейст.число z, которое удовлетворяет условиям: 1)модуль произведения двух чисел равен произведению модулей этих чисел: |х у|=|х|∙|у|; 2)знак в произведении двух чисел положителен, если знаки множителей одинаковые; 3)знак в произведении двух чисел отрицателен, если знаки множителей разные. Операция умножения во мн.R коммутативна ( х,у R)x∙y=y∙x; ассоциативна ( x,y,z R)(x∙y) ∙z=x∙(y∙z); дистрибутивна ( x,y,z . 1-нейтральный элемент относительно умножения: х∙1=1∙х=х; 0- поглощающий элемент относительно умножения: х∙0=0∙х=0. Деление дейст.чисел можно рассматривать как действие, обратное умножению, т.к.х:у=х ∙ , где у Деление на 0 во множестве R невозможно.

Длина отрезка и её измерение .

Длиной отрезка называется величина, определенная для каждого отрезка так, что: 1) равные отрезки имеют равные длины; 2) если отрезок состоит из конечного числа отрезков, то его длина равна сумме длин этих отрезков. В математике рассматривают две взаимно обратные задачи, связанные с длиной отрезка: измерение длины отрезка а с помощью отрезка е, выбранного за единичный отрезок, и построение отрезка а по заданной его длине. Св-ва длины отрезка 1.При выбранной единице длины длина любого отрезка выражается положительным действительным числом, и для каждого положительного действительного числа существует отрезок, длина которого выражается зтим числом.2.Если два отрезка равны, то числовые значения их длин также равны, и наоборот: если числовые значения длин двух отрезков равны, то равны и сами отрезки. a=b (a) = (b). 2.Если данный отрезок состоит из конечного числа отрезков, числовое значение его длина равно сумме числовых значений длин составляющих отрезков, и наоборот: если числовое значение длины отрезка равно сумме числовых значений нескольких отрезков, то и сам отрезок равен сумме этих отрезков. c= a+ b (c) = (a) + (b). Покажем это. Пусть a = e, b= e. a+b = ( + 4. Если длины отрезков а и в такие, что в = ха, где х – положительное действительное число, то, чтобы найти числовое значение длины отрезка b при единице измерения е, достаточно найти произведение число х и числового значения длины отрезка а при единице е. b = xa (b) = x (a). Пусть b = xa и a = e, тогда в=х е= (х )е. 5.При замене единицы длины значение длины отрезка увеличивается (уменьшается) во столько раз, во сколько раз новая единица меньше (больше) старой. Пусть даны две единицы длины е и е 1 такие, что е 1 =ке. Это значит, что новая единица в к раз больше старой. Тогда если а= е, то при переходе к новой единице будем иметь: а= 1 = е 1 . Число в к раз меньше числа . П: 14м=14 1м=14 =(14 1400 см. Полученное число 1400 в 100 раз больше числа 14, т.к.новая единица длины- сантиметр-в 100 раз меньше метра.

Площадь фигуры и её измерение .

Площадью фигуры называется неотрицательная величина, определённая для каждой фигуры так, что:1)равные фигуры имеют равные площади; 2)если фигура состоит из конечного числа фигур, то её площадь равна сумме их площадей. Чтобы измерить площадь фигуры, надо иметь единицу площади. За единицу измерения площади принимают площадь квадрата со стороной е. Площадь квадрата со стороной е обозначается е 2 . Н., S=20см 2 при единице площади1 см 2 . Измерение площади фигур с помощью палетки. Палетка-это сетка квадратов, нанесённая на прозрачный материал. Измерение с помощью палетки яв-ся приблизительным и вычисляется по формуле: S , где S 1 - площадь внутренней системы квадратов, S 2 - площадьсистемы квадратов, которые целиком покрывают фигуру. Другие способы измерения площадей фигур состоят в применении формул дляих вычисления: 1.Площадь прямоугольника: S=ab, где a- длина, b- ширина прямоугольника. 2.Площадь параллелограмма: S=ah, где a- длина стороны параллелограмма, h- его высота. 3.Площадь треугольника: S= ah, где a- длина стороны треугольника, h- его высота. 4.Площадь ромба: S= d 1 d 2 , где d 1 и d 2 - длины диагоналей ромба. 5.Площадь трапеции: S= , где a и b- длины оснований трапеции, h- её высота. 6.Площадь круга: S= 2 , где R- длина радиуса круга. Площади плоскихфигур обладают св-ми: а)площади равных фигур при одной и той же единице площади равны между собой. б)если фигура F состоит из фигур F 1 ,F 2 ,…,F n , то значение площади фигуры F равно сумме площадей фигур F 1 , F 2 ,…, F п при одной и той же единице площади. в)при замене единицы измерения площади числовое значение площади фигуры увеличивается (уменьшается) во столько же раз, во сколько раз новая единица измерения меньше (больше) старой.П: 12 м 2 =12 2 = 12 2 = 1200дм 2 . Первоначальную единицу измерения 1м 2 уменьшили в 100 раз, а значение площади увеличилось в 100 раз. Это связано с тем, что 1м 2 =100дм 2 , а 1дм 2 =0,01м 2 .

Свойство делимости. «Делимость суммы и произведения на данное число. Задачи повышенной трудности».

Тип урока: урок обобщения и систематизации знаний

Технологии: здоровьесбережения, развитие исследовательских умений, развивающего обучения, проблемного обучения, самодиагностики и самокоррекции результатов.

Элементы содержания: Верные рассуждения, справедливое утверждение, признак делимости произведения, признак делимости суммы.

Виды деятельности: математический диктант, работа у доски и в тетрадях, фронтальная работа с классом.

Планируемые результаты (УУД):

доказать и применять при решении, что если каждое слагаемое делится на некоторое число, то и сумма делится на это число;

вступать в речевое общение, участвовать в диалоге;

правильно оформлять работу, отражать в письменной форме свои решения, выступать с решением проблемы.

Ход урока.

    Проверочный диктант.

    Записать формулу чисел кратных: а) 17; б) 41.

    Записать формулу чисел, которые при делении на 17 дают остаток 3; при делении на 41 – остаток 3.

    Указать два разных признака, характеризующих данное множество 6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 66; 72; 78; 84; 90; 96.

    Найти общие кратные чисел 5 и 4.

    По какому признаку составлены формулы

а) 15 n + 13; б) 4 n +3; в) 17 k + 8 ?

Комментарий учителя. Тетради собираются на проверку, а решения комментируются.

    Выполнение упражнений на делимость суммы и произведения

    (Устно). Делится ли сумма на 3:

а) 450 + 160;

б) 150 +225;

в) 28422 + 22050;

Формулируется вывод:

    Если каждое из слагаемых делится на какое-то число, то и сумма их обязательно делится на это же число.

    Если каждое слагаемое, кроме одного делится на какое-нибудь число, а одно не делится, то сумма не делится на это число.

2. Истинно ли утверждение: если сумма делится на 3, то и каждое слагаемое делится на 3?

3. Делится ли на 3 произведение:

а) 6∙23∙75;

б) 6∙23∙14;

в) 37∙121∙19?

Формулируется вывод: Если хоть один из сомножителей делится на какое-нибудь число, то и произведение их также разделится на это число.

3. Используя свойства делимости и данные о делимости на число к каждого слагаемого, определите, делится ли на к сумма или произведение.

Решение.

Практикум

Все упражнения решаются с записью на доске.

    Не производя вычислений, установите, делятся ли на 4 выражения: а) 132 + 360 + 536; б) 540 – 332; в) 2512·127.

Решение .

а) так как на 4 делится каждое слагаемое, то сумма 132 + 360 + 536 делится на 4;

б) так как уменьшаемое 540 делится на 4 и вычитаемое 332 делится на 4, то и разность 540 – 332 делится на 4;

в) так как число 2512 делится на 4, то и произведение 2512·127 делится на 4.

    Составьте формулу чисел, при которых выражение:

а) 25 + х делится на 25;

б) 78 + х делится на 78.

3. При каких значениях переменной произведение:

а) 7 ∙ а делится на 7,

б) 17 ∙ b делится на b .

4. В кафе завезли 4 коробки мороженного. Может ли быть так, что мы должны заплатить за это 224 руб.?

    Творческие задания

    Доказать, что при всех натуральных значениях переменной выражение:

а) 56 ∙ ( а+ b ) делится на 14;

б) 144 а + 12 b делится на 12;

в) 100 а 40а делится на 30.

2. Укажите какие-нибудь пять делителей числа, равного произведению: 32 ·24 ·21.

3. Укажите, какие из следующих утверждений ложные.

а) Если слагаемые не делятся на какое-то число, то и сумма не делится на это число.

б) Если произведение двух чисел делится на какое-либо число, то хотя бы один из множителей делится на это число.

в) Если множители не делятся на какое-нибудь число, то и произведение не делится на это число.

г) Если разность делится на какое-нибудь число, то и уменьшаемое, и вычитаемое делится на это число.

Решение.

а) Ложное. Пример: 7+3 = 10; 7 и 3 не делятся на 5, а 10 делится на 5.

б) Ложное. Пример: 6 10 = 60; 60 делится на 15, а ни 6, ни 10 не делятся.

в) Ложное. Пример: 6 10 = 60; ни 6, ни 10 не делятся на 15, а 60 делится на 15.

г) Ложное. Пример: 23 - 21 = 2. Разность 2 делится на 2, а 23 и 21 на 2 не делятся.

5. Подведение итогов

Повторение свойств делимости произведения, суммы и разности чисел. Постановка домашнего задания. Комментирование оценок.

п.6.3, №474, 475, (482, 483

Тема урока: Делимость суммы и произведения.

Тип урока: урок «открытия» новых знаний.

Цели урока:

1. Предметные: Расширить знания учащихся о простейших элементах теории делимости натуральных чисел; показать способы использования в вычислениях свойства делимости суммы и произведения натуральных чисел.

2. Метапредметные: развитие умений учащегося проводить несложные доказательные рассуждения в ходе исследования; развитие умений учащихся организовывать сотрудничество и совместную деятельность с учителем и сверстниками, работать индивидуально, в группах, аргументировать и отстаивать свое мнение.

3. Личностные: Способствовать развитию коммуникативной компетентности в общении и сотрудничестве со сверстниками при групповой работе; содействовать формированию устойчивого интереса к предмету; развивать личностные качества: ответственность, целеустремленность.

приёмы и методы:

Рефлективные приёмы;

Приёмы создания ситуации успеха и индивидуального выбора;

Методы самодиагностики;

Частично-поисковый метод;

Работа с учебником.

Формы работы учащихся:

Индивидуальная

Работа в парах

Фронтальная.

Планируемые результаты:

Учащиеся узнают свойства делимости суммы и произведения;

Приобретение навыков у учащихся к использованию в вычислениях свойств делимости суммы и произведения.

Применяемые образовательные технологии:

Системно-деятельностный подход;

Технология проблемного обучения.

Ход урока

1. Мотивация к учебной деятельности.

Здравствуйте, товарищи кадеты.

Ребята, сегодня наш урок мне хотелось бы начать с немного смешного, но на мой взгляд, очень поучительного фрагмента мультипликационного фильма моего детства «Вовка в тридевятом царстве»

Посмотрите, пожалуйста, его очень внимательно. (Просмотр и обсуждение фрагмента мультфильма).

На что рассчитывал Вовка в начале? (Что работу за него выполнят «Двое из ларца»)

Что из этого вышло?(Они все перепутали, и Вовке все равно пришлось делать все самому)

А почему Вовка остался голодный?

Благодаря чему он смог сделать корыто для старухи?

Как вы думаете, сможет Вовка построить избу? Почему вы в этом уверены?

Я с вами абсолютно согласна. Никто за вас не выполнит вашу работу, а от ее качества будет зависеть результат. Если захотеть, то научиться можно всему.

Сегодня у нас урок открытия новых знаний. И я желаю вам успехов в их поиске, в этом вам обязательно помогут накопленные вами хоть небольшие но все же очень важные знания!

2. Актуализация знаний и пробное учебное действие.

А) устный счет(лесенка)

Чтобы вам работалось на протяжении всего урока легко, давайте выполним небольшую разминку для мозга.

У вас на парте в файле с заданиями есть карточки, на которых изображена лесенка. (Слайд 1) Найдите их. (по вариантам). Подпишите. Вам необходимо будет за 2 минуты подняться по ступенькам лестницы как можно выше, записывая на каждой ступени результат вычисления.

Время вышло, заканчиваете. Обменяйтесь карточками.

Проверьте результат друг друга по образцу на слайде (Слайд 2)

Если задание выполнено полностью и без ошибок, поставьте «пятерку»

Верните карточки.

Поднимите руку, у кого «Пятерка». Молодцы!

А кто допустил ошибки, задумайтесь почему?

Есть только две причины, назовите мне их сами. (невнимательность, незнание таб. Умножения)

Это еще раз говорит о том, что нужно быть более внимательными, а у кого возникли проблемы с таблицей умножения, повторите дома ее еще раз.

Б) Теперь нам предстоит вспомнить некоторые понятия, которые будем использовать на нашем уроке. Предлагаю для этого разгадать кроссворд. Он находится у вас в файлах. Работаем в парах. Даю вам 3 минуты.

    Как называется результат умножения?

    Как называются числа, которые складывают?

    Как называется число, на которое делят?

    Как называются числа, которые умножают?

    Как называется результат сложения?

    Как называется число, у которого больше двух делителей?

    Как называется число, у которого два делителя?

Проверьте свои ответы. (Слайд 3)

На какие вопросы вы не смогли ответить?

Давайте мы еще раз повторим определения этих понятий.

Какое определение можно дать понятию по вертикали?

А сейчас откройте тетради и поставьте на полях «!» на против задания, с которым вы дома справились легко и быстро, а «?», если задание вызвало затруднение, к этим заданиям мы вернемся на следующем уроке.

Запишите число и классная работа.

Выполните следующее задание: (Слайд 4)

В) 1. Выясните является ли число 4 делителем произведения: (3мин)

2. Выясните является ли число 3 делителем суммы:

3. Выявление причины затруднения.

Что вы можете сказать о произведениях?

О суммах?

Как вы это выяснили?

Может кто-то использовал другой способ, и смог ответить на вопрос, не выполняя вычислений? (нет)

4. Построение проекта выхода из затруднения.

Так какую цель мы с вами поставим перед собой сегодня на уроке?

(научиться определять без вычислений делится ли сумма или произведение на некоторое число) (Слайд 5)

Тема нашего урока: «Свойства делимости произведения и суммы» (Слайд 6)

Эти свойства вам предстоит сформулировать самостоятельно, и доказать, что они работают на практике.

Физкультминутка.

Потрудились – отдохнем,

Встанем, глубоко вздохнем.

Руки в стороны, вперед,

Влево, вправо поворот.

Три наклона, прямо встать.

Руки вниз и вверх поднять.

Руки плавно опустили,

Всем улыбки подарили.

Объединитесь в группы по 4 человека.

Не забывайте о правилах работы в группе.

Ответьте письменно на вопросы, находящиеся на ваших карточках и сделайте вывод.

Все справились с заданием?

Какую закономерность вы увидели для суммы, какой вывод вы можете сделать?(1 и 2 группы)

Сформулируйте свойство делимости суммы.

Хорошо, какая закономерность прослеживается для произведения? (3 и 4 группы)

Сформулируйте свойство делимости произведения.

5. Реализация построенного проекта

А теперь вернемся к заданию на слайде и проверим верны ли наши предположения. (да)

Итак, мы с вами сформулировали свойства делимости суммы и произведения. Проверим правильность сформулированных нами свойств. Откройте учебник на стр.102.

Ну что вы были правы?(да)

6. Первичное закрепление.

Нам осталось только научиться использовать свойства делимости суммы и произведения.

Учебник (стр.104):

№ 350,357-устно

№ 358(в,г)-доска и тетрадь

№ 359,360(а,б)- дополнительно

Хорошо, молодцы.

А теперь еще раз повторим свойства делимости, которые вы сегодня сами открыли, расскажите их друг другу.

7. Рефлексия деятельности на уроке.

Наш урок подходит к концу, давайте подведем итоги.

Какую цель вы перед собой ставили? (научиться определять без вычислений делится ли сумма или произведение на некоторое число)

Как вы считаете, достигли вы цели?(Да)

А теперь возьмите в файле карточки для самооценки, подпишите их и оцените свою деятельность на уроке.

8.Домашнее задание:

№ 356(а), 358(а,б), 360(в,г)

Ребята, вы сегодня все без исключения очень плодотворно потрудились, спасибо вам за вашу работу.

Закончить урок я хочу словами вьетнамской народной пословицы: «Узнать можно лишь тогда, когда учишься; дойти можно лишь тогда, когда идешь». Не забывайте об этом.

Кто получил оценки за устный счет, принесите дневники. А кто выполнил дополнительное задание, подойдите ко мне с тетрадями.

Понятие отношения делимости

Определение. Число а делится на число в тогда и только тогда, когда существует такое число q, что а = в × q. а в ( q N 0) [а = вq].

Обозначают: а в. Читают: «число а кратно числу в», «число в – делитель числа а», «а кратно в».

Равенство а=вq называют формулой кратности числа а числу в.

Число а, кратное 2, называют четным. Общий вид четного числа: а = 2n, n N 0 .

Число, кратное 3 имеет формулу: а = 3n, n N 0 .

Определение. Отношение делимости на множестве N 0 N содержит те и только те пары чисел (а, в), у которых первая координата кратна второй. Обозначают: « ».

« » = {(а, в)| (а, в) N 0 N а в}.

Если отношение делимости обозначить , то N 0 N ={(а, в)| (а, в) N 0 N а=вq}.

Теорема. Делитель в данного числа а не превышает этого числа, то есть, если а в в а.

Доказательство. Так как а в, то ( q N 0) [а = вq] а – в=вq-в=в(q – 1), так как q N q 1.

Тогда в (q – 1) 0 в а. Из определения отношения делимости и равенства а = 1 × а, следует, что 1 является делителем для любого натурального числа.

Следствие. Множество делителей данного числа конечно.

Например, делители числа 18 является конечное множество: {1, 2, 3, 6, 9, 18}.

Свойства отношения делимости

1. Отношение делимости рефлексивно, то есть любое натуральное число делится само на себя: ( а N) [(а,а) ], то есть а: а = 1.

Доказательство. ( а N)[а = а × 1] по определению отношения делимости а: а.

2. Отношение делимости антисимметрично, то есть для различных чисел а и в из того, что а в, следует, что в не кратно а. ( а, в N 0 N)[а в а в ].

Доказательство. Допустим, что в а, тогда в а. Но по условию а в, так как а в.

Неравенства в а а в истины только в том случае, если а = в. пришли к противоречию с условием. Следовательно, допущение, что в а Л. Таким образом, отношение делимости антисимметрично.

3. Отношение делимости транзитивно. ( а,в,с N 0 N)[а в в с а с].

Доказательство. Если а в ( q N)[а = вq] (1) Из того, что в с ( t N)[в = сt] (2)

Подставим в = сt в равенство (1), получим: а = (сt)q = c(tq), t,q N tq N tq = р а = ср, р N. А это значит, что а с.

Признаки делимости. Делимость суммы, разности, произведения

Определение. Признаком делимости называется предложение, в котором доказывается как можно предсказать делимость одного числа на другое, не выполняя деления этих чисел.

Теорема (признак делимости суммы). Если числа а и в делится на число n, то их сумма делится на это число, ( а,в, n N 0 N)[а n в n (а + в) n].

Доказательство. Из того что а n в n (по определению отношения делимости)

а=nq 1 (1), q 1 N. в=nq 2 (2), q 2 N. Преобразуем сумму (а + в) к виду:

а + в = nq 1 + nq 2 = n (q 1 + q 2) = nq,q = q 1 + q 2 . а + в = nq.

Следовательно, по определению отношения делимости, что (а + в) n.

Теорема (признак делимости разности). Если числа а и в делятся на число n и а в, то их разность а – в делится на число n, то есть

( а,в,n N 0 N)[а n в n а в (а – в) n].

Теорема (признак делимости произведения). Если один из множителей произведения делится на число n, то и все произведение делится на число n.

( а,в,n N 0 N)[а n (ав) n].

Доказательство. Из того, что а n а = nq (1). Умножим обе части равенства (1) на в N, получим: ав = nqв (по ассоциативности умножения) ав = n(qв) = nt, где t = qв ав = nt. А это значит, что ав n (по определению отношения делимости). Таким образом, для делимости произведения на число достаточно чтобы на данное число делился хотя бы один из множителей этого произведения.

Теорема. Если в произведении ав множитель а делится на натуральное число m, а множитель в делится на натуральное число n, то ав делится на mn.

( а,в,m,n N)[а m в n ав mn].

Доказательство. Из того, что а m а = mq 1 , q 1 N; в n в = nq 2 , q 2 N

ав = mq 1 × nq 2 , = mn(q 1 × q 2) = mnq, q 1 × q 2 = q N. ав = mnq ав mn.

Теорема (признак делимости на 2). Для того, чтобы число х делилось на 2 необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр: 0, 2, 4, 6, 8.

Доказательство. Пусть число х записано в десятичной системе счисления, то есть:

х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 , где а n , a n –1 , …, а 1 – цифры, принимающие значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и а n 0, а 0 – принимает значения 0, 2, 4, 6, 8.

Докажем, что число х 2. Так как 10 2, то любая степень числа 10 2. Десятичную запись числа х представим в виде: х = (а n 10 n + a n –1 10 n –1 + …+a 1 10) + a 0

I слагаемое II слагаемое

В этой сумме первое слагаемое по признаку делимости суммы делится на 2. Второе слагаемое а 0 2 (по условию). Следовательно, по признаку делимости суммы на число х делится на 2.

Обратно, если число х делится на 2, то его десятичная запись оканчивается цифрой 0, 2, 4, 6, 8.

Запишем число х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 в виде: а 0 = х – (а n 10 n + a n –1 10 n –1 + …+a 1 10).

В этой разности число х 2 (по условию), вычитаемое (а n 10 n + a n –1 10 n –1 + …+a 1 10) 2 (по признаку делимости суммы). Следовательно, по теореме о делимости разности а 0 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0, 2, 4, 6, 8.

Признак делимости на 2. На 2 делятся те и только те числа, в разряде единиц которых содержится число, делящееся на 2 или на 2 делятся те и только те числа, десятичная запись которых оканчивается одной из цифр 0, 2, 4, 6, 8.

Теорема (признак делимости на 5). Для того, чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Лемма . ( n N) .

Доказательство. Так как 100 = 4 × 25, то по признаку делимости произведения

100 4. Тогда ( n N n > 1) 10 n = 100 × 10 n–2 и по признаку делимости произведения 10 n 4.

Теорема (признак делимости на 4). Натуральное число х делится на 4 тогда и только тогда, когда две последние цифры его десятичной записи образуют двузначное число, делящееся на 4.

Пусть х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 и пусть десятичная запись двух последних цифр a 1 10 + a 0 выражает число , которое делится на 4.

Доказательство. Представим число х в виде суммы двух слагаемых:

х = (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) + (а 1 10 + а 0),

I слагаемое II слагаемое

где первое слагаемое, по доказанной выше Лемме, делится на 4, второе слагаемое делится на 4 по условию. Следовательно, согласно признака делимости суммы на число, число х делится на 4.

Обратно, если число х 4, то – двузначное число, образованное последними цифрами его десятичной записи, делится на 4.

По условию х 4. Докажем, что (а 1 10 + а 0) 4.

Доказательство. Десятичная запись числа х имеет вид:

х = а n 10 n + a n –1 10 n –1 + …+а 2 10 2 + a 1 10 + a 0 , представим число х в виде суммы двух слагаемых:

х = (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) + (а 1 10 + а 0) и запишем равенство в виде:

х – (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) = а 1 10 + а 0 , где х 4 (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) 4 (по лемме).

Следовательно, по признаку делимости разности а 1 10 + а 0 4. выражение а 1 10 + а 0 = – есть запись двузначного числа, образованного последними цифрами записи числа х.

Признак делимости на 4. На 4 делятся те и только те числа, две последние цифры десятичной записи которых образуют число, делящееся на 4.

Теорема. Для того чтобы число х делилось на 25 необходимо и достаточно, чтобы на 25 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х.

Доказывается аналогично.

Признак делимости на 25. На 25 делятся те и только те числа, у которых две последние цифры в записи числа 00, 25, 50, 75.

Лемма. ( n N) [(10 n – 1) 9].

Докажем методом математической индукции.

1. Проверим справедливость утверждения для n = 1,

имеем: 10 1 – 1 = 9 9 9. А(1) И.

Следовательно, лемма доказана, то есть (10 n – 1) 9.

Теорема (признак делимости на 9). Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сумма цифр его десятичной записи делалась на 9.

Пусть х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 (1), где где а n , a n –1 , …, а 1 , а 0 – цифры, принимающие значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и а n 0 и (а n + a n –1 + … + а 1 + а 0) 9.

Докажем, что число х 9. Доказательство. Преобразуем сумму (1), прибавив и вычтя из нее выражение а n + a n –1 + … + а 1 + а 0 , получим:

х = а n 10 n + a n–1 10 n–1 + …+a 1 10 + a 0 + а n – a n + a n – 1 – a n – 1 + …+ a 1 – a 1 + a 0 – a 0 =

= (а n 10 n – a n) + (a n–1 10 n–1 – a n – 1) + … + (a 1 10 – a 1) + (a 0 – a 0) =

=а n (10 n – 1) + a n–1 (10 n–1 – 1) + … + a 1 (10 –1) + (а n + a n–1 + … + а 1 + а 0). 9, то есть сумма цифр десятичной записи числа х делится на 9. 3 (по признаку делимости произведения), второе слагаемое 10 k – 1 3 (по допущению индукции). Следовательно, по признаку делимости суммы вся сумма делится на 3.

Таким образом, А (1) И А(k) И А(k + 1) И. Следовательно, (10 n – 1) 3

Признак делимости на 3. На 3 делятся те и только те числа, сумма цифр которых делится на 3.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-08-26


Приведем пример, подтверждающий справедливость свойства деления суммы двух натуральных чисел на данное натуральное число. Покажем, что равенство (18+36):6=18:6+36:6 верное. Сначала вычислим значение выражения из левой части равенства. Так как 18+36=54 , то (18+36):6=54:6 . Из таблицы умножения находим 54:6=9 (смотрите раздел теории деление при помощи таблицы умножения). Переходим к вычислению значения выражения 18:6+36:6 . Из таблицы умножения имеем 18:6=3 и 36:6=6 , поэтому 18:6+36:6=3+6=9 . Следовательно, равенство (18+36):6=18:6+36:6 верное.

Еще следует обратить внимание на тот факт, что это свойство, а также сочетательное свойство сложения натуральных чисел позволяют выполнять деление суммы трех и большего количества натуральных чисел на данное натуральное число. Например, частное (14+8+4+2):2 равно сумме частных следующего вида 14:2+8:2+4:2+2:2 .

Свойство деления разности двух натуральных чисел на натуральное число.

Аналогично предыдущему свойству формулируется свойство деления разности двух натуральных чисел на данное натуральное число: разделить разность двух чисел на данное число – это все равно, что отнять от частного уменьшаемого и данного числа частное вычитаемого и данного числа .

С помощью букв это свойство деление можно записать так: (a-b):c=a:c-b:c , где a , b и c – такие натуральные числа, что a больше или равно b , а также и a и b можно разделить на c .

В качестве примера, подтверждающего рассматриваемое свойство деления, покажем справедливость равенства (45-25):5=45:5-25:5 . Так как 45-25=20 (при необходимости изучите материал статьи вычитание натуральных чисел), то (45-25):5=20:5 . По таблице умножения находим, что полученное частное равно 4 . Теперь вычислим значение выражения 45:5-25:5 , стоящего в правой части равенства. Из таблицы умножения имеем 45:5=9 и 25:5=5 , тогда 45:5-25:5=9-5=4 . Следовательно, равенство (45-25):5=45:5-25:5 верно.

Свойство деления произведения двух натуральных чисел на натуральное число.

Если увидеть связь между делением и умножением , то будет видно и свойство деления произведения двух натуральных чисел на данное натуральное число, равное одному из множителей. Его формулировка такова: результат деления произведения двух натуральных чисел на данное натуральное число, которое равно одному из множителей, равен другому множителю . Приведем буквенный вид этого свойства деления: (a·b):a=b или (a·b):b=a , где a и b – некоторые натуральные числа.

Например, если разделить произведение чисел 2 и 8 на 2 , то получим 8 , а (3·7):7=3 .

Теперь будем считать, что делитель не равен ни одному из множителей, образующих делимое. Сформулируем свойство деления произведения двух натуральных чисел на данное натуральное число для этих случаев. При этом будем считать, что хотя бы один из множителей можно разделить на данное натуральное число. Итак, разделить произведение двух натуральных чисел на данное натуральное число – это все равно, что разделить на это число один из множителей и результат умножить на другой множитель .

Озвученное свойство, мягко говоря, не очевидно. Но если вспомнить, что умножение натуральных чисел по сути является сложением некоторого количества равных слагаемых (об этом написано в разделе теории смысл умножения натуральных чисел), то рассматриваемое свойство следует из .

Запишем это свойство с помощью букв. Пусть a , b и c – натуральные числа. Тогда, если a можно разделить на c , то справедливо равенство (a·b):c=(a:c)·b ; если b можно разделить на c , то справедливо равенство (a·b):c=a·(b:c) ; а если и a , и b можно разделить на c , то имеют место оба равенства одновременно, то есть, (a·b):c=(a:c)·b=a·(b:c) .

К примеру, в силу рассмотренного свойства деления произведения двух натуральных чисел на данное натуральное число справедливы равенства (8·6):2=(8:2)·6 и (8·6):2=8·(6:2) , которые можно записать в виде двойного равенства вида (8·6):2=(8:2)·6=8·(6:2) .

Свойство деления натурального числа на произведение двух натуральных чисел.

Давайте разберем следующую ситуацию. Пусть нужно поровну разделить a призов между участниками b команд по c человек в каждой команде (будем считать, что натуральные числа a , b и c таковы, что указанное деление возможно провести). Как это можно сделать? Рассмотрим два случая.

  • Во-первых, можно узнать общее количество участников (для этого нужно вычислить произведение b·c ), после чего провести деление всех a призов на всех b·c участников. Математически этому процессу соответствует a:(b·c) .
  • Во-вторых, a призов можно разделить на b команд, после чего полученное количество призов в каждой команде (оно будет равно частному a:b ) разделить на c участников. Математически этот процесс описывается выражением (a:b):c .

Понятно, что и при первом и при втором варианте деления, каждый участник получит одно и то же количество призов. То есть, будет справедливо равенство вида a:(b·c)=(a:b):c , которое представляет собой буквенную запись свойства деления натурального числа на произведение двух натуральных чисел. Следует заметить, что в силу переместительного свойства умножения натуральных чисел полученное равенство можно записать в виде a:(b·c)=(a:c):b .

Осталось лишь привести формулировку рассматриваемого свойства деления: разделить натуральное число на произведение – это все равно что разделить это число на один из множителей, после чего полученное частное разделить на другой множитель .

Приведем пример. Покажем справедливость равенства 18:(2·3)=(18:2):3 , что будет подтверждать свойство деления натурального числа на произведение двух натуральных чисел. Так как 2·3=6 , то частное 18:(2·3) равно 18:6=3 . Теперь вычислим значение выражения (18:2):3 . Из таблицы умножения находим, что 18:2=9 , а 9:3=3 , тогда (18:2):3=3 . Следовательно, 18:(2·3)=(18:2):3 .

Свойство деления нуля на натуральное число.

Мы приняли условность, что число нуль (напомним, что нуль не относится к натуральным числам) означает отсутствие чего-либо. Таким образом, деление нуля на натуральное число – это есть деление «ничего» на несколько частей. Очевидно, что в каждой из полученных частей также будет «ничто», то есть нуль. Итак, 0:a=0 , где a – любое натуральное число.

Полученное выражение представляет собой буквенную запись свойства деления нуля на натуральное число, которое формулируется так: результатом деления нуля на произвольное натуральное число является нуль .

К примеру, 0:105=0 , а частное от деления нуля на 300 553 тоже равно нулю.

Натуральное число делить на нуль нельзя.

Почему же натуральное число нельзя делить на нуль? Давайте разберемся с этим.

Предположим, что некоторое натуральное число a можно разделить на нуль, и результатом деления является другое натуральное число b , то есть, справедливо равенство a:0=b . Если вспомнить о связи деления с умножением, то записанное равенство a:0=b означает справедливость равенства b·0=a . Однако свойство умножения натурального числа и нуля утверждает, что b·0=0 . Сопоставление двух последних равенств указывает на то, что a=0 , чего быть не может, так как мы сказали, что a – некоторое натуральное число. Таким образом, наше предположение о возможности деления натурального числа на нуль приводит к противоречию.

Итак, натуральное число нельзя делить на нуль .

Список литературы.

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.