29 августа 1831 г м фарадей открыл. Майкл фарадей и рождение физики поля

Ч. 1

(22 сентября 1791 г. - 25 августа 1867 года)

Великий английский ученый, основоположник учения об электромагнитном поле, родился 22 сентября 1791 г. в местечке Ньюингтон-Бетте вблизи Лондона.

В 1816 г. в журнале Королевского института была напечатана его первая работа по химии – «Анализ естественной едкой извести», а в 1818 г. им была выполнена первая работа по физике – о поющем пламени. В декабре 1821 г. Он «заставил» вращаться проволоку с током около магнитного полюса, впервые произошло превращение электрической энергии в механическую. Была подготовлена научная почва для создания электродвигателей.

8 января 1824 г. М. Фарадей был избран в члены Королевского общества, а в 1827 г. получил кафедру в Королевском институте. 29 августа 1831 г. М. Фарадей установил, что при замыкании и размыкании электричес-кой цепи с током в первичной обмотке возникал индукционный ток. 17 октября 1831 г. М. Фарадей обнаружил, что при быстром вдвижении железного сердечника в катушку в определенный момент в цепи возникал ток. Но лишь в 1851 г. он дал законченную формулировку закона индукции.

М. Фарадей изучил электролиз и установил законы этого явления (1833-1834).

(18 февраля 1745 г. - 5 марта 1827 г.)
Выдающийся итальянский физик Алессандро Вольта родился 18 февраля 1745 г. в г. Комо (возле Милана) в старинной знатной семье. Первое научное исследование А. Вольта было посвящено лейденской банке. В 1771 г. вышла в свет его работа «Эмпирические исследования способов возбуждения электричества и улучшение конструкции машин». В 1774 г. А. Вольта становится преподавателем физики в г. Комо, а в 1775 г. создает электрофор. В 1779 году он стал профессором физики Павийского университета. В 1780 г. ученый занялся проблемой атмосферного электричества и создал электроскоп с конденсатором. Уже в 1792 г. он пришел к заключению, что металлы являются не только совершенными проводниками, но и двигателями электричества. В 1796 – 1797 гг. А. Вольта установил закон напряжений, по которому напряжение между крайними металлами цепи равно напряжению, возникающему при непосредственном контакте этих металлов. В 1799 г. он добился значительного увеличения напряжения путем использования прокладок из смоченного картона между парами металлов медь - цинк. Был создан «вольтов столб». В 1815 – 1819 гг. А. Вольта был директором философского факультета в Падуе, а затем ушел из университета и переехал на родину, в г. Комо. Последние годы жизни ученого прошли очень скромно. Его посещали многие видные люди того времени.

Исаак Ньютон родился в 1643 г. в местечке Вулсторп около города Грантема, расположенного в центре Британии, в семье небогатого фермера. В 12 лет его отправили учиться в г. Грантем в королевскую школу.

Во время учебы Исаак мастерил сложные механические модели различных машин. Своим первым физическим опытом Ньютон считал измерение силы ветра во время бури в 1658 г.

Основную часть своих открытий Ньютон совершил в течение двух лет (1665 – 1667) по окончании Кембриджского университета. В то время когда в Англии свирепствовала чума, Ньютон, чтобы избежать заражения, уехал в родной Вулсторп, где погрузился в научную работу. Рассказывают, что идея закона всемирного тяготения пришла к Ньютону в тот момент, когда, сидя в саду, он наблюдал падение яблока на землю. Здесь же он понял, почему свет, преломившись в стеклянной призме, распадается на цветные лучи. Всю дальнейшую жизнь Ньютон приводил в порядок и публиковал открытия, сделанные им в Вулсторпе. Последние 25 лет жизни Ньютон был президентом Лондонского Королевского общества – английской академии наук. Исаак

Ньютон умер 20 марта 1727 г. в возрасте 84 лет. По указу короля Генриха 1 его похоронили в усыпальнице королей – Вестминстерском аббатстве.

(1564 г. – 1642 г.)

Знаменитый итальянский ученый родился в 1564 г. Галилей был одним из основателей точного естествознания, боролся против схоластики, считал основой познания опыт.

Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок. Построил телескоп с 32-кратным увеличением и открыл горы на Луне, четыре спутника Юпитера, фазы Венеры, пятна на Солнце. Активно защищал гелиоцентрическую систему мира, за что был подвергнут суду инквизиции (1633), вынудившей его отречься от учения Н. Коперника. Согласно легенде, Галилей после своего вынужденного отречения воскликнул: «А все-таки она вертится!»

До конца жизни Галилей считался «узником инквизиции» и принужден был жить на своей вилле Арчетри близ Флоренции. Галилео Галилей умер в 1642 г. В 1992 г. Папа Иоанн-Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

Альберт Эйнштейн – родился 14 марта 1879 года в маленьком городке Ульме, из которого семья позже переехала в Мюнхен, а в 1893 году - в Швейцарию.

В 1905 году никому неизвестный эксперт патентного бюро публикует работу, посвященную частной теории от-носительности под названием «К электродинамике движущихся тел». В этом же году он дает объяснение фотоэффекта на основе квантовой гипотезы Планка.

В течение 1907-1916 годов создает общую теорию относительности – теорию тяготения.

С 1914 года Эйнштейн продолжает свою научную деятельность в Германии. Работа Эйнштейна по теории броуновского движения привела к окончательной победе молекулярно- кинетической теории строения вещества.

В 30-е годы он вплотную сталкивается с фашизмом. Его, ученого с мировым именем, зачисляют в разряд врагов гитлеровского режима. В 1933 году Эйнштейн вынужден был эмигрировать в США, где и продолжал свою научную и общественную деятельность до самой смерти.

Нильс Хендрик Давид Бор (1885 – 1962) – известнейший датский физик, один из создателей современной физики.

В 1908 г. Н. Бор окончил Копенгагенский университет.

В 1911-1912 гг. работал в Кембриджском университете под руководством Дж. Дж. Томсона и в Манчестерском университете под руководством Э. Резерфорда. С 1916 г. – профессор Копенгагенского университета, а с 1920 г.- директор Института теоретической физики в Копенгагене. Создал теорию атома, в основу которой легли планетарная модель атома, квантовые представления и предложенные им постулаты. Им написаны важные работы по теории металлов, теории атомного ядра и ядерных реакций. В 1922 году он получает Нобелевскую премию.

В Копенгагене Бор создал большую интернациональную школу физиков и много сделал для развития сотрудничества между физиками всего мира. Нильс Бор активно участвовал в борьбе против атомной угрозы человечеству.

Энрико Ферми – выдающийся итальянский физик родился 29 сентября 1901 года в Риме. Он имеет мно -гочисленные работы в области атомной физики, статичес- кой механики, физики космических лучей, физики высоких энергий, астрофизики и технической физике. Ферми является одним из основоположников квантовой электро- динамики, автором канонических правил квантования поля.

В 1933-1934 годах создал количественную теорию бета-распада, положившую начало теории слабых взаимодействий.

В 1934 году открыл искусственную радиоактивность, обусловленную нейтронами, обнаружил явление замедления нейтронов и дал его теорию, за что в 1938 году ему была присуждена Нобелевская премия, высказал идею о получении в результате облучения ядер урана нейтронами новых (заурановых) элементов. Выехав за получением Нобелевской премии в Стокгольм вместе с семьей, он не вернулся в Италию, где фашистская диктатура Муссолини, по существу, ликвидировала условия для нормальной научной работы. В США (г. Чикаго) он построил первый ядерный реактор и 2 декабря 1942 года впервые осуществил его запуск, получив самоподдерживающуюся цепную реакцию. Положил начало оптике и нейтронной спектроскопии. Он являлся членом многих академий наук и научных обществ. В его честь назван 100-й химический элемент в США учреждена премия его имени.

Генрих Рудольф Герц родился 22 февраля 1857 г. в Гамбурге в семье известного адвоката. Юный Герц увлекался проблема ми астрономии, физики и математики. Вначале Герц намерен был получить инженерное образование, для чего поступил в Дрезденский политехникум, а затем продолжил обучение в Мюнхене. В возрасте 20 лет он переходит в Берлинский университет, где слушает лекции по математике и физике, изучает работы классиков точных наук и знакомится с историей естествознания. В эти годы Герц делает прекрасную экспериментальную работу на тему «Обладает ли электрический ток кинетической энергией?», а затем и теоретическую докторскую «О вращении тел в магнитном поле». В 23 года Герц оканчивает обучение в Берлине и в качестве ассистента работает в Физическом институте. В 1883 г. он отправляется в провинциальный университет в Киле. Лишь с переездом в 1884 г. в Карлсруэ уже в качестве профессора Высшей технической школы, Герц проводит свои знаменитые эксперименты по получению электромагнитных волн и изучению их свойств.

С 1889 г. и до конца своих дней Герц работает в Боннском университете, где он занимается систематизацией основных положений электромагнитной теории.

Предчувствие близкой смерти побудило ученого в декабре 1893 г. написать родителям: «Если со мной действительно что-то случится, вы должны не печалиться, а …гордиться и думать, что я принадлежу к избранным, которые живут мало, но все же достаточно». Генрих Герц скончался 1 января 1894 г. не дожив 2 месяца до 37 лет.

(18 декабря 1856 г. - 30 августа 1940 г.)

Дж. Дж. Томсон , или, как его позднее называли, «Джи-Джи», родился 18 декабря 1856 г. в предместье г. Манчестера в семье букиниста. Собираясь стать инженером, он в 14 лет поступил в колледж Оуэна (впоследствии Манчестерский университет), однако после смерти отца и ввиду недостатка средств не смог продолжить свое обучение. Самостоятельно изучив математику, физику и химию, он получил высшее образование в Тринити колледже Кембриджского университета. После того как ему присуждена ученая степень по математике, он работает в Кавендишской лаборатории под руководством Дж. Рэлея. В 28 лет профессор Томсон возглавит эту лабораторию, оставаясь ее директором 20 лет. В ней он проведет свои основные экспериментальные и теоретические исследования и здесь же создаст знаменитую научную школу, воспитавшую 8 лауреатов Нобелевской премии, 27 членов Лондонского королевского общества и 80 профессоров физики для многих европейских стран.

В 1906 г. Дж. Дж. Томсону была присуждена Нобелевская премия «за исследования прохождения электричества через газы».

Александр Степанович Попов – русский физик, изобретатель радио. Родился в п. Турьинские рудники (ныне г. Краснотурьинск Свердловской области). В 1877 г. поступил на физико-математический факультет Петербургского университета, где принимал активное участие в работе Физической лаборатории университета, стал прекрасным экспериментатором, увлекся электротехникой. После окончания университета работал в обществе «Электротехника», а затем был приглашен преподавать физику и электротехнику в военных учебных заведениях. С 1901 г. Попов стал заведовать кафедрой физики Петербургского электротехнического института. После опубликования в 1888 г. работ Г. Герца по получению электромагнитных волн начал изучать электромагнитные явления. Убежденный в возможности связи без проводов при помощи электромагнитных волн, Попов построил первый в мире радиоприемник, применив в его схеме чувствительный элемент – когерер. 25 апреля (7 мая по новому стилю) 1895 г. Попов сделал научный доклад об изобретении им системы связи без проводов и продемонстрировал её работу. Во время опытов по радиосвязи с помощью приборов Попова было впервые обнаружено отражение радиоволн от корабля. Признанием заслуг Попова явилось постановление Совета Народных Комиссаров считать 7 мая Днем радио. Академией наук СССР установлена золотая медаль им. А. С. Попова.

Гюйгенс Христиан (1629 – 1695) –голландский физик и математик. Родился в Гааге. Поступив в Лейденский университет, Гюйгенс по настоянию отца обучался юридическим наукам. В 1655 г. Гюйгенс защитил во Франции диссертацию на степень доктора права. Наряду с этим он много времени уделяет занятиям по оптике. Он изготовил телескоп с помощью которого Гюйгенс открыл спутник Сатурна Титан. В 1657 г. им впервые были построены маятниковые часы. Гюйгенс впервые использовал маятник для достижения регулярного хода часов и вывел формулу для периода колебаний математического и физического маятников. В 1659 г. Гюйгенс напечатал книгу о Сатурне, в которой объяснял вид планеты. Он первый увидел и описал кольцо, окружающее Сатурн. В 1663 г. Гюйгенс был избран членом Лондонского королевского общества. В 1665 г. его приглашают в Париж в Королевскую академию наук в качестве её председателя.

Гюйгенс создатель первой волновой теории света. Основы этой теории Гюйгенс изложил в «Трактате о свете» (1690).

Математические работы Гюйгенса касались исследования конических сечений, циклоиды и других кривых. Ему принадлежит одна из первых работ по теории вероятности.

Курчатов Игорь Васильевич - советский физик и организатор науки, трижды Герой Социалистического труда. Родился в п. Сим на Южном Урале в семье помощника лесничего. После окончания гимназии он в 1920 г. поступает в Крымский университет. После досрочного окончания университета переезжает в Петроград, где продолжает учебу в Политехническом институте. В 1925 г. Курчатов начал работать в Физико-техническом институте. Физикой атомного ядра он занимался с 30-х годов. В 1943 г. Курчатов возглавлял научные работы, связанные с атомной проблемой. Под го руководством были созданы первый в Европе атомный реактор (1946), первая советская атомная бомба (1949)и термоядерная бомба. Под научным руководством Курчатова были сооружены первая в мире промышленная атомная электростанция (1954г.), крупнейшая установка для проведения исследований по осуществлению регулируемых термоядерных реакций (1958 г.)

Ранние работы Курчатова относятся к исследованию сегнетоэлектриков, ядерных реакций, вызываемых нейтронами, искусственной радиоактивности. Курчатов открыл существование возбужденных состояний ядер с относительно большим временем жизни.

Склодовская-Кюри Мария - физик и химик. Родилась в Польше, в семье учителя, работала во Франции.

Мария Склодовская стала первой в истории Сорбонны женщиной-преподавателем. В Сорбонне она встретила Пьера Кюри, также преподавателя, за которого позже вышла замуж. Вместе они занялись исследованием аномальных лучей (рентгеновских), которые испускали соли урана. Не имея никакой лаборатории, и работая в сарае на улице Ломон в Париже, с 1898 по 1902 годы они переработали 8 тонн руды урана и выделили одну сотую грамма нового вещества - радия. Позже был открыт полоний - элемент названный в честь родины Марии Кюри. В 1903 году Мария и Пьер Кюри получили Нобелевскую премию по физике «за выдающиеся заслуги в совместных исследованиях явлений радиации». Будучи на церемонии награждения, супруги задумываются создать собственную лабораторию, и даже институт радиоактивности. Их затея была воплощена в жизнь, но гораздо позже.

После трагической смерти мужа Пьера Кюри в 1906 году Мария Склодовская-Кюри унаследовала его кафедру в Парижском университете.

В 1910 г. ей удалось в сотрудничестве с Андре Дебьерном выделить чистый металлический радий, а не его соединений, как бывало прежде. Таким образом, был завершен 12-летний цикл исследований, в результате которого было доказано, что радий является самостоятельным химическим элементом. В 1911 г. Склодовская-Кюри получила Нобелевскую премию по химии «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Склодовская-Кюри стала первым (и на сегодняшний день единственной женщиной в мире) дважды лауреатом Нобелевской премии.



Петр Николаевич Лебедев (1866-1912) – русский физик, родился в Москве в купеческой семье.

После завершения среднего образования учился в Германии. В 1891 г. Лебедев возвращается в Москву и по приглашению А.Г. Столетова становится преподавателем, а с 1900 по 1911 г.- профессором Московского университета. Он впервые измерил давление света на твердые тела и газы. Эти работы Лебедева количественно подтвердили теорию Максвелла.

Стремясь найти новые экспериментальные доказательства электромагнитной теории света, Лебедев получил электромагнитные волны миллиметровой длины и исследовал все их свойства.

Лебедев создал первую в России физическую школу. Его учениками являются многие выдающиеся советские ученые. Имя Лебедева носит физический институт АН СССР (ФИАН)

(29 июля (10 августа) 1839 г. - 15 (27) мая 1896 г.)
Столетов Александр Григорьевич - русский физик, профессор Московского университета (с 1873 г.) Столетов родился во Владимире, в купеческой семье. После окончания в 1860г. Московского университета был оставлен при университете для подготовки к профессорскому званию. В 1862-1865 г. он продолжил свое образование во Франции и Германии. Исследование фотоэффекта доставило Столетову мировую известность. Столетов также возможность применения фотоэффекта на практике. В докторской диссертации «Исследование о функции намагничения мягкого железа» он разработал метод исследования ферромагнетиков и установил вид кривой намагничения. Эта работа широко использовалась на практике при конструировании электрических машин. Много сил отдал Столетов развитию физики в России. Он явился инициатором создания физического института при Московском университете.

(23 апреля 1858 г. - 4 октября 1947 г.)

Планк Макс – великий немецкий физик-теоретик, основатель квантовой теории – современной теории движения, взаимодействия и взаимных превращений микроскопических частиц. Родился в семье юристов и учёных, много внимания уделявшей развитию способностей детей. Окончил гимназию в Мюнхене, где наряду с высокой одарённостью по многим дисциплинам показал высокую прилежность и работоспособность. Решение стать физиком далось непросто - наряду с естественными дисциплинами привлекали музыка и философия. Физику изучал в Берлине и Мюнхене.

После защиты диссертации преподавал с 1885 г. по 1889 г. в Киле, а затем с 1889 г. по 1926 г. в Берлине. С 1930 г. по 1937 г. Планк возглавлял Общество кайзера Вильгельма (с 1948 г преобразовано в Общество Макса Планка).

Свои исследования Планк посвящал в основном вопросам термодинамики. Известность он приобрёл после объяснения спектра так называемого «абсолютно чёрного тела» В 1900 г. В работе, посвященной равновесному тепловому излучению, Планк впервые ввел предположение о том, что энергия осциллятора (системы, совершающей гармонические колебания) принимает дискретные значения, пропорциональные частоте колебаний. Излучается электромагнитная энергия осциллятором отдельными порциями.

Вильгельм Конрад Рентген родился в Линнепе (современное название Ремшайд) единственным ребёнком в семье. Первое образование Вильгельм получает в частной школе Мартинуса фон Дорна. С 1861 он посещает Утрехтскую Техническую школу, однако в 1863 его отчисляют из-за несогласия выдать нарисовавшего карикатуру на одного из преподавателей.

В 1865 году Рентген пытается поступить в Утрехтский университет, несмотря на то, что по правилам он не мог быть студентом этого университета. Затем он сдаёт экзамены в Федеральный политехнический институт Цюриха, и становится студентом отделения механической инженерии, после чего в 1869 году выпускается со степенью доктора философии.Однако, поняв, что его больше интересует физика, Рентген решил перейти учиться в университет. После успешной защиты диссертации он приступает к работе в качестве ассистента на кафедре физики в Цюрихе, а потом в Гиссене. В период с 1871 по 1873 год Вильгельм работал в Вюрцбургском университете, а затем вместе со своим профессором Августом Адольфом Кундтом перешёл в Страсбургский университет в 1874 году, в котором проработал пять лет в качестве лектора (до 1876 года), а затем в качестве профессора (с 1876 года). Также в 1875 году Вильгельм становится профессором Академии Сельского Хозяйства в Каннингеме (Виттенберг). Уже в 1879 году он был назначен на кафедру физики в университете Гиссена, которую впоследствии возглавил. С 1888 года Рентген возглавил кафедру физики в Университете Вюрцбурга, позже, в 1894 году, его избирают ректором этого университета. В 1900 году Рентген стал руководителем кафедры физики университета Мюнхена - она стала последним местом его работы. Позже, по достижении предусмотренного правилами предельного возраста, он передал кафедру Вильгельму Вину, но всё равно продолжал работать до самого конца жизни.

5 (17) сентября 1857 г. - 19 сентября 1935 г.)

Константин Эдуардович Циолковский – русский ученый, основоположник современной космонавтики. Начиная с 1896 г. он занимался теорией движения реактивных аппаратов и предложил ряд схем ракет дальнего действия и ракет для межпланетных станций. В 1903 г. была опубликована часть его статьи «Исследование мировых пространств реактивными приборами». В этой статье, а также в работах 1911 и 1914 гг. он заложил основы теории ракет и жидкостного ракетного двигателя. Им впервые была решена задача посадки космического аппарата на поверхность планет, лишенных атмосферы. В 1926-1929 гг. Циолковский разработал теорию многоступенчатых ракет. Он первым решил задачу о движении ракет в гравитационном поле, рассмотрел влияние атмосферы на полет ракеты и вычислил необходимые запасы топлива для преодоления сил сопротивления воздушной оболочки Земли. Им же была высказана идея создания околоземных станций. Циолковский написал ряд работ, в которых уделил внимание использованию искусственных спутников Земли в народном хозяйстве.

Андре Мари Ампер(1775-1836) – французский физик и математик, родился в г. Лионе. Под руководством отца он получил домашнее образование. Амперу было 14 лет, когда он прочитал 20 томов «Энциклопедии». Трудовая деятельность Ампер начал в качестве домашнего учителя математики, физики и химии. В 1801 г. он был принят на должность учителя физики и химии в Центральную школу в Бурк-ан-Брес. В 1805 г. Ампер занимает место преподавателя математики в Политехнической школе в Париже. В 1814 г. Ампера избирают членом Парижской академии наук. В 1824 г. занимает должность профессора физики Нормальной школы в Париже.

Ампер открыл механическое взаимодействие токов и на основании гипотезы о существовании молекулярных токов построил первую теорию магнетизма.

В 1826 г. Ампер подготовил и издал свой основной труд – «Теория электродинамических явлений, выведенная исключительно из опыта».

В честь Ампера названа единица силы тока – ампер.

(16 марта 1787 г. – 6 июля 1854 г.)
Георг Симон Ом (1787-1854) – немецкий физик. Родился в г. Эрлангене в семье ремесленника. Окончив гимназию, Ом поступил в Эрлангенский университет, но прервал обучение из-за материальных затруднений. Работал учителем в Готштадте (Швейцария). Самостоятельно подготовил докторскую диссертацию и защитил её в Эрлангенском университете в 1811 г. После этого Ом преподавал математику, физику в различных школах в Германии. В 1826 г. Ом установил формулу для постоянного тока в электрической цепи, известную теперь как закон Ома. Признание Ома пришло не сразу, а лишь спустя примерно 10 лет после его открытия. Кроме исследований по электричеству, Омом были выполнены работы по оптике, кристаллооптике, акустике. В 1833 г. Ом стал директором Политехнической школы в Нюрнберге, в 1849 – профессором Мюнхенского университета. Признанием важности сделанного Омом открытия явилось его избрание в 1842 г. членом Лондонского королевского общества. В честь Ома названа единица электрического сопротивления.


(21 сентября 1801 г. - 11 марта 1874 г.)

Борис Семенович Якоби – русский физик и электротехник, академик Петербургской академии наук.

Якоби родился в Потсдаме (Германия). Окончил Геттингенский университет. С 1837 г. жил в Петербурге и принял русское подданство. Якоби сконструировал первый в мире практически пригодный электродвигатель с непрерывным вращательным движением вала и в 1838 г. впервые применил его для движения судна (испытания «электрохода» Якоби проводились на р. Неве). Якоби является изобретателем гальванопластики и в 1840 г. опубликовал полное описание гальванопластического процесса. Якоби принадлежит ряд теоретических исследований, относящихся к работе электродвигателя. Он разработал несколько конструкций телеграфных аппаратов и одним из первых в мире построил действовавшие кабельные телеграфные линии. Своей деятельностью ученый во многом способствовал установлению системы мер, участвовал в разработке эталонов, выборе единиц измерений.

Николай Коперник - польский ученый. Родился в г. Торунь, выходец из купеческой семьи. Коперник получил разносторонне образование. Закончив кафедральную школу во Влоцлавске, Коперник в возрасте 19 лет поступил в Краковский университет, где изучал астрономию и искусство наблюдений. Для продолжения образования он в 1496 г. переехал в Италию. Сначала Коперник в знаменитом Болонском университете изучал юридические науки, а также математику. В 1501 г. он продолжает образование в Падуанском университете, где изучает медицину. В1503 г. ему был вручен докторский диплом. Возвратившись на родину, Коперник вскоре переехал во Фромборк, где занял духовную должность. Научная деятельность Коперника во Фромборке была весьма разно-образной. Он разрабатывает новую, гелиоцентрическую, систему мира, конструирует простейшие инструменты для наблюдения и измерения высот небесных светил, проводит астрономические наблюдения. К 1530 г. Коперник в основном заканчивает разработку своего учения и системе мира, но лишь в 1543 г. Коперник решается напечатать рукопись с полным изложением гелиоцентрической системы.

(1 июня 1796 г. - 24 августа 1832 г.)
Никола Леонард Сади Карно – французский инженер и ученый. Сади Карно – сын Л. Н. Карно (1753-1823), ученого, государственного деятеля, участника французской буржуазной революции. В 1814 г. С. Карно окончил Политехническую школу в Париже и затем поступил на службу в инженерные войска. В 1827 г. он был произведен в капитаны и вскоре вышел в отставку. Будучи на военной службе, он много времени уделял научной работе. Карно написал единственный научный труд «Размышления о движущей силе огня и о машинах, способных развивать эту силу», изданный в 1824 г. Труд Карно не имел сначала большого распространения, и только к 1834 г. другой французский ученый Клапейрон (1799-1864) обратил на него внимание. После смерти Карно его брат опубликовал записки Карно. В них была высказана мысль об эквивалентности теплоты и работы.

Рудольф Юлиус Эмануэль Клаузиус родился 2 января 1822 в Кёслине (ныне Кошалин, Польша) в семье пастора. Учился в частной школе, затем в гимназии. Окончил Берлинский университет (1848), где получил степень доктора философии. В 1850–1857 преподавал в Берлине и Цюрихе. Профессор университетов в Цюрихе, Вюрцбурге, Бонне. С 1884 – ректор Боннского университета. Клаузиус внес большой вклад в развитие молекулярно-кинетической теории газов. Он впервые применил здесь новый подход – так называемый метод средних величин (то, что теперь называется статистическими методами), объяснил с единых позиций такие разные явления, как внутреннее трение, теплопроводность, диффузия. Ввел понятие средней длины свободного пробега молекул и в 1860 вычислил ее величину, что в дальнейшем позволило оценить размер молекул. Обобщил уравнение газового состояния Ван-дер-Ваальса, выявил смысл уравнения, связывающего температуру плавления (или кипения) вещества с давлением (уравнение Клапейрона – Клаузиуса).

Помимо этого, Клаузиус разработал теорию поляризации диэлектриков, из которой независимо от О.Моссотти вывел соотношение между диэлектрической проницаемостью и поляризуемостью (формула Клаузиуса – Моссотти).

Клаузиус является одним из основателей термодинамики и кинетической теории газов. Он сформулировал первый и второй газовые законы термодинамики. В 1876 г. им была написана работа «Механическая теория тепла».


Людвиг Больцман – австрийский физик, основатель статистической механики и молекулярно-кинетической теории.

После окончания гимназии Больцман поступил в Венский университет. Уже в 1866 г. он в возрасте 22 лет получил докторскую степень и занял должность приват-доцента в Венском университете. С 1869 г. Больцман – профессор в университетах Граца, Вены Мюнхена, Лейпцига. Последние годы он провел в Вене.

Большинство работ Больцмана относятся к теоретическим исследованиям в области молекулярной физики. Главной его заслугой явилось статистическое истолкование второго закона термодинамики. Эти работы Больцмана не были оценены при его жизни и только после его смерти они получили признание.

Больцману принадлежит также ряд работ по механике, электродинамике и другим разделам теоретической физики. По своим взглядам он был убежденным материалистом и резким идейным противником Маха и Оствальда, пытавшимся на основе искаженного представления достижений науки обосновать идеалистические философские учения.


(30 сентября 1870 г. - 17 апреля 1942 г.)
Жан Батист Перрен – французский физик. После окончания Высшей нормальной школы в Париже Перрен сначала работал в этой же школе, а затем в Парижском университете.

С 1910 г. он – профессор. В 1940 г. после оккупации Франции войсками фашистской Германии он уехал в США.

Перрену принадлежат работы, относящиеся к различным областям физики, и в частности, работы по изучению броуновского движения.

Перрен был почетным членом Академии наук СССР (с 1929 г.), Нобелевским лауреатом (1926 г.)

(14 августа 1777 г. - 9 марта 1851 г.)

Эрстед Ханс Кристиан – датский физик.

Эрстед родился в г. Рудкёбинге, расположенном на острове Лангеланн, в семье аптекаря. В 1797 г. он окончил Копенгагенский университет. В 1800 г. Эрстед становится адъюнктом и в 1806 г. – профессором Копенгагенского университета. Основные работы Эрстеда посвящены физике, химии, философии. Обнаружение отклонения магнитной стрелки под действием электрического тока явилось важнейшей научной заслугой Эрстеда. Его сообщение о своих опытах вызвало ряд последующих важнейших исследований (Ампера, Фарадея и др.) по электродинамике, которые привели к построению теории и практическому использованию электричества.

Эрстед организовал в Дании Общество по распространению естественно-научных знаний и Политехни-ческую школу в Копенгагене, первым директором которой он был. В течение 36 лет он исполнял должность секретаря Датского королевского общества (академии наук Дании).

С 1830 г. Эрстед был почетным членом Петербургской Академии наук.



Джеймс Клерк Максвелл - английский физик, создатель теории электромагнитного поля, один из основоположников статистической физики. Максвелл родился в Эдинбурге (Шотландия) в дворянской семье. В 1847 г. Максвелл поступил в Эдинбургский университет. В 1850г. Максвелл переходит учиться в Кембриджский университет. После окончания Тринити-колледжа этого университета (в 1854 г.) он стал преподавать в нем. В 1856 г Максвелл становится профессором физики университета в Шотландии, зачем Лондонского университета и с 1871 г. Максвелл - профессор Кембриджского университета. В последнем он основал известную Кавендишскую лабораторию и был первым ее директором. Первая из основных работ Максвелла по электродинамике называлась «О фарадеевых силовых линиях» (1855-1856). В ней молодым ученым был сформулирован метод и, по существу, намечена программа исследования электромагнитных явлений на основе представления о близкодействии. Последующая разработка теории электромагнитного поля была дана Максвеллом в работах: «О физических силовых линиях» (1861-1862), «Динамическая теория электромагнитного поля» (1864), «Трактат об электричестве и магнетизме» (1873).

Разработка теории электромагнетизма - важнейшая из широкого круга проблем, которые получили первоклассное решение в трудах Максвелла.

(22 марта 1868 г. - 19 декабря 1953 г.)
Роберт Эндрус Милликен (1868-1953) – американский физик. Милликен окончил колледж в штате Огайо. Получил докторскую степень в Колумбийском университете. В 1895-1896 гг. работал в Германии в Берлинском и Геттингенском университетах, затем с 1896 г. в Чикагском университете и других учреждениях.

Милликен осуществил очень точное измерение заряда электрона с помощью разработанного им метода.

Милликен провел также проверку уравнения фотоэффекта. Ему принадлежит ряд работ по спектроскопии, космическим лучам и т. д. Он является лауреатом Нобелевской премии.

Эрнест Резерфорд – английский физик, основоположник ядерной физики. Родился в семье небогатого фермера в Новой Зеландии. В 1894 г. Э. Резерфорд окончил Новозеландский университет. В 1895-1898 гг.работал под руководством Дж.Дж.Томсона в Кавендишской лаборатории. В 1898 -1907 гг. Резерфорд – профессор Мак-Гиллского университета в Монреале (Канада), в 1907-1919 гг. – профессор Манчестерского университета, а с 1919 г. – профессор Кембриджского университета и директор Кавендишской лаборатории. С 1903 г.- член Лондонского королевского общества, а в период с 1925 г. по 1930 г. – его президент. Резерфорд почетный член Академии наук СССР и академии наук большинства стран мира. Он лауреат Нобелевской премии по химии (1908 г.) Основные работы Резерфорда относятся к физике атома и атомного ядра. Он первым обнаружил (в 1899 г.), что излучение радиоактивных элементов имеет сложный состав; двум компонентам этого излучения он дал название α- и β-лучей. В 1903 г. Резерфорд совместно с Ф. Содди создал теорию радиоактивного распада элементов. На основе экспериментов с рассеянием α- частиц Он сделал вывод о существовании в центре химического элемента положительно заряженного ядра. В 1919 г. Резерфорд первым обнаружил возможность превращения атомов нерадиоактивных элементов в атомы других элементов под влиянием ударов α- частиц. В 1920 г. Резерфорд предсказал, а в 1933 г. совместно с М. Олифантом экспериментально доказал справедливость закона взаимосвязи массы и энергии.

(12 (24) марта 1891 г. - 25 января 1951 г.)

Сергей Иванович Вавилов – советский физик, академик АН СССР, с 1945 по 1951 г. – президент АН СССР. С.И. Вавилов родился в Москве, в семье торгового служащего. Среднее образование получил в коммерческом училище. С 1909 по 1914 г. учился в Московском университете, где вошел в состав группы физиков под руководством П. Н. Лебедева. В лаборатории Лебедева Вавилов выполнил свое первое научное исследование по оптике, за что позднее получил золотую медаль. После окончания университета Вавилов был призван в армию и отправлен на фронт, где пробыл до 1918 г. С 1918 по 1932 г. Вавилов работал в Московском университете (с 1929 – профессор) и одновременно (с 1918 по 1930 г.) заведовал отделением физической оптики в Институте физики и биофизики, а с 1932 г. он – директор Физического института АН СССР. Основные научные труды Вавилова посвящены вопросам физической оптики. В 1938 г. Вавилов был избран депутатом ВС РСФСР, а в 1946 г.- депутатом ВС СССР. Имя Вавилова присвоено Институту физических проблем АН СССР в Москве и Государственному оптическому институту в Санкт-Петербурге. В 1951 г. учреждена золотая медаль имени С.И. Вавилова, присуждаемая ежегодно за выдающиеся работы в области физики.
ч. 1

Фарадей (Faraday) Майкл (22 сентября 1791, Лондон - 25 августа 1867, там же), английский физик, основоположник современной концепции поля в электродинамике, автор ряда фундаментальных открытий, в том числе закона электромагнитной индукции, законов электролиза, явления вращения плоскости поляризации света в магнитном поле, один из первых исследователей воздействия магнитного поля на среды.

Детство и юность

Фарадей родился в семье кузнеца. Кузнецом был и его старший брат Роберт, всячески поощрявший тягу Майкла к знаниям и на первых порах поддерживавший его материально. Мать Фарадея, трудолюбивая, мудрая, хотя и необразованная женщина, дожила до времени, когда ее сын добился успехов и признания, и по праву гордилась им.

Скромные доходы семьи не позволили Майклу окончить даже среднюю школу, и тринадцати лет он поступил учеником к владельцу книжной лавки и переплетной мастерской, где ему предстояло пробыть 10 лет. Все это время Фарадей упорно занимался самообразованием - прочитал всю доступную ему литературу по физике и химии, повторял в устроенной им домашней лаборатории опыты, описанные в книгах, посещал по вечерам и воскресеньям частные лекции по физике и астрономии. Деньги (по шиллингу на оплату каждой лекции) он получал от брата. На лекциях у Фарадея появились новые знакомые, которым он писал много писем, чтобы выработать ясный и лаконичный стиль изложения; он также старался овладеть приемами ораторского искусства.

Начало работы в Королевском институте

Один из клиентов переплетной мастерской, член Лондонского королевского общества Дено, заметив интерес Фарадея к науке, помог ему попасть на лекции выдающегося физика и химика Г. Дэви в Королевском институте. Фарадей тщательно записал и переплел четыре лекции и вместе с письмом послал их лектору. Этот "смелый и наивный шаг", по словам самого Фарадея, оказал на его судьбу решающее влияние.

В 1813 Дэви (не без некоторого колебания) пригласил Фарадея на освободившееся место ассистента в Королевский институт, а осенью того же года взял его в двухгодичную поездку по научным центрам Европы. Это путешествие имело для Фарадея большое значение: он вместе с Дэви посетил ряд лабораторий, познакомился с такими учеными, как А. Ампер, М. Шеврель, Ж. Л. Гей-Люссак, которые в свою очередь обратили внимание на блестящие способности молодого англичанина.

Первые самостоятельные исследования. Научные публикации

После возвращения в 1815 в Королевский институт Фарадей приступил к интенсивной работе, в которой все большее место занимали самостоятельные научные исследования. В 1816 он начал читать публичный курс лекций по физике и химии в Обществе для самообразования. В этом же году появляется и его первая печатная работа.

В 1821 в жизни Фарадея произошло несколько важных событий. Он получил место надзирателя за зданием и лабораториями Королевского института (т. е. технического смотрителя) и опубликовал две значительные научные работы (о вращениях тока вокруг магнита и магнита вокруг тока и о сжижении хлора). В том же году он женился и, как показала вся его дальнейшая жизнь, был весьма счастлив в браке.

В период до 1821 Фарадей опубликовал около 40 научных работ, главным образом по химии. Постепенно его экспериментальные исследования все более переключались в область электромагнетизма. После открытия в 1820 Х. Эрстедом магнитного действия электрического тока Фарадея увлекла проблема связи между электричеством и магнетизмом.

В 1822 в его лабораторном дневнике появилась запись: "Превратить магнетизм в электричество". Однако Фарадей продолжал и другие исследования, в том числе в области химии. Так, в 1824 ему первому удалось получить хлор в жидком состоянии.

Избрание в Королевское общество. Профессура

В 1824 Фарадей был избран членом Королевского общества, несмотря на активное противодействие Дэви, отношения с которым стали у Фарадея к тому времени довольно сложными, хотя Дэви любил повторять, что из всех его открытий самым значительным было "открытие Фарадея". Последний также воздавал должное Дэви, называя его "великим человеком".

Спустя год после избрания в Королевское общество Фарадея назначают директором лаборатории Королевского института, а в 1827 он получает в этом институте профессорскую кафедру.

Закон электромагнитной индукции. Электролиз

В 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям.

Вскоре он добивается блестящего успеха: 29 августа 1831 открывает явление электромагнитной индукции - явление порождения электрического поля переменным магнитным полем. Десять дней напряженнейшей работы позволили Фарадею всесторонне и полностью исследовать это явление, которое без преувеличения можно назвать фундаментом, в частности, всей современной электротехники. Но сам Фарадей не интересовался прикладными возможностями своих открытий, он стремился к главному - исследованию законов Природы.

Открытие электромагнитной индукции принесло Фарадею известность. Но он по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835.

Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея.

В 1833-34 Фарадей изучал прохождение электрических токов через растворы кислот, солей и щелочей, что привело его к открытию законов электролиза. Эти законы (Фарадея законы) впоследствии сыграли важную роль в становлении представлений о дискретных носителях электрического заряда.

До конца 1830-х гг. Фарадей выполнил обширные исследования электрических явлений в диэлектриках.

Болезнь Фарадея. Последние экспериментальные работы

Постоянное огромное умственное напряжение подорвало здоровье Фарадея и вынудило его в 1840 прервать на пять лет научную работу. Вернувшись к ней вновь, Фарадей в 1848 открыл явление вращения плоскости поляризации света, распространяющегося в прозрачных веществах вдоль линий напряженности магнитного поля (Фарадея эффект).

По-видимому, сам Фарадей (взволнованно написавший, что он "намагнитил свет и осветил магнитную силовую линию") придавал этому открытию большое значение. И действительно, оно явилось первым указанием на существование связи между оптикой и электромагнетизмом. Убежденность в глубокой взаимосвязи электрических, магнитных, оптических и других физических и химических явлений стала основой всего научного миропонимания Фарадея.

Другие экспериментальные работы Фарадея этого времени посвящены исследованиям магнитных свойств различных сред. В частности, в 1845 им были открыты явления диамагнетизма и парамагнетизма.

В 1855 болезнь вновь заставила Фарадея прервать работу. Он значительно ослабел, стал катастрофически терять память. Ему приходилось записывать в лабораторный журнал все, вплоть до того, куда и что он положил перед уходом из лаборатории, что он уже сделал и что собирался делать далее. Чтобы продолжать работать, он должен был отказаться от многого, в том числе и от посещения друзей; последнее, от чего он отказался, были лекции для детей.

Значение научных трудов

Даже далеко не полный перечень того, что внес в науку Фарадей, дает представление об исключительном значении его трудов. В этом перечне, однако, отсутствует то главное, что составляет громадную научную заслугу Фарадея: он первым создал полевую концепцию в учении об электричестве и магнетизме.

Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Фарадей последовательно развивал идею о том, что активным материальным переносчиком этого взаимодействия является электромагнитное поле.

Об этом прекрасно написал Д. К. Максвелл , ставший его последователем, развивший далее его учение и облекший представления об электромагнитном поле в четкую математическую форму: "Фарадей своим мысленным оком видел силовые линии, принизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде".

Точка зрения на электродинамику с позиций концепции поля, основоположником которой был Фарадей, стала неотъемлемой частью современной науки. Труды Фарадея ознаменовали наступление новой эры в физике.

Английский физик Майкл Фарадей, выросший в бедной семье, стал одним из величайших ученых в истории человечества. Его выдающиеся достижения были сделаны в то время, когда наука являлась уделом людей, рожденных в привилегированных семействах. В его честь названа единица электрической емкости - фарад.

Фарадей (физик): краткая биография

Майкл Фарадей родился 22 сентября 1791 года в столице Великобритании Лондоне. Он был третьим ребенком в семье Джеймса и Маргарет Фарадеев. Его отец был кузнецом, который имел слабое здоровье. До брака его мать работала служанкой. Семья жила бедно.

До 13 лет Майкл посещал местную школу, где получил начальное образование. Чтобы помочь семье, он начал работать посыльным в книжном магазине. Усердие мальчика впечатлило его работодателя. Через год его повысили до ученика переплетчика.

Переплет и наука

Майкл Фарадей хотел узнать больше о мире; он не ограничивался После усердного ежедневного труда он проводил все свое свободное время за чтением книг, которые он переплетал.

Постепенно он обнаружил, что увлекся наукой. Особенно ему понравились две книги:

  • «Британская энциклопедия» - источник его познаний об электричестве и о многом другом.
  • «Беседы о химии» - 600 страниц о химии в доступном изложении авторства Джейн Марсе.

Он был настолько очарован, что начал тратить часть своего скудного заработка на химические вещества и аппаратуру, чтобы подтвердить истинность того, о чем читал.

Расширяя свои научные познания, он услышал, что Джон Татум собирался дать серию публичных лекций по натуральной философии (физике). Для посещения лекций необходимо было внести плату в один шиллинг - слишком много для Майкла Фарадея. Его старший брат, кузнец, впечатленный растущей преданностью своего брата науке, дал ему необходимую сумму.

Знакомство с Хамфри Дэви

Фарадей сделал еще один шаг к науке, когда Уильям Дэнс, клиент книжного магазина, поинтересовался у Майкла, нет ли у него желания получить билеты на лекции в Королевском институте.

Лектор, сэр Хамфри Дэви, был одним из самых известных в мире ученых того времени. Фарадей ухватился за шанс и посетил четыре лекции, посвященные одной из новейших проблем химии - определении кислотности. Он наблюдал за экспериментами, которые проводил Дэви на лекциях.

Это был мир, в котором он хотел бы жить. Фарадей вел записи, а затем сделал так много дополнений в примечаниях, что произвел 300-страничную рукопись, которую сам переплел и отправил Дэви в знак благодарности.

В это время на заднем дворе книжного магазина Майкл начал проводить более сложные эксперименты по созданию электрической батареи из медных монет и цинковых дисков, разделенных влажной соленой бумагой. Он использовал ее для разложения химических веществ, например таких, как сульфат магния. В этой области химии Хамфри Дэви был пионером.

В октябре 1812 года ученичество Фарадея завершилось, и он начал работать переплетчиком у другого работодателя, которого он нашел неприятным.

Не было бы счастья, да несчастье помогло

И вот произошел счастливый для Фарадея случай. В результате неудачного эксперимента Хамфри Дэви был ранен: это временно повлияло на его способность писать. Майклу удалось в течение нескольких дней вести записи для Дэви, впечатленного книгой, которую тот ему послал.

Когда недолгий период работы помощником закончился, Фарадей отправил ученому записку с просьбой нанять его своим ассистентом. Вскоре после этого один из лаборантов Дэви был уволен за нарушение дисциплины, и Хамфри осведомился у Майкла, не хотел ли бы он занять вакантное место.

Не хотел ли он работать в Королевском институте с одним из самых известных ученых в мире? Это был риторический вопрос.

Карьера в Королевском институте

Ему хорошо платили и выделили для проживания комнату на чердаке Королевского института. Майкл был очень доволен, и его связь с этим учреждением больше не прерывалась в течение 54 лет, за которые ему удалось стать профессором химии.

Работа Фарадея состояла в подготовке аппаратуры для проведения экспериментов и лекций в Королевском институте. Поначалу он имел дело с трихлоридом азота, взрывчатым веществом, которое травмировало Дэви. Майкл тоже при очередном взрыве ненадолго потерял сознание, и когда Хамфри снова получил травму, опыты с этим соединением были прекращены.

Через 7 месяцев работы в Королевском институте Дэви взял с собой Фарадея в турне по Европе, длившееся 18 месяцев. За это время Майклу удалось встретить великих ученых, таких как Андрэ-Мари Ампер в Париже и Алессандро Вольта в Милане. В некотором смысле, тур заменил ему университетское образование - Фарадей многое узнал за это время.

Большую часть тура он, однако, был несчастлив, поскольку в дополнение к научной и секретарской работе должен был прислуживать Дэви и его жене. Супруга ученого не считала Фарадея равным себе из-за его происхождения.

По возвращении в Лондон все стало на свои места. Королевский институт возобновил контракт Майкла и увеличил его вознаграждение. Дэви даже начал упоминать о его помощи в научных работах.

В 1816 г. в возрасте 24 лет Фарадей прочитал свою первую лекцию о свойствах материи. Проходила она в Городском философском обществе. Тогда же в «Ежеквартальном научном журнале» он опубликовал свою первую научную статью об анализе гидроксида кальция.

В 1821 г. в возрасте 29 лет Фарадей был повышен до должности заведующего хозяйством и лабораторией Королевского института. В том же году он женился на Саре Барнард. Майкл со своей супругой прожили в институте большую часть следующих 46 лет, уже не на чердаке, а в удобном помещении, которое когда-то занимал Хамфри Дэви.

В 1824 г. биография Фарадея (физика) ознаменовалась его избранием в члены Королевского общества. Это было признанием того, что он стал заметным ученым.

В 1825 г. физик Фарадей стал директором лаборатории.

В 1833 г. он стал фуллеровским профессором химии в Королевском институте Великобритании. Фарадей занимал эту должность до конца своей жизни.

В 1848 и 1858 годах ему было предложено возглавить Королевское общество, но он отказался.

Научные достижения

Чтобы описать открытия Фарадея в физике, потребуется не одна книга. Не случайно Альберт Эйнштейн в своем кабинете хранил фотографии только троих ученых: Исаака Ньютона, Джеймса Максвелла и Майкла Фарадея.

Как ни странно, хотя еще при жизни ученого начали использовать слово «физик», ему самому оно не нравилось, и он всегда называл себя философом. Фарадей был человеком, шедшим к открытиям через эксперименты, и он был известен тем, что никогда не отказывался от идей, к которым приходил благодаря научной интуиции.

Если он полагал, что идея стоила того, он продолжал эксперименты, несмотря на множество неудач, пока не достигал ожидаемого или пока не убеждался в том, что мать-природа доказала его неправоту, что случалось крайне редко.

Так что открыл Фарадей в физике? Вот некоторые из его самых заметных достижений.

1821: открытие электромагнитного вращения

Оно стало предвестником того, что, в конечном итоге, привело к созданию электрического двигателя. Открытие базировалось на теории Эрстеда о магнитных свойствах провода, по которому проходит электрический ток.

1823: сжижение газа и охлаждение

В 1802 году Джон Далтон высказал мнение, что все газы могут быть сжижены при низких температурах или высоком давлении. Физик Фарадей доказал это опытным путем. Он впервые превратил хлор и аммиак в жидкость.

Жидкий аммиак был еще интересен тем, что, как заметил Майкл Фарадей, физика процесса его испарения вызывала охлаждение. Принцип охлаждения с помощью искусственного испарения был публично продемонстрирован Уильямом Калленом в Эдинбурге в 1756 г. Ученый с помощью насоса снизил давление в колбе с эфиром, в результате чего произошло его быстрое испарение. Это вызвало охлаждение, и на внешней стороне колбы из влаги воздуха образовался лед.

Важность открытия Фарадея состояла в том, что механические насосы могли превращать газ в жидкость при комнатной температуре. Затем жидкость испарялась, охлаждая все вокруг, полученный газ мог быть собран и с помощью насоса сжат в жидкость снова, повторяя цикл. Именно так работают современные холодильники и морозильники.

В 1862 году на Всемирной лондонской выставке Фердинанд Карре продемонстрировал первую в мире коммерческую машину по производству льда. В машине в качестве охлаждающей жидкости использовался аммиак, и она производила лед со скоростью 200 кг в час.

1825: открытие бензола

Исторически сложилось так, что бензол стал одним из наиболее важных веществ в химии, как в практическом смысле, т. е. он используется при создании новых материалов, так и в теоретическом - для понимания химической связи. Ученый обнаружил бензол в маслянистых остатках производства газа для освещения в Лондоне.

1831: закон Фарадея, формула, физика электромагнитной индукции

Это было чрезвычайно важным открытием для будущего науки и техники. Закон Фарадея (физика) гласит, что переменное магнитное поле вызывает в цепи электрический ток, и генерируемая прямо пропорциональна скорости изменения Одна из его возможных записей |E|=|dΦ/dt|, где Е - ЭДС, а Ф - магнитный поток.

Например, перемещение подковообразного магнита вдоль провода производит электрический ток, так как движение магнита вызывает переменное магнитное поле. До этого единственным источником тока была батарея. Майкл Фарадей, открытия в физике которого показали, что движение может быть превращено в электричество, или, более научным языком, кинетическая энергия может быть преобразована в электрическую, таким образом, причастен к тому, что большая часть энергии в наших домах сегодня производится именно по этому принципу.

Вращение (кинетическая энергия) преобразуется в электричество с помощью электромагнитной индукции. А вращение, в свою очередь, получают при действии на турбины пара высокого давления, создаваемого энергией угля, газа или атома, или напором воды в гидроэлектростанциях, либо давлением воздуха в

1834: законы электролиза

Фарадей-физик внес основной вклад в создание новой науки электрохимии. Она объясняет то, что происходит на границе раздела электрода с ионизированным веществом. Благодаря электрохимии мы пользуемся литий-ионными батареями и аккумуляторами, питающими современную мобильную технику. Законы Фарадея важны для нашего понимания электродных реакций.

1836: изобретение экранированной камеры

Физик Фарадей обнаружил, что, когда электрический проводник заряжен, весь лишний заряд скапливается на внешней его стороне. Это означает, что внутри комнаты или клетки, сделанной из металла, дополнительный заряд не появляется. Например, человек, одетый в костюм Фарадея, т. е. с металлической подкладкой, не подвергается действию внешнего электричества. Кроме защиты людей, клетка Фарадея может использоваться для проведения электрических или электрохимических экспериментов, чувствительных к внешним помехам. Экранированные камеры также могут создавать мертвые зоны для мобильной связи.

1845: открытие эффекта Фарадея - магнитооптического эффекта

Еще одним важным экспериментом в истории науки был опыт, впервые доказавший связь электромагнетизма и света, что в 1864 году было полностью описано уравнениями Джеймса Клерка Максвелла. Физик Фарадей установил, что свет представляет собой электромагнитную волну: «Когда противоположные магнитные полюса находились с той же стороны, это оказывало действие на поляризованный луч, что, таким образом, доказывает связь магнитной силы и света...

1845: открытие диамагнетизма как свойства всей материи

Большинство людей знакомо с ферромагнетизмом на примере обычных магнитов. Фарадей (физик) обнаружил, что все вещества диамагнитны - в большинстве своем слабо, но встречаются и сильные. Диамагнетизм противоположен направлению приложенного магнитного поля. Например, если поместить северный полюс у сильно диамагнитного вещества, то оно будет отталкиваться. Диамагнетизм в материалах, индуцированный очень сильными современными магнитами, может быть использован для достижения левитации. Даже живые существа, такие как лягушки, диамагнитны и могут парить в сильном магнитном поле.

Конец

Майкл Фарадей, открытия в физике которого произвели переворот в науке, умер 25 августа 1867 г. в Лондоне в возрасте 75 лет. Его жена Сара жила дольше. У четы не было детей. Всю свою жизнь он был набожным христианином и принадлежал к маленькой протестантской секте сандеманианцев.

Еще при жизни Фарадею было предложено погребение в Вестминстерском аббатстве вместе с королями и королевами Великобритании и учеными, подобно Исааку Ньютону. Он отказался ради более скромной церемонии. Его могилу, где также похоронена Сара, можно найти на кладбище Хайгейт в Лондоне.

Труды и воззрения Фарадея. Открытия Фарадея органически связаны с его воззрениями. Их история - это также история развития его глубоких и цельных идей. Мы начинаем эту историю с фундаментального открытия электромагнитной индукции.

Уже в 1821 г. в дневнике Фарадея появляется запись: «Превратить магнетизм в электричество». Мысль о тесной двусторонней связи электричества и магнетизма казалась ему совершенно очевидной, но конкретное воплощение идеи потребовало десяти лет напряжённого труда. Только 29 августа 1831 г. Фарадею удалось получить первый эффект: индукционный ток во вторичной обмотке при замыкании и размыкании тока в первичной обмотке. Этими опытами и началась первая серия его «Экспериментальных исследований» , в которой этот первый эксперимент описан следующим образом.

«10. На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками её намотана проволока такой же длины, изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоявшей из 100 пар пластин; медные пластинки и здесь были двойные. При замыкании цепи удавалось заметить внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмотря на то что нагревание всей спирали, соединённой с батарей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».

«12. Результаты, полученные мною в это время при опытах над магнитами, заставили меня предположить, что ток, проходящий через один провод, в действительности индуцирует такой же ток в другом проводе, но что продолжительность индуцируемого тока, однако, лишь мгновенна, и он сходен скорее с электрической волной, наблюдаемой при разряде лейденской банки, чем с гальваническим током».

Итак, первым открытием в длинной цепи явлений электромагнитной индукции было открытие индукции токов. Интересно отметить (а на это обстоятельство обычно не обращается внимания), что и самая терминология, употребляемая Фарадеем, и его аппарат указывают, что он, в отличие, от современников, был глубоко убеждён в тождестве статического и гальванического электричества. Электростатическое влияние зарядов (электростатическая индукция) было известно давно, со времён Кантона, Вильке и Эпинуса, но индукции гальванической (индукции токов) никто не наблюдал. Впервые это было сделано Фарадеем.

Но ток, по Амперу, - это магнит, а магнит - это совокупность токов. Следовательно, можно, во-первых, получить намагничивание индукционным током, во-вторых, получить индукцию магнитом. «… Поэтому я предположил, - продолжает Фарадей, - что, несмотря на незначительность его действия на гальванометр, он мог бы намагнитить стальную иглу».

«13. Это предположение оправдалось».

Но индукция в электростатике определяется сближением и удалением проводников. Конечно, Фарадей понимал, что замыкание и размыкание тока соответствуют его приближению и удалений, однако он считает необходимым получить индукцию и движением проводников. «18. Однако так как можно было предположить, что особое действие ограничивалось исключительно актами замыкания и размыкания, то для проверки индукция была вызвана также и другим способом. Провод длиной в несколько футов был расположен на одной стороне широкой доски в форме буквы W и другой провод, точно такой же формы, был положен на другой доске так, чтобы оба провода соприкасались всеми своими точками при сближении досок, если бы между ними не был проложен лист толстой бумаги. Один из этих проводов был соединён с гальванометром, другой - с вольтовой батареей. Тогда приближение первого провода ко второму вызывало отклонение стрелки, а удаление - отклонение в обратную сторону. Если приближение и удаление проводов совпадали с колебаниями стрелки, то последние вскоре становились весьма заметными; при прекращении же движения проводов относительно друг друга колебания стрелки постепенно прекращались».

Фарадей понял, какое огромное поле исследования и приложений открылось перед ним. В письме Филлипсу от 23 сентября он писал: «Я теперь опять занимаюсь электромагнетизмом и полагаю, что напал на хорошую мысль, но я ещё ничего не могу сказать… Мне кажется, что я знаю, почему металлы становятся магнитными, когда они находятся в движении (Речь идёт об эффекте, открытом Араго. Вращающийся медный диск увлекал за собой магнитную стрелку.), и почему они не магнитны (в общем), когда находятся в покое».

Прежде всего Фарадей установил, что замена деревянного кольца в его исходном опыте железным сердечником в значительной степени усиливает эффект. При размыкании и замыкании тока в первичной спирали А (рис. 208), намотанной на железный сердечник, представляющий собой кольцо с внешним диаметром 6 дюймов, выкованное из железного стержня диаметра 7/8 дм, во вторичной спирали В, соединённой с гальванометром, появлялся индукционный ток.

«28. Гальванометр мгновенно обнаруживал отклонение, причём оно было гораздо более значительное, чем в предыдущих случаях, в которых при батареях, в десять раз более мощных, применялись спирали без железа (п. 10)».

Изготовив цилиндрическую катушку (обмотка наматывалась на картонный цилиндр) с первичной и вторичной обмоткой, Фарадей наблюдал очень слабый индукционный эффект при замыкании и размыкании тока в первичной обмотке, питавшейся от сравнительно мощной батареи.

«34. При введении же внутрь картонного цилиндра другого цилиндра из мягкого железа толщиной 6 7/8 дюйма и длиной в 12 дюймов индукционный ток оказывал мощное действие на гальванометр…»

В дальнейшем этот опыт был осуществлён Фарадеем 17 октября. «39. Цилиндр из мягкого железа (п. 34) был заменён магнитом цилиндрической формы с диаметром 3/4 дюйма и длиной в 8 1/2Дюйма. Один конец этого магнита был коаксиально вдвинут в катушку. После того как стрелка гальванометра пришла в спокойное состояние, весь магнит целиком был сразу вдвинут в катушку. Стрелка гальванометра показала мгновенное отклонение… Если магнит оставался внутри катушки, то стрелка снова приходила в своё прежнее положение и при вынимании его отклонялась в противоположном направлении».

Любой преподаватель физики воспроизводит сейчас эти классические опыты с так называемой индукционной катушкой. Индукцию токов Фарадей назвал вольта-электрической индукцией, описанную же здесь индукцию магнитом - магнито-электрической индукцией. Получив большой подковообразный магнит Королевского общества, Фарадей разгадал тайну эффекта Араго и обратил явление. 28 октября он «заставил медный диск вращаться между полюсами подковообразного магнита Королевского общества. Ось и край диска были соединены с гальванометром. Стрелка отклонялась, как только диск начинал вращаться».

Таким образом, в 1821 г. Фарадей получил непрерывное вращательное движение электромагнитным путём, т. е. осуществил первый электродвигатель, а в 1831 г. им был построен новый источник электроэнергии, первая динамо-машина. Фарадей сознательно ставил задачу построения такой машины. Он прямо говорит:

«Получив электричество из магнита вышеописанным образом, я полагаю, что опыт г-на Араго может стать новым источником получения электричества, и надеялся, что путем использования электрической индукции земного магнетизма мне удастся сконструировать электрическую машину».

Современная электротехника справедливо считает своим родоначальником — Фарадея. С неменьшим правом и радиотехника датируется от опытов Фарадея. Доклад об описанных здесь опытах Фарадей сделал 24 ноября, этот доклад и составляет содержание первой серии «Экспериментальных исследований». В п. 114 этой серии содержится закон, позволяющий определить направление индукционного тока в движущемся проводнике. Здесь уже отчётливо говорится о пересечении магнитных линий. Явление и правило Фарадея, правда, выраженное очень длинно, совпадает с правилом правой руки, В следующей, второй серии Фарадей осуществил опыты индукции магнитным полем Земли и настолько проникся новым пониманием существа явления, что высказывает убеждение: «теоретически следует, повидимому, признать обязательным, что везде, где течёт вода, должны развиваться электрические токи.

Если мысленно представить себе линию, проведённую через море от Дувра в Кале, а затем обратно в земле под водой от Кале к Дувру, то эта линия охватит круг проводящей массы, часть которой пересекает магнитные кривые земли, пока вода течёт по каналу вверх и вниз, а другая часть остаётся в относительном покое. Имеется основание полагать, что по главному направлению описанной линии будут итти токи в том или другом направлении, в зависимости от того, будет ли вода по каналу течь вверх или вниз».

Поэтому с полным правом ту формулировку закона электромагнитной индукции, в которой речь идёт о возникновении индукции при пересечении проводником магнитных силовых линий, называют фарадеевской. Из первых двух серий его «Исследований» она вытекает со всей ясностью и простотой. Но, как уже отмечалось, в той же первой серии содержатся мысли, подводящие его к исследованиям, составляющим содержание третьей серии. Представим себе процесс обычной электрической индукции. Пусть мы имеем шар А, заряжаемый от электрической машины положительным электричеством. Тогда в соседнем изолированном шаре В начинается движение электричества в том же направлении, шар электризуется через индукцию так, что на ближайшем конце его будет заряд обратного знака (рис. 210).

Аналогичным образом, по Фарадею, обстоит дело и при вольта-электри-ческой индукции. Если замкнуть цепь индуцирующего контура так, чтобы ток шёл в направлении от.А к В, то в индуктируемом контуре появится ток в направлении от В к А, составляющий продолжение тока от А к В. Отсюда, говорит Фарадей, «явствует, что индукционные действия, вызываемые вольта-электричеством, до известной степени сходны с таковыми, вызываемыми электричеством напряжения» (т. е. статическим). Таким образом Фарадей полагал, что в открытом им явлении вольта-электрической индукции имеется свидетельство в пользу воззрения о единстве электрических сил. С другой стороны, он отмечал, что между электростатической индукцией и вновь открытыми им вольта-электрической и магнитно-электрической индукциями имеется и различие. Это различие проявляется в том, что новое индукционное состояние временное. Электростатический индукционный заряд сохраняется всё время, пока рядом находится влияющий заряд, новая же индукция, как неоднократно отмечает Фарадей, носит характер волны. В связи с этим Фарадей развивает мысль о новом так называемом «электротоническом» (т. е. электровозбуждённом) состоянии материи.

«Когда проволока находится под действием вольта-электрической или магнито-электрической индукции, она находится в особом состоянии, так как противодействует образованию в ней электрического тока, в то время как при обычных условиях индукции такой ток должен был бы возникнуть. При прекращении указанного особого состояния проволока обладает способностью возбуждать ток - способностью, которой она не обладает в обычном своём состоянии…»

«Это особое состояние есть, повидимому, состояние напряжения и может быть рассматриваемо, как эквивалентное току электричества, по крайней мере равное тому току, который получается, когда это состояние индуцируется или прекращается…»

«…Напряжение этого состояния, по всей вероятности, очень велико, но независимо от его величины трудно себе представить, чтобы наличие такого напряжения оказалось бы без влияния на первоначальный индуцирующий ток и не вызвало бы какого-либо рода равновесия…»

«…электротоническое состояние относится не к массе, а к частицам индуцируемой проволоки или вещества и в этом отличается от индукции, производимой статическим электричеством. Если это верно, то это состояние может приниматься жидкостями и даже непроводниками без видимого наличия электрического тока; возникновение же тока является как бы случайностью, обязанной своим существованием проводящей способности моментального характера - движущей силе, обусловленной новым расположением частиц…»

«…В электротоническом состоянии однородные частицы материи принимают правильное расположение в направлении тока, навязанное им электрическими силами. Если материя неразложима, это приводит по освобождении от электрических сил к возникновению обратного тока; в случае же разложимой материи это насильственное состояние может стать достаточным для того, чтобы заставить одну элементарную частицу оставить ту частицу, с которой она насильственно соединена, и соединиться с соседней такой же частицей, с которой она находится в более нормальных отношениях; тем самым насильственное электрическое расположение оказывается разряжённым или освобождённым от электрических сил так же эффективно, как при прекращении индукции. Но так как вольтаический ток продолжается, то электротоническое состояние моментально возобновляется и вызывает насильственное расположение составных частиц, а затем так же мгновенно разряжается благодаря переносу противоположных элементарных частиц в противоположных, но параллельных току направлениях».

Так намечается очередная программа исследований: доказательство идентичности электричеств, электропроводность и химическое разложение жидкостей током, самоиндукция, роль вещества в электромагнитных процессах. А учение об электротоническом состоянии явилось тем зерном, из которого развились взгляды Фарадея об электромагнитном поле, конкретизируемом им с помощью представления о физических трубках сил.

Работы Фарадея об идентичности электричеств, составляющие содержание третьей серии «Экспериментальных исследований», подводили его к актуальным проблемам того времени: природа тока, механизм проводимости, происхождение электрического напряжения. В этих вопросах господствовала путаница и разноголосица мнений. Так, например, считалось, что действие гальванических элементов на замыкающие их провода заключается в приведении частиц провода в особое расположение, что и обусловливает соответствующие эффекты в проводах. С этой точки зрения роль полюсов источника заключалась в том, что они являются центрами сил, действующих на частицы проводников или на электрические жидкости. Примером такого представления является теория Гротгуса (1785-1822) о механизме разложения воды. Молекула воды, по Гротгусу (рис. 212), обладает электрическими полярными свойствами: водород электроположителен, кислород электроотрицателен. Под действием полюсов молекулы располагаются таким образом, что электроотрицательный кислород повернётся к положительному полюсу, электроположительный водород - к отрицательному полюсу. Ближайший к положительному полюсу кислород притянется этим последним, молекула воды расщепится, и освободившийся водород соединится с кислородом соседней молекулы, водород этой последней соединится с кислородом следующей и т. д., водород молекулы, находившийся у отрицательного полюса, выделится на этом полюсе. После этого все молекулы поворачиваются на 180°, и процесс начинается снова. Конечно, в итоге такого процесса получается движение ионов.

Фарадей показал, что представление о создании такого расположения частиц в проводниках не соответствует опытным данным. Установив симметрично две вольтовые батареи NP и N’P’, он соединил два соседних полюса N’ и Р, оставив противоположные полюсы N и Р’ изолированными. Магнитная стрелка, помещённая над соединительным проводом N’P, не отклонялась. Но она немедленно испытывала отклонение, если соединить полюсы N и Р’. «Если предположить, - заключает Фарадей, - что действие банок (т. е. батарей) заключается лишь в том, что они возбуждают в проводах особое распределение их частиц или заключённого в них электричества, и если бы магнитное или электрическое состояние исчерпывалось этим расположением, то состояние расположения в проводе N’P до соединения Р’ и N и

после такового должно было быть одинаковым и стрелка должна была бы испытать отклонение также и в первом случае, хотя возможно и более слабое, например, лишь половину того, которое наблюдается при полном замыкании. Если же предположить, что магнитные действия зависят от тока, тогда становится ясным, что они не могли быть возбуждены до замыкания, ибо до замыкания ток отсутствовал».

Но что же такое ток?

«Под током, - говорит Фарадей, - я разумею нечто распространяющееся, будь то электрический флюид или два движущиеся в противоположных направлениях флюида, или только колебания, или, выражаясь ещё более обще, распространяющиеся силы. Под расположением я понимаю местное, не прогрессирующее распределение частиц, жидкостей или сил».

Обратим внимание, в каких общих и осторожных выражениях Фарадей определяет ток. Для него ясно одно, что ток это динамический, прогрессирующий процесс, а не статика. Но состоит ли этот процесс в движении электрической жидкости, или это процесс передачи сил в пространстве, этот вопрос он пока оставляет открытым. Впоследствии он будет высказываться в пользу второй гипотезы, для него ток - ось сил.

Что же касается существа исследования, то вывод Фарадея вполне определён: «все виды электричества, независимо от источника их получения, идентичны по своей природе». Различные формы электричества (в соответствии с различными способами его возбуждения) «по существу однородны и различаются лишь по степени и в этом отношении варьируют, в зависимости от изменяющихся условий количества и интенсивности, которые могут быть по желанию изменены почти для каждого вида электричества в той же степени, как мы это наблюдаем между различными видами». Результаты своих исследований Фарадей свел в таблицу, которая показывает, что различные проявления электрических сил могут быть получены при любом способе возбуждения этих сил. Пустые места означают, что соответствующий эффект пока не был наблюдён, но сделанное Фарадеем примечание свидетельствует о его глубокой убеждённости, что соответствующи эффект будет получен при достаточно мощных источниках. Вот эта таблица:

Итак, качественно почти все явления наблюдаются одинаково у всех видов электричества. Различие только в количественном отношении, и Фарадей желает установить количественное отношение между обыкновенным (т. е. статическим) и вольтовым электричеством. Но для этого надо было найти рациональную меру для измерения электричества. Химические и магнитные действия представляются ему наиболее подходящими для этой цели. Проделанные им опыты приводят его к выводу, что «химические, равно как и магнитные силы, прямо пропорциональны абсолютному количеству прошедшего электричества».

Так был сформулирован первый закон Фарадея для электролиза. Количественные измерения позволили Фарадею установить, что статическое электричество - это электричество высокого напряжения и малой силы, в гальваническом электричестве соотношение обратное. Так, гальванический элемент, изготовленный из платиновой и цинковой проволочек диаметром в 1/6 дюйма, опущенных в подкисленную воду (капля серной кислоты на унцию воды) на глубину 5/8 дюйма, с взаимным расстоянием 5/16 дюйма, даёт за 6 секунд такое же количество электричества, которое получается при 30 оборотах сильной электростатической машины. Для разложения одного грана (= 0,065 г) воды требуется такое же количество электричества, которое способно зарядить большую лейденскую банку 800 000 раз.

Четвёртая серия «Экспериментальных исследований» посвящена вопросу электропроводности твёрдых тел и жидкостей. Различие между проводниками первого и второго рода было известно уже Вольту. Исследования Фарадея по проводимости явились подготовительными к будущим его электрохимическим исследованиям, но они же были первым шагом в формировании его основоположного воззрения о роли среды в физических взаимодействиях. Между прочим, в своих исследованиях Фарадей пришёл к выводу, что жидкости, кроме «электролитической» проводимости, имеют и «металлическую» проводимость. Эти наблюдения Фарадея до последнего времени считались не подтвержденными. Открытие твердых полупроводников поколебало представление о резкой грани между ионной и электронной проводимостью.

Изучению электролиза посвящены пятая и седьмая серии «Экспериментальных исследований». Здесь Фарадей прежде всего показывает, что источники статического электричества, лейденская банка и электростатическая машина также могут вызывать химическое разложение, как и гальваническое электричество. На основании своих опытов он полагает, что представление о внешней причине (притяжение полюсов), вызывающей химическое разложение молекул, несостоятельно. Основным физическим моментом является среда, масса электролита. Ток является осью сил, заполняющих эту среду. «Электрическое разложение обусловливается внутренним корпускулярным притяжением в телах, действующим в направлении электрического тока, и производится силой, которая либо притекла со стороны, либо только даёт направление присущему телам химическому сродству. Разлагаемое тело можно рассматривать как массу действующих частиц, из которых все, входящие в сферу влияния тока, принимают участие в процессе…

По моему мнению, эти действия производятся внутренними силами в теле, разлагаемом током, а не внешними силами, как можно было бы думать, если бы они были сосредоточены на полюсах…»; Если вдуматься в приведенную цитату, то можно видеть, насколько глубокими и проницательными были идеи Фарадея. «Замечательно, что Faraday, открывший законы электролиза, ничего нового не высказал по вопросу о механизме этого явления»,-высказывается проф. Хвольсон в своём известном курсе физики. Но как раз замечательно другое, что Фарадей впервые высказал идею не о внешнем разложении полюсами, а о внутреннем полярном разложении частиц. Идея поляризационного смещения, идея силового поля, действующего по определённому направлению, - все это существенно новые идеи, высказанные здесь Фарадеем. Они развивались и совершенствовались, но основное их содержание не изменялось. Законы электролиза Фарадея не стоят особняком в цепи его исследований и не противоречат его основным физическим воззрениям. Учитывая роль среды в физических взаимодействиях, фарадей мыслит о её структуре, и не случайно, что из воззрений Фарадея развилась не только физика поля, но и электронная теория.

В соответствии со своими воззрениями на электролиз, как на внутренний процесс, Фарадей считает существенно необходимым изменить номенклатуру обозначений. Полюса, подводящие ток к жидкости (её Фарадей называет электролитом - электрическим раствором), являются истоками и стоками линий электрического тока, воротами электрического процесса. Их Фарадей обозначает электродами («пути электричества»). Полюс, на котором выделяется кислород (идущие вверх частицы), называется анодом, полюс, на котором выделяется водород (идущие вниз частицы), называется катодом. Сами движущиеся частицы называются соответственно анионом и катионом, вообще - ионами. Эта номенклатура не сразу завоевала признание, но в настоящее время она общеупотребительна. Заметим, что Фарадей избегает терминов положительное и отрицательное электричество.

По воззрениям Фарадея, электролитическое действие «происходит от видоизменения химического средства в частицах, вызываемого электричеством; видоизменение состоит в том, что химическое сродство действует в одну сторону сильнее, чем в другую, и этим заставляет частицу переходить через новый ряд соединений и разложений в противоположном направлении и наконец на границе разлагаемого тела её выталкивает наружу».

В результате своих исследований Фарадей нашёл первый закон электролиза и установил пропорциональность количества вещества, выделенного при прохождении единицы электричества, химическому эквиваленту вещества. Этот важный закон впервые указал на дискретность электрического заряда, т. е. явился основой электронной теории. Принято считать, что вывод из закона Фарадея о дискретности электричества был сделан впервые Гельмгольцем в его фарадеевской речи, произнесённой в 1881 г. Но на самом деле уже Максвелл в своём «Трактате по электричеству и магнетизму» говорил о молекуле электричества. Однако, кого бы ни считать первым, высказавшим идею об атоме электричества, следует признать, что эта идея возникла из открытий Фарадея.

Электрохимические исследования Фарадея заставили его подойти вплотную к сложному и запутанному вопросу о связи химических сил и электричества, о споре контактной и химической теорий вольтова столба. Этому вопросу посвящены восьмая, шестнадцатая и семнадцатая серии «Экспериментальных исследований».

Спор шёл в то время о природе источника электрического напряжения в вольтовом столбе. Сторонники контактной теории утверждали, что электрическое напряжение, разделение электричества возникает всегда при контакте разнородных веществ и представляет собой первичное явление. Наоборот, сторонники химической теории (Де-ля-Рив, Беккерель) полагали, что разделение электричества при контакте представляет собой вторичное явление, результат химической реакции соприкасающихся веществ. Они указывали, что не может быть сухого соприкосновения разнородных металлов, поверхность соприкосновения гигроскопична и в жидкой плёнке действуют химические силы. Этот спор из важного, но по существу частного вопроса о природе контактной разности потенциалов превращался в общий принципиальный вопрос о превращении физических сил, о природе химических сил. Так, например, видный химик Берцелиус утверждал, что химические силы электрической природы являются результатом электрических притяжений и отталкиваний частиц.

Фарадей не мог согласиться с такой постановкой вопроса, у него были свои взгляды на природу электрических взаимодействий, которая определялась средой. Кроме того, его твёрдое убеждение в вечности, неразру-шимости физических сил не позволяло ему мириться с существованием

«Контактная теория принимает, что сила, способная преодолеть столь большие сопротивления, как, например, сопротивление хороших и дурных проводников прохождению через них тока, и сопротивление электрического действия, дающего разложение тела, что подобная сила может возникнуть из ничего; далее, что без всякого изменения в действующих веществах, без всякой затраты движущей силы образуется ток, который непрерывно продолжается, несмотря на постоянное сопротивление, или же, как в вольтовых элементах с разложением, может быть прекращён только теми продуктами распада, которые он сам накопит на своём пути. Это было бы действительно созданием двигательной силы из ничего в отличие от всякой другой силы природы.

Есть много процессов, при которых внешняя форма силы изменяется настолько, что происходит видимое превращение одной силы в другую. Так, мы можем превратить химические силы в электрический ток или последний в химическую силу. Прекрасные опыты Зеебека в Пельтье показывают взаимный переход теплоты и электричества, а из других опытов, Эрстеда и моих, вытекает взаимная обратимость электричества и магнетизма. И нет такого случая, не исключая даже электрического угря и ската, где бы сила была создана или получена без соответственной затраты чего-либо другого».

Если отвлечься от двусмысленного, неясного термина «сила», то можно ли отчётливее выразить идею сохранения и превращения энергии? Гений Фарадея нашёл возможность найти в удручающем потоке фактов и теорий то руководящее начало, которое позволило физикам и химикам установить правильную точку зрения как в данном вопросе, так и других конкретных задачах. В ту пору, когда ещё так смутны и неясны были представления о силе, о химическом сродстве, наконец о самом электричестве, важно было найти такую руководящую нить. И, действительно, вскоре другу Фарадея, химику Шенбейну, открывшему озон, удалось установить компромиссную точку зрения, сводящуюся к тому, что в гальваническом элементе при соприкосновении различных веществ возникает напряжение, следствием которого являются химические реакции в замкнутой цени, доставляющие энергию тока. Эта точка зрения и легла в основу гельмгольцевской теории гальванического элемента.

В то время Фарадей работал над электрохимическими процессами, были сделаны наблюдения, расширяющие область индукционных явлений. В 1834 г. Дженкин (и почти одновременно Массон) заметил усиление электрической искры при размыкании тока, если провод свить в спираль и вставить в неё железный сердечник. Чем длиннее провод и чем больше число витков, тем сильнее искра. Но удлинение провода означало увеличение сопротивления, что должно повлечь за собой ослабление тока, а следовательно, и уменьшение искры. Оба наблюдателя считали свой эффект противоречащим закону Ома и загадочным. Фарадей правильно усмотрел в новом явлении частный случай индукции и доказал существование экстратоков. Исследованию самоиндукции посвящена девятая серия «Экспериментальных исследований», вышедшая вместе с десятой серией в 1835 г., после чего в работе Фарадея наступил более чем двухлетний перерыв, вызванный сильным переутомлением.

Классическими опытами, которые и поныне воспроизводятся на школьных демонстрациях, Фарадей доказал, что при размыкании экстраток имеет то же направление, что и основной ток, при замыкании он противоположен. Существование экстратоков снова вернуло его к идее электротонического состояния. «Я не могу сопротивляться впечатлению, что существует какой-то связанный и соответствующий эффект». Роль среды, окружающего пространства занимает его мысли. И после длительного перерыва он начинает одиннадцатую серию своих «Исследований» классическими опытами по электрической индукции.

Мы знаем, что факт электростатической индукции послужил основой для эшшусовской теории дальнодействия. Мы знаем, далее, что в законе Кулона роль среды в электрических взаимодействиях игнорируется. Правда, Кэвендиш впервые обнаружил влияние среды в электростатических явлениях, но его опыты по электричеству не были опубликованы. Поэтому исторически понятие диэлектрика было введено впервые Фарадеем.

Фарадеевские исследования электрической индукции знаменательны в двух отношениях. Здесь Фарадей открыто порывает с точкой зрения actio in distance и переносит центр физического исследования на среду. С другой стороны, в Зтих исследованиях живо чувствуется влияние «Писем» Эйлера. Воззрение на электричество как на некоторую модификацию эфира, проводимое Эйлером в этом сочинении, развивается Фарадеем дальше. Но так как воззрения Эйлера примыкали к ломоносовским, то можно установить замечательную преемственность: Ломоносов-Эйлер - Фарадей. Отметим, что «Письма к немецкой принцессе» Эйлера были одной из книг, оказавших сильное влияние на молодого Фарадея.

Представление о некоторой деформации в частицах среды поляризационного характера отмечается уже вл первых исследованиях Фарадея по электропроводности. Это поляризационное состояние теперь Фарадей распространил и на эфир. Наэлектризованное тело приводит окружающее пространство в особое состояние, в результате чего через любую замкнутую, поверхность, окружающее тело, смещается электричество в количестве, равном заряду тела. С помощью замкнутой проводящей полости можно обнаружить такое смещение, а именно (теорема Фарадея): если внутрь замкнутой проводящей полости поместить наэлектризованные тела, то на внутренней стороне полости индуктируется заряд, противоположный по знаку заряду наэлектризованных тел и равный ему по величине, на внешней стороне индуктируется равный и одноименный заряд. Расположение зарядов внутри полости не играет никакой роли. Заземление оболочки приводит к защите внешнего пространства от действия внутренних зарядов.

Эта теорема иллюстрируется известным опытом с цилиндром Фарадея. Если в металлический цилиндрический сосуд А поместить наэлектризованное тело С, изолированное от стенок сосуда, то электроскоп, соединённый с цилиндром, показывает один и тот же заряд независимо от положения С. С может находиться в Соприкосновении с внутренней стороной цилиндра, тогда после его изъятия листочки электроскопа остаются в прежнем положении, само же тело С оказывается незаряженным (рис. 215).

Это смещение, деформация частиц эфира, распространяется по кривым линиям. Фарадей показал это следующим опытом (рис. 216). Над наэлектризованным цилиндром был помещён металлический диск. В различных участках за этим диском f, g, h помещался пробный шарик. В ближайшей к цилиндру точке f заряд не индуктировался, но в g и h индукционный заряд можно было обнаружить. С точки зрения действия на расстояние следовало бы заключить о непосредственной передаче по прямым линиям и, следовательно, ожидать электризации в f. Поэтому Фарадей из факта экранирующего действия проводников (которое он продемонстрировал еще эффектным опытом с клеткой) сделал вывод о невозможности actio in distance, о роли среды. Для того чтобы исследовать влияние среды, фарадей изготовил сферические конденсаторы, названные им аппаратами распределения. Внешняя обкладка конденсатора состояла из двух металлических полусфер. Внутренний шар подвешивался на проволоке, окружённой сургучом. Пространство между обкладками можно было соединять с воздушным насосом, заполнять различными газами, а также заполнять жидкими изоляторами или расплавленными твёрдыми (серой, шеллаком). Один из таких конденсаторов заряжается и приводится в соприкосновение с другим. Если промежуточная среда одинакова, то заряд распределяется поровну. Иное будет, «ели один аппарат имеет воздушную прослойку, а другой - наполовину заполнен шеллаком. При одинаковых потенциалах внутренних обкладок (внешние заземлены) заряд распределится не поровну, ёмкость конденсатора с шеллаком увеличится. Различные тела обладают, как выражается Фарадей, различной индуктивной способностью. Вещества, способные передавать индукционные действия, он назвал диэлектриками. К диэлектрикам относится и чистый эфир. Диэлектрики, по Фарадею, являются носителями электрического состояния. Если удалить обкладки конденсатора и привести во взаимное соприкосновение (опыт с разбррным конденсатором), а затем вновь собрать конденсатор, то обкладки вновь зарядятся: диэлектрик сохранял своё поляризационное состояние.

Существенную роль диэлектрика Фарадей демонстрирует и таким классическим опытом. Пусть две металлические пластинки А и С соединены с золотыми листочками а и b. Соединим на мгновение А и С с землей и поместим посередине между ними заряжённую пластинку В. Тогда стороны А и С, обращённые к В, зарядятся вследствие индукции одинаково, и листочки а и b остаются в покое. Но если между А и С поместить диэлектрическую пластинку, симметрия нарушается, листочки а и b притягиваются (рис. 218).

Влияние среды должно иметь место во всех электрических явлениях, и вгчастности в электрическом разряде. Форма и характер разряда существенно зависят от промежуточной среды, химической природы газа, его давления, температуры. Фарадей начал изучение газового разряда, и его именем названо открытое им тёмное пространство в светящемся под действием разряда разреженном газе.

«Два латунных стержня в 0,3 дюйма толщины были введены с противоположных сторон в стеклянный шар до взаимного соприкосновения, воздух в шаре был сильно разрежен. Через стержни был пропущен электрический разряд из машины, и во время прохождения концы стержней были отделены друг от друга. В момент отрыва на конце отрицательного стержня появилось длительное свечение, между тем как положительный оставался совершенно тёмным. При увеличении расстояния на конце положительного стержня появился пурпуровый сноп или туман, направлявшийся прямо к отрицательному стержню. С увеличением промежутка этот сноп удлинялся, но никогда не доходил до соприкосновения с отрицательным свечением - между ними постоянно оставался короткий тёмный промежуток».

«… Разьяснение этих явлений, было бы очень важно»-, - указывает Фарадей. «Если смотреть на эти явления, как на дальнейшее доказательство того, что основания распределения и разряда, следует искать в состоянии частиц диэлектрика, то было бы крайне важно знать в точности, в чём заключается различие действия в тёмных и светлых частях».

Итак, различные случаи электрических процессов приводят фарадея к выводу, что причину этих процессов следует искать во внутреннем состоянии частиц диэлектрика или проводника. Природа электрических сил - не дальнодействие, а близко действие. Таков, по мнению Фарадея, характер всех центральных сил. Но так называемые «поперечные» силы, т. е. силы взаимодействия токов, силы их магнитного поля, не зависят от свойств промежуточной среды. По крайней мере попытки фарадея обнаружить такое влияние успеха не имели: «…поперечная сила распределения токов, тоже способная действовать на расстояние, не распространяется таким же образом (т. е. как электрическая) через посредство промежуточных частиц». Всё же Фарадей полагает «возможным и даже вероятным, что магнитное действие передается на расстояние через посредство промежуточных частиц».

Однако ближайшие исследования Фарадея не имеют целью доказать это положение и посвящены доработке вопроса об источниках электричества. Четырнадцатая серия доказывает тождественность электричества рыб с электричеством других источников. Шестнадцатая и семнадцатая серии посвящены вольтову столбу. В восемнадцатой серии Фарадей исследует природу открытого Армстронгом явления электризации паровой струи, вырывающейся из предохранительного клапана. Фарадей пришёл к выводу, что причиной такой электризации является трение частиц пара о стенки выводной трубки, причём конденсированные частицы заряжаются положительно, а стенки котла отрицательно.

Семнадцатая серия появилась в 1840 г., восемнадцатая - в 1843 г. Казалось, что период творческого подъёма прошёл, и жалобы Фарадея на переутомление звучат чаще и чаще. Но намеченная им программа: доказать единство и взаимную превратимость сил природы, доказать универсальность мировой среды - эфира, ещё не выполнена. В 1845 г. он возвращается к ней и ищет влияния магнетизма на свет. К этому времени, работая над маяками, Фарадей исследовал и перепробовал много сортов стекла. Ему пришла в голову мысль исследовать влияние магнитного поля на поляризованный свет.

Пучок света, поляризованный отражением от стеклянной поверхности, проходит через испытуемое стекло и затем через николь. Установив николь на темноту, подвергают стекло действию электромагнита: поле становится освещённым, и, чтобы получить вновь темноту, необходимо было повернуть николь на некоторый угол.

Так было открыто магнитное вращение плоскости поляризации. Сообщение об этом новом эффекте помещено в девятнадцатой серии «Экспериментальных исследований» под характерным названием «О намагничивании света и освещенности магнитных линий сил». Наиболее сильно вращало плоскость поляризации кремнеборное стекло, затем стекло с борнокислой окисью свинца. Так Фарадей открыл действие магнита на свет.

Теперь Фарадей уже с большой уверенностью ищет доказательства влияния среды на магнитные взаимодействия. Насколько трудно было получить надёжный результат, можно судить по такой исторической справке. В 1802 г. Кулон опубликовал сообщение, что ему удалось наблюдать намагничивание дерева и других материалов. Испытуемый образец имел форму иглы длиной 7-8 мм и диаметром 3/4 мм (для металлов 1/4 мм) и подвешивался на тонкой шёлковой нити между двумя магнитами, обращёнными друг к другу разноимёнными полюсами. Однако выяснилось, что намагничивание было обусловлено присутствием железных частиц.

Как мы уже упоминали выше, попытки Фарадея обнаружить намагничивание различных веществ не увенчались успехом. В новых опытах Фарадей использовал сильный электромагнит. Кусок тяжёлого стекла, подвешенный перед полюсом электромагнита, отталкивался последним. Изготовив из того же стекла стержень и поместив его между полюсами, он нашёл, что стержень располагается перпендикулярно силовым линиям, т. е. не по оси, а по экватору. Так был открыт диамагнетизм. Вместе с тем ему удалось установить, что многие тела, считавшиеся немагнитными, как, например, платина, палладий, сургуч и др., намагничиваются и располагаются аксиально, вдоль силовых линий. Эти вещества были названы парамагнитными. Исследованию новых магнитных действий посвящены серии двадцатая и двадцать первая.

Какова причина столь полярно-противоположного поведения тел? Фарадей полагает, что разницу надо искать не в самих телах, а в их отношении к окружающей среде. Отсюда его интерес к изучению магнитных свойств газов и пламени (серии XXI и XXXI). Идею этих опытов можно уяснить из более поздних экспериментов по магнетизму жидкостей.

В последующих пунктах Фарадей считает необходимым ещё раз разъяснить существо своей точки зрения на природу магнитных взаимодействий и её отношение к другим воззрениям на тот же предмет:

«3301. В настоящее время существуют две или, скорее, три общие гипотезы о физической природе магнитной силы. Первая - гипотеза эфира, ведущая за собой представление об эфирных токах. Она изложена в простой форме Эйлером в его «Письмах», предназначенных для физика без математической подготовки. Согласно этой гипотезе магнитный флюид или эфир движется потоком через магниты, а также вещества и пространства, их окружающие. Затем существует гипотеза двух магнитных флюидов, присутствующих во всех магнитных телах и собирающихся на полюсах магнита, где они притягивают и отталкивают частицы обоих флюидов на расстоянии и, таким образом, вызывают притяжения и отталкивания тел, содержащих эти флюиды и находящихся на расстоянии друг от друга. Наконец, имеется гипотеза Ампера, которая предполагает существование электрических токов вокруг частиц магнитов. Токи эти, действуя на расстоянии на другие частицы, содержащие такие же токи, упорядочивают расположение частиц в массах, к которым принадлежат частицы, делая таким образом эти массы способными к восприятию магнитного действия. Каждая из этих идей в большей или меньшей степени варьируется различными физиками, но для моих целей достаточно этих трёх основных гипотез. Моё физико-гипотетическое представление не заходит так далеко, как вторая и третья из этих гипотез, ибо оно не занимается вопросом о возникновении или поддержании магнитной силы в магните. Моя гипотеза совпадает скорее с первой, хотя и не идёт так далеко. Принимая магнит за центр силы, окружённой силовыми линиями, которые в качестве представителей силы получили уже математическое обоснование и оправдание (Фарадей имеет в виду исследования В. Томсона, показавшего в ряде статей что метод силовых линий с успехом может быть применён для математического описания электростатических явлений.), она рассматривает эти линии, как физические (курсив Фарадея) линии сил, существенно необходимые как для существования силы внутри магнита, тай и для передачи её магнитным телам на расстоянии. Сторонники теории эфира могут рассматривать эти линии как токи или распространяющиеся вибрации, или стационарные колебания, или же, наконец, как состояния напряжения. По многим соображениям их необходимо считать существующими вокруг провода, несущего электрический ток, как и в том случае, когда они исходят из магнитного полюса».

Фарадей считает, далее, что необходимо поставить вопрос «об истинном, но неизвестном, естественном, магнитном действии». «Нам нужно, - указывает он, - не множество различных методов представления сил, но единственно истинное физическое выражение как того, что раскрывают нам явления, так и законов, управляющих последними». При этом Фарадей полагает, что «из принятых в настоящее время гипотез - гипотезы флюидов и гипотезы токов - какая-либо одна должна быть неверна, а быть, может и обе». Своё убеждение Фарадей обосновывает указанием на то, что «ни одна из этих концепций не могла привести к открытию явления диамагнетизма и, как я думаю, явления магнитного вращения света». Таким образом, неплодотворность этих гипотез, которые в лучшем случае могли описать уже известные факты, но не стимулировали поисков новых эффектов, - вот в чём, по Фарадею, заключается их основной порок. И это, конечно, правильно.

Фарадей, руководствуясь своими воззрениями, открыл столько нового, что он не мог не выработать убеждения, что в них отражается вернее и глубже, чем в старых воззрениях, сущность природы. Опыты Фуко, только что принесшие победу волновой теории света, внушали ему надежду, что «толь же успешно может быть решена задача об истинной сущности магнитных явлений. Фарадей уподобляет магнит Солнцу, магнитные линии - световым лучам и считает, что отсюда возможен экспериментальный подход. Он писал:

«… бесспорно станет вопрос о наивозможно широком рассмотрении этой проблемы с точки зрения чисто физической, ибо если предположить существование физических линий магнитной силы, соответствующих (в смысле своего реального существования) световым лучам, то не представляется столь невероятным, что к ним можно будет подступиться экспериментальным путём. Разрешение вопроса об их существовании чрезвычайно важно, тем более что есть все основания надеяться на положительный ответ. Поэтому я предполагаю, не выдвигая никаких физических гипотез о природе магнита, кроме того, что было мною сказано в п. 3299, снова обратить внимание экспериментаторов, в несколько, правда, несвязной форме, на этот вопрос как с точки зрения недостаточности современных физических взглядов, так и с точки зрения возможного существования линий физических сил. Я ограничу свои замечания немногими пунктами, как-то: полярность, двойственность и т. д. В своей попытке я исхожу из следующих соображений:

1. Подтверждение математиками правильности представления о направлении и количестве магнитной силы при помощи абстрактных силовых линий.

2. Успешное применение этих линий во многих случаях мной лично (п. 3174).

3. Наблюдаемая аналогия между магнитной силой и другими двойственными силами как в статическом, так и динамическом состоянии, в особенности же аналогия между магнитом и вольтовой батареей или другим постоянным источником электрических токов.

4. Идея Эйлера о магнитных эфирах или циркулирующих флюидах.

5. Высказанное сэром Исааком Ньютоном твёрдое убеждение в том, что даже сила притяжения не может произвести действия на расстояние без посредства какого-либо агента, играющего роль физической линии силы.

6. Пример борьбы между двумя теориями света и разрешение этого вопроса экспериментальным путём».

Это замечательное «завещание» Фарадея послужило программой для работ Максвелла и последующей плеяды великих физиков - Герца, Лебедева, Попова и других. К сожалению, мало обращалось внимания на идейные корни воззрений Фарадея (за исключением п. 5, где Фарадей говорит о Ньютоне, в связи с чем очень часто вспоминают о «нематериальном агенте») и на его отношение к современной ему идейной борьбе в физике. Мы ещё раз отмечаем здесь, что Фарадей определенно указывает на происхождение своих воззрений от Эйлера, а следовательно (о чём, конечно, он сам не знал) и от Ломоносова. Мы отметим здесь, что Фарадей следил за перипетиями великого спора о природе света и что его симпатии были не на стороне ньютонианцев. Более того, победа волновой теории дала возможность Фарадею надеяться и на победу его теории, его физических воззрений.

краткое содержание других презентаций

«Александр Попов» - Попов был Почётным инженером-электриком (1899) и почётным членом Русского технического общества (1901). С 1901 года Попов - профессор физики Электротехнического института императора Александра III. Попов скоропостижно скончался 31 декабря 1905 (13 января 1906). Похоронен на Волковском кладбище в Санкт-Петербурге. Александр Степанович Попов. В 1871 году Александр Попов перевёлся в Екатеринбургское духовное училище.

«Правила магнитного поля» - Для наглядного представления магнитного поля мы пользовались магнитными линиями. Определение силы Ампера. Для изображения магнитного поля пользуются следующим приемом. То отставленный на 900 большой палец покажет направление действующей на проводник силы. Правило левой руки. Правило правой руки для проводника с током. Правило правой руки. Краткий справочник школьника. «Физика». Сила, действующая на заряд. Такое поле называют неоднородным.

«Колебательное движение 9 класс» - Какие колебания называются свободными? T = 2 П?L / g. Тема « Механические колебания» 9 класс. Математический маятник. Повторение пройденного. Какие системы тел называются колебательными? Какое движение называется колебательным? Что является главным отличием колебательного движения от других видов движения? Какие виды колебаний вы знаете?

«Отражение света 9 класс» - Второй. Введем несколько определений. По приведенным рисункам постройте углы отражения. Закрепление. Проделаем опыт. В темноте мы увидим падающий и отраженный пучки света. Пучок света, падающий на поверхность, отражается ею во всех направлениях. Угол падения луча 50°.

«Физика Термоядерные реакции» - Проблема: трудно удержать плазму. Что такое термоядерная реакция? Термоядерная реакция. «Термоядерная реакция» Выполнила: Сорочинская Александра 9 «а» класс. Управляемая термоядерная реакция - энергетически выгодная реакция. Подробно о реакции. Самоподдерживающиеся термоядерные реакции происходят в звездах. ТОКАМАК (тороидальная магнитная камера с током). Презентация по физике на тему.