Измерение длины отрезка. Отрезок

На практике часто приходится измерять отрезки, т. е. находить их длины.

Измерить отрезок - это значит сравнить его с некоторым отрезком, принятым за единицу измерения (его называют также масштабным отрезком).

АВ = 2 см; АС = 3,4 см

Если, например, за единицу измерения принят сантиметр, то для определения длины отрезка узнают, сколько раз в этом отрезке укладывается сантиметр. На рисунке 1 в отрезке АВ сантиметр укладывается ровно два раза. Это означает, что длина отрезка АВ равна 2 см. Обычно говорят кратко: «Отрезок АВ равен 2 см» - и пишут: АВ = 2 см.

Может оказаться, что отрезок, принятый за единицу измерения, не укладывается целое число раз в измеряемом отрезке - получается остаток. Тогда единицу измерения делят на равные части, обычно на 10 равных частей, и определяют, сколько раз одна такая часть укладывается в остатке. Например, на рисунке 1 в отрезке АС сантиметр укладывается 3 раза и в остатке ровно 4 раза укладывается одна десятая часть сантиметра (миллиметр), поэтому длина отрезка АС равна 3,4 см. Но возможно, что и взятая часть единицы измерения (в данном случае миллиметр) не укладывается в остатке целое число раз, и получается новый остаток. Так будет, например, с отрезком AD на рисунке 1, в котором сантиметр укладывается три раза с остатком, а в остатке миллиметр укладывается восемь раз вновь с остатком. В таком случае говорят, что длина отрезка AD приближенно равна 3,8 см. Для более точного измерения этого отрезка указанную часть единицы измерения (миллиметр) можно разделить на 10 равных частей и продолжить процесс измерения. Мысленно этот процесс можно продолжать и дальше, измеряя длину отрезка со все большей точностью. На практике, однако, пользуются приближенными значениями длин отрезков.

За единицу измерения можно принимать не только сантиметр, но и любой другой отрезок.

Выбрав единицу измерения, можно измерить любой отрезок, т. е. выразить его длину некоторым положительным числом.

Это число показывает, сколько раз единица измерения и ее части укладываются в измеряемом отрезке.

Если два отрезка равны, то единица измерения и ее части укладываются в этих отрезках одинаковое число раз, т. е. равные отрезки имеют равные длины. Если же один отрезок меньше другого, то единица измерения (или ее часть) укладывается в этом отрезке меньшее число раз, чем в другом, т. е. меньший отрезок имеет меньшую длину.

AC + CB = AB

На рисунке 2 изображен отрезок АВ. Точка С делит его на два отрезка: АС и СВ. Мы видим, что АС = 3 см, СВ = = 2,7 см, АВ = 5,7 см. Таким образом, АС + СВ = АВ. Также и во всех случаях, когда точка делит отрезок на два отрезка, длина всего отрезка равна сумме длин этих двух отрезков.

Длина отрезка называется также расстоянием между концами этого отрезка.

Пример 1. Точка С - середина отрезка АВ. Найти длину отрезка АС, если длина отрезка АВ равна 32 см.

Решение. Имеем: АС + СВ = АВ или АС + СВ = 32. Так как С - середина отрезка АВ, то АС = С В и, значит, 2АС = 32, откуда АС = 16 (см).

Пример 2. Точка С - середина отрезка АВ, точка О - середина отрезка АС. Найти АС, СВ, АО и ОВ, если АВ = 2 см.

Решение. Так как С - середина отрезка АВ, то, как и в предыдущем примере, АС = СВ = 1/2 АВ, или АС = СВ = 1/2 2 = 1 (см). Так как точка О - середина отрезка АС = 1 см, то АО= ОС = 0,5 см. Наконец, ОВ = ОС + СВ = 0,5 + 1 = 1,5 (см).

Пример 3. Лежат ли точки А, В и С на одной прямой, если АС = 5 см, АВ = 3 см, ВС = 4 см?

Решение. Если точки А, В и С лежат на одной прямой, то больший из отрезков АВУ ВС и АС равен сумме двух других. По условию больший из данных отрезков (отрезок АС) равен 5 см, а сумма двух других (АВ + ВС) равна 7 см. Поэтому точки А, В и С не лежат на одной прямой.

>>Геометрия: Измерение отрезков. Полные уроки

Измерение отрезков

Д.И. Менделеев писал: "Наука начинается с тех пор, как начинают измерять: точная наука немыслима без меры ".

Человек столкнулся с необходимостью измерений в глубокой древности, на раннем этапе своего развития – в практической жизни, в земледелии, строительстве своего жилья, дворцов своих властителей, храмов, в торговле. Людям потребовалось измерять расстояния, площади, объемы, веса, и, разумеется, время.

Первые единицы длины были весьма приблизительными. Они были связаны с размерами частей тела человека. В Англии и США до сих пор используются единицы длины "ступня " - фут (31 см), "большой палец " - дюйм (25,4 мм) и ярд (91 см.). Он был равен расстоянию от кончика носа короля Генриха I до конца пальцев его вытянутой руки. 1фут=12 дюймам.

Изучение в курсе математики школы величин и их измерений имеет большое значение в плане развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.

ВЕЛИЧИНА - это особое свойство реальных объектов или явлений, и особенность заключается в том, что это свойство можно измерить, то есть назвать количество величины, которые выражают одно и тоже свойство объектов, называются величинами одного рода или однородными величинами.
Например, длина стола и дли на комнаты - это однородные величины.
Величины - длина, площадь, масса и другие обладают рядом свойств.

  • Любые две величины одного рода сравнимы: они либо равны , либо одна меньше (больше ) другой. То есть, для величин одного рода имеют место отношения «равно », «меньше », «больше » и для любых величин и справедливо одно и только одно из отношений: Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем любой катет данного треугольника; масса лимона меньше, чем масса арбуза; длины противоположных сторон прямоугольника равны.
  • Величины одного рода можно складывать, в результате сложения получится величина того же рода. Т.е. для любых двух величин а и b однозначно определяется величина a+b, её называют суммой величин а и b. Например, если a-длина отрезка AB, b - длина отрезка ВС, то длина отрезка АС - с, есть сумма длин отрезков АВ и ВС. (Рис.1)
  • Величину умножают на действительное число, получая в результате величину того же рода. Тогда для любой величины а и любого неотрицательного числа x существует единственная величина b= x а, величину b называют произведением величины а на число x. Например, если a - длину отрезка АВ умножить на x= 2, то получим длину нового отрезка АС.(Рис.2)

(Рис.2)

  • Величины данного рода вычитают, определяя разность величин через сумму: разностью величин а и b называется такая величина с, что а=b+c. Например, если а - длина отрезка АB, b - длина отрезка BC, то длина отрезка ВС есть разность длин отрезков и АС и АВ. (Рис.1)
  • Величины одного рода делят, определяя частное через произведение величины на число; частным величин а и b-называется такое неотрицательное действительное число х, что а= х b. Чаще это число - называют отношением величин а и b и записывают в таком виде: a/b = х. Например, отношение длины отрезка АС к длине отрезка АВ равно 2. (Рис.2).

Длина отрезка определена единственным образом и является неотрицательным числом, равным расстоянию между его концевыми точками.
Сейчас самое время восстановить в памяти четыре определения, которые помогут нам понять способ измерения отрезков.

  1. Если точка A расположена на размеченной прямой, которая называется в этом случае "числовая прямая" (например линейка), то число, соответствующее этой точке, называется ее координатой.
  2. Расстояние между точками А и В на прямой - это модуль разности их координат.
  3. Длина отрезка, определенного A и B, есть модуль разности координат точек A и B.
  4. Два отрезка равны, если они имеют одинаковую длину.

Пусть дан отрезок AB. Если считать линейку частью числовой прямой и расположить AB вдоль линейки так, чтобы точка А совпала с нулем, то точка В будет расположена напротив числа, равного длине AB. Длина AB обозначается АВ.
Из определений Вам должно быть известно, что если ни один из концов отрезка не совпадает с нулем, то для вычисления длины отрезка необходимо найти модуль разности координат концевых точек.
При измерении длины отрезка мы предполагаем, что она определена единственным образом. То есть существует единственное число на числовой прямой такое, что если один из концов отрезка совместить с нулем, то второй совпадет с этим число Это предположение оправдано следующими аксиомами.
Расстояние между двумя точками A и B на числовой прямой определяется единственным образом.

Если один из концов данного отрезка совпадает с нулем, то координата второго определяется единственным образом.


Следующая аксиома позволяет нам складывать длины двух отрезков, чтобы получить длину третьего.


Если точка Q расположена между точками A и B, тогда сумма длин AQ и QB равняется длине AB.


Точка Р, лежащая между точками А и В, называется серединой отрезка AB, если АР = PB.
Середина отрезка единственна.

Измерить отрезок - это значит установить его длину в определенных единицах. Единицы измерения длины: миллиметр (мм), сантиметр (см), дециметр (дм), метр (м), километр (км). Между единицами длины (единичными отрезками) принято такое соотношение:

  • 1 см - 10 мм;
  • 1 дм - 10 см - 100 мм;
  • 1 м - 10 дм- 100 см- 1 000 мм;
  • 1 км - 1 000 м.

Наиболее распространенными инструментами для измерения длин отрезков являются: линейка (с разметкой в сантиметрах и миллиметрах ) и рулетка (с сантиметровой, дециметровой и метровой разметкой ). Для построения отрезков школьники применяют линейки с миллиметровой и сантиметровой разметкой.
Чтобы построить отрезок заданной длины, необходимо совместить точку начала отрезка и цифру 0 на линейке. Затем по шкале разметки на линейке надо найти длину отрезка и отметить точку конца отрезка. Начало и конец отрезка соединяют с помощью карандаша, не убирая линейки.
отрезок заданной длины

На этой линейке цифрами обозначено количество отрезков в сантиметрах (единичные отрезки в 1 см), мелкие деления - это единичные отрезки в 5 мм. Длина построенного отрезка - 50 мм, или 5 см 0 мм.

Кроссворд


По горизонтали:
1. Луч, делящий угол пополам.
4. Элемент треугольника.
5, 6, 7. Виды треугольника (по углам).
11. Математик древности.
12. Часть прямой.
15. Сторона прямоугольного треугольника.
16. Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

По вертикали:
2. Вершина треугольника.
3. Фигура в геометрии.
8. Элемент треугольника.
9. Вид треугольника (по сторонам).
10. Отрезок в треугольнике.
13. Треугольник, у которого две стороны равны.
14. Сторона прямоугольного треугольника.
17. Элемент треугольника.

Ответы:
По горизонтали:
1. Биссектриса.
4. Сторона.
5. Прямоугольный.
6. Остроугольный.
7. Тупоугольный.
11. Пифагор.
12. Отрезок.
15. Гипотенуза.
16. Медиана.

По вертикали:
2. Точка.
3. Треугольник.
8. Вершина.
9. Равносторонний.
10. Высота.
13. Равнобедренный.
14. Катет.
17. Угол.

Вопросы:

  1. Что люди измеряли в глубокой древности?
  2. Назовите еденицы длены в Англии и США.
  3. Что такое длина отрезка?
  4. Чему равен 1 децеметр?
  5. Назовите приборы для измерения длены.

На этом уроке учитель продолжит разговор о линиях и точках, расскажет, что такое отрезок, как он обозначается. Также вы узнаете о четырех способах сравнения отрезков и узнаете о единицах измерения длины. В конце урока вы вместе с учителем потренируетесь решать задачи, используя единицы измерения длины.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок и

Если заданы точка и линия, то точка либо принадлежит этой линии, либо нет. Еще говорят, что линия проходит через точку.

На рисунке 1 точка не принадлежит линии , или линия не проходит через точку . Точка принадлежит линии , или линия проходит через точку .

Рис. 1. Линия и точки: принадлежащие линии и не принадлежащие

Пусть у нас есть две точки и (рис. 2). Сколько можно провести линий, которые будут проходить через обе эти точки? Или сколькими линиями можно соединить эти две точки? Бесконечное количество.

Рис. 2. Точки и

Точки и могут обозначать два места, например дом и школу. А линии, их соединяющие, - траекторию, по которой можно пройти от дома до школы (рис. 3). Часто интересует самая короткая дорога от дома до школы, от одного места до другого, от точки до точки .

Рис. 3. Дорога от дома до школы как отрезок

Какая дорога от школы до дома самая короткая? Какая линия, соединяющая и , будем самой короткой?

Чтобы дорога оказалась самой короткой, идти от школы до дома надо по прямой. Чтобы линия, соединяющая точки, оказалась самой короткой, соединять их нужно по прямой.

Соединим и самой короткой возможной линией. Такая линия называется отрезком (рис. 4). Точки и называются концами отрезка.

Рис. 4. Точки и - концы отрезка

Обозначается сам отрезок , по именам точек - концов отрезка. Другой такой же короткой линии, соединяющей и , не существует. Если провести из в любую другую линию, она обязательно окажется длиннее. То есть существует только одна кратчайшая линия между и . Она и называется отрезком.

Если мы хотим указать на другие линии, соединяющие наши точки, например верхние или нижние, то нужно добавить еще точки, чтобы не было путаницы (рис. 5).

Рис. 5. Линии и , соединяющие точки и

Если две точки и необходимо соединить отрезком, то используется линейка. Линия, проведенная по линейке от точки до точки по линейке, и будет нужным отрезком (рис. 6). Сам отрезок будет называться . Точки и - его концами. Отрезок является кратчайшей линией, соединяющей точки и .

Рис. 6. Построение отрезка с помощью линейки

Любая точка либо принадлежит отрезку, либо не принадлежит.

Или говорят еще: «точка лежит на отрезке либо не лежит на отрезке». На рисунке точки и не принадлежат отрезку , точка принадлежит отрезку (рис. 7).

Рис. 7. Точки, принадлежащие и не принадлежащие отрезку

Сами точки и , концы отрезка, тоже принадлежат отрезку .

Посмотрим на два отрезка на рисунке 8. Что про них можно сказать? Отрезок короче отрезка (рис. 8). .

Рис. 8. Отрезки и

Как мы это поняли? Просто увидели. То есть сравнить эти два отрезка оказалось несложно.

Задача сравнения отрезков, их длины встречается в жизни достаточно часто. Например, два человека хотят выяснить, чей рост больше, кто из них выше.

1 способ: на глаз

Он подходит, если отрезки сильно отличаются и ответ однозначен.

Очевидно, что на рисунке 9 отрезок больше, длиннее, чем отрезок .

Очевидно, что папа выше сына.

Рис. 9. Сравнение роста папы и сына

Очевидно, что телебашня выше дерева на рисунке 10.

Рис. 10. Сравнение высоты телебашни и дерева

Этот способ очень прост, но может привести к ошибке.

Иногда, когда мы смотрим на картинку, то мы совершенно уверены, что понимаем, какой из двух отрезков больше. Но оказывается, что мы ошибаемся, потому что дополнительные построения вокруг отрезков обманывают зрение.

На картинке 1 нам кажется, что верхний отрезок длиннее нижнего.

Рис. 10.2. Иллюзия: кажется, что отрезки разной длины

Но это не так. В этом легко убедиться, если построить еще две линии.

Рис. 10.3. Одинаковые отрезки

Один из самых простых примеров ошибки восприятия. Какой отрезок короче на рисунке 3?

Рис. 10.4. Иллюзия: кажется, что отрезки не равны по длине

«Конечно же, первый!» - говорит наше восприятие. Но это не так. Эти отрезки одинаковые. В этом можно будет убедиться, воспользовавшись любым из остальных способов сравнения отрезков, которые мы рассматриваем на нашем сегодняшнем уроке.

Сложно поверить, что отрезки и равны. Дополнительные линии вокруг заставляют нас поверить, что отрезок намного короче отрезка на рисунке 4.

Рис. 10.5. Иллюзия: отрезки и имеют одинаковую длину

Все рассмотренные картинки являются примерами оптических иллюзий. Наберите в поисковой системе «оптические иллюзии», и вы найдете огромное количество очень интересных примеров по этой теме. Не только про сравнение отрезков.

Ну а мы с вами делаем главный вывод из этих примеров: не всегда можно доверять нашей оценке «на глаз». Нужны более точные методы сравнения отрезков.

Если бабушка хочет понять, одинаковы ли две спицы по длине, то она возьмет их вместе, зажмет в руку и несильно стукнет ими по столу, чтобы нижние края спиц оказались на одном уровне (рис. 11). По положению верхних краев она поймет, одинаковы ли спицы, если нет, то какая из них длиннее.

Рис. 11. Проверка с помощью наложения

Такой способ можно использовать, если предметы, которые мы сравниваем, можно легко приложить один к другому. Например, для сравнения роста люди встают спиной друг к другу и смотрят, чья макушка окажется выше.

Итак, метод заключается в том, что два предмета прикладывают друг к другу, совмещают концы с одной стороны и по положению других концов понимают, какой отрезок больше или, может быть, они равны.

Этот метод уже является точным, в отличие от первого. Но у него есть один серьезный недостаток. Чтобы им воспользоваться, нужно иметь возможность взять один отрезок и переместить, приложить его ко второму. Это не всегда возможно.

Ведь даже если нарисованы два отрезка, затруднительно взять один из них и приложить к другому. Если только разрезать лист, сложить части друг с другом и посмотреть на просвет.

Если один предмет мы не можем приставить к другому, то можно использовать третий, который легко совмещается с первым и вторым по очереди. Таким измерителем часто являются наши руки.

Если мы хотим понять, пройдет ли диван в дверной проем, мы руками отмечаем его ширину и, стараясь не изменить расстояние между руками, подходим к дверному проему и проверяем, хватит ли ширины дверей.

Мы можем использовать веревку, нитку, палку, чтобы сравнить длины двух предметов, которые сложно перемещать. Приложить нитку к одному предмету, потом ее же к другому. Так сразу будет понятно, какой из предметов длиннее. В математике для этой цели используются специальный измеритель, циркуль.

Нужно сравнить два отрезка и (рис. 12).

Рис. 12. Отрезки для сравнения

Совмещаем концы отрезка с иголками измерителя (рис. 13) и, не меняя раствора, сравниваем с другим отрезком (рис. 14).

Рис. 13. Измерение отрезка

Рис. 14. Измерение отрезка

Отрезок равен отрезку .

Записывается это так: .

Или может оказаться такая ситуация (рис. 15).

Рис. 15. Отрезки для сравнения

Отрезок не равен отрезку . Он равен отрезку , который является частью отрезка (рис. 16).

Рис. 16. Отрезок равен части отрезка

Отрезок меньше отрезка , так как является его частью.

Отрезок меньше отрезка , потому что равен его части.

Во всех предыдущих способах мы сравнивали отрезки, выясняли, у кого из них длина больше. Но саму длину не измеряли. Мы ее не знали.

Так, два человека могут встать друг другу спиной и выяснить, кто из них выше. Но каков рост каждого из них, они не узнают.

Последний способ, который мы сейчас рассмотрим, заключается в том, чтобы измерить длину каждого отрезка и сравнить их длины.

Так, если два человека знают, что рост одного составляет 1 м 73 см, а другого - 1 м 75 см, то понятно, что второй выше, и не нужно вставать рядом, чтобы это понять.

Длина, выраженная числом, то есть измеренная, становится очень удобным инструментом. Мы теперь эту длину можем записать, передать по телефону, запомнить.

Чтобы измерить отрезок, нужно приложить к нему линейку с нанесенной шкалой.

На рисунке 17 мы видим, что длина первого отрезка составляет 6 см, второго - 7 см.

Рис. 17. Измерение отрезков линейкой

Второй отрезок больше. Кроме того, мы теперь знаем, что второй не просто больше, а больше на 1 см.

А что если один отрезок измерял один человек, а второй - другой человек, да еще и в другом городе? Можно ли будет сравнить эти два отрезка? Да, это возможно потому, что на всех линейках нанесены одинаковые деления и не важно, какой конкретно линейкой мы пользовались. Скорее всего, на всех таких линейках мы увидим одинаковые деления - сантиметры и миллиметры.

Одна из самых часто встречающихся единиц длины - это метр.

Метр используется при измерении объектов не маленьких, но и не огромных, таких, которые можно оценить на глаз, увидеть сразу целиком: длина комнаты или двора, высота дерева или дома, расстояние от дома до школы и так далее. Сокращенно метр обозначается буквой «м». Точка, обозначающая сокращение, не нужна.

Все остальные единицы для измерения либо очень больших объектов, либо намного меньших получаются из метра.

Приставка «кило-» означает тысячу. Если перед словом метр поставить приставку «кило-», то полученное слово «километр» будет обозначать тысячу метров.

Сам километр кратко обозначается двумя буквами «км», тоже без точки для сокращения.

В километрах мы меряем большие расстояния, например расстояния между городами.

Если соединить центры Москвы и Санкт-Петербурга воображаемым отрезком (рис. 18), то его длина будет равна 635 км, или 635 000 метров.

Прямая

Понятие прямой, также как и понятие точки является основными понятиями геометрии. Как известно основные понятия не определяется. Это не является и исключением для понятия прямой. Поэтому рассмотрим суть этого понятия через его построение.

Возьмем линейку и, не отрывая карандаша, проведем линию произвольной длины (рис. 1).

Полученную линию мы и будем называть прямой . Однако тут необходимо отметить, что это не вся прямая, а только её часть. Всю же прямую построить не имеется возможным, она является бесконечной на обоих своих концах.

Прямые будем обозначать маленькой латинской буквой, либо двумя её точками в круглых скобках (рис. 2).

Понятия прямой и точки связаны тремя аксиомами геометрии:

Аксиома 1: Для каждой произвольной прямой существует как минимум две точки, которые на ней лежат.

Аксиома 2: Можно найти как минимум три точки, которые не будут лежать на одной и той же прямой.

Аксиома 3: Через $2$ произвольные точки всегда проходит прямая, причем эта прямая единственна.

Для двух прямых актуально их взаимное расположение. Возможны три случая:

  1. Две прямые совпадают. В этом случае каждая точка одной будет также и точкой другой прямой.
  2. Две прямые пересекаются. В этом случае только какая-то одна точка из одной прямой будет также принадлежать и другой прямой.
  3. Две прямые параллельны. В этом случае у каждой из этих прямых свой набор различных друг от друга точек.

В этой статье мы не будем подробно останавливаться на этих понятиях.

Отрезок

Пусть нам дана произвольная прямая и две точки, принадлежащие ей. Тогда

Определение 1

Отрезком будет называться часть прямой, которая ограничена двумя ее произвольными различными точками.

Определение 2

Точки, которыми ограничен отрезок в рамках определения 1 называются концами этого отрезка.

Отрезки будем обозначать двумя её точками концов в квадратных скобках (рис. 3).

Сравнение отрезков

Рассмотрим два произвольных отрезка. Очевидно, что они могут быть либо равными, либо неравными. Чтобы разобраться в этом, нам нужна следующая аксиома геометрии.

Аксиома 4: Если оба конца двух различных отрезков совпадут при их наложении, то такие отрезки будут равными.

Итак, для сравнения выбранных нами отрезков (обозначим их отрезок 1 и отрезок 2) наложим конец отрезка 1 на конец отрезка 2, так, чтобы, отрезки оставались по одну сторону от этих концов. После такого наложения возможны два следующих случая:

Длина отрезка

Помимо сравнения одних отрезков с другими также часто необходимо измерение отрезков. Измерить отрезок означает найти его длину. Для этого необходимо выбрать какой-то «эталонный» отрезок, который мы будем принимать за единицу (к примеру отрезок, длина которого равняется 1 сантиметру). После выбора такого отрезка мы проводим с ним сравнение отрезков, длину которого нужно найти. Рассмотрим пример.

Пример 1

Найти длину следующего отрезка

если следующий отрезок равняется 1

Для его измерения возьмем за эталон отрезок $$. Будем откладывать его на отрезок $$. Получим:

Ответ: $6$ см.

Понятие длины отрезка связаны со следующими аксиомами геометрии:

Аксиома 5: Выбрав определенную единицу измерения отрезков, длина любого отрезка будет положительна.

Аксиома 6: Выбрав определенную единицу измерения отрезков, мы можем для любого положительного числа найти отрезок, у которого длина равняется данному числу.

После определения длины отрезков у нас появляется второй способ для сравнения отрезков. Если при одном и том же выборе единицы длины отрезок $1$ и отрезок $2$ будут иметь одинаковую длину, то такие отрезки будут называться равными. Если же, без ограничения общности, отрезок 1 будет иметь длину по числовому значению меньше длины отрезка $2$, то отрезок $1$ будет меньше отрезка $2$.

Самым простым способом измерения длины отрезков является измерение, с помощью линейки.

Пример 2

Записать длины следующих отрезков:

Измерим их с помощью линейки:

  1. $4$ см.
  2. $10$ см.
  3. $5$ см.
  4. $8$ см.

Цели занятия: На этом занятии вы получите возможность актуализировать свои знания о простейших геометрических фигурах: точке, прямой, луче, отрезке, вспомнить, как измеряются отрезки, а также узнаете некоторые новые для вас геометрические факты.

Точка . Прямая . Отрезок. Аксиомы геометрии

Для первого знакомства с геометрией поработайте с материалами видеоурока «Прямая и отрезок».

Таким образом, вы должны знать несколько фактов:

  1. Геометрия – наука об измерении земли, дословно – «землемерие».
  2. Геометрия – одна из самых древних наук на земле, она возникла примерно за 300 лет до нашей эры.
  3. Геометрия подразделяется на два раздела: планиметрия – геометрия на плоскости, и стереометрия – геометрия в пространстве.
  4. Геометрия изучает геометрические фигуры и их свойства.
  5. Примерами плоских геометрических фигур являются треугольник, прямоугольник, окружность, круг и т.д.; примерами пространственных фигур являются параллелепипед, шар, конус, цилиндр и т.д.
  6. Простейшими, неопределяемыми геометрическими понятиями являются точка и прямая. Они не имеют размеров.
  7. Точки обозначают большими буквами латинского алфавита, прямые могут обозначаться маленькими буквами латинского алфавита.
  8. Геометрия строится на основных неопределяемых понятиях и на аксиомах, в которых фиксированы отношения простейших фигур.

Для того чтобы познакомиться с первыми аксиомами, поработайте со второй частью видеоурока «Прямая и отрезок».

Таким образом, вы должны знать следующие аксиомы:

Аксиома 1: каждой прямой принадлежит по крайней мере две точки (рис. 1).

Рис. 1. Иллюстрация Аксиомы 1

Аксиома 2: имеются по крайней мере три точки, не лежащие на одной прямой (рис.2).

Рис. 2. Иллюстрация Аксиомы 2

Аксиома 3: через любые две точки проходит прямая , и притом только одна.

Тот факт, что точка А лежит на прямой с фиксируется знаком принадлежности: А∈с . Если точка не принадлежит прямой с , то это записывается так: D∉c .

Теперь выполните задания практического электронного образовательного ресурса « ».

Аксиома 4: из трех точек, лежащих на одной прямой, одна и только одна лежит между двумя другими (рис. 3).

Рис. 3. Иллюстрация Аксиомы 4

На рисунке отмечены три точки: А , В и D . Точка А лежит между точками В и D .

Эти точки, лежащие на прямой, образуют несколько новых фигур – отрезков.

На рисунке 3 изображены три отрезка: АВ, DA и DB .

Можно выделить несколько случаев взаимного расположения прямой и отрезка.

Рисунок 3 иллюстрирует случай, когда отрезок , например, АВ лежит на прямой , в этом случае отрезок и прямая имеют бесконечно много общих точек – это все точки отрезка АВ .

Рисунок 4 иллюстрирует другой случай: отрезок и прямая не имеют общих точек .

Рис. 4. Отрезок СЕ и прямая а не имеют общих точек

В этом случае точки С и Е лежат по одну сторону от прямой а .

Рисунок 5 иллюстрирует еще один случай: отрезок пересекает прямую . В этом случае отрезок и прямая имеют единственную общую точку, а концы отрезка CD лежат по разные стороны от прямой b .

Рис. 5. Отрезок и прямая имеют единственную общую точку:
отрезок СD пересекает прямую b
Рис. 6. Отрезок и прямая имеют единственную общую точку:
один из концов отрезка MN (точка М) лежит на прямой c

Теперь поработайте со последней частью видеоурока «Прямая и отрезок».

Итак, вы познакомились с первой теоремой : две разные прямые не могут иметь более одной общей точки.

Также вы рассмотрели доказательство этой теоремы.

Рассмотрим пример выполнения задания.

Пример 1.

На рисунке изображена прямая с и шесть точек.

Рис. 7. Прямая и точки

Сколько всего отрезков изображено на прямой? Назовите эти отрезки.

Решение:

Сначала запишем все отрезки.

    1. Начнем с отрезков, одним из концов которых является точка А .
      Итак, это отрезки АВ, АС, АЕ, AD, AF . Их всего 5.
    2. Теперь перечислим отрезки, одним из концов которых является точка В .
      Это отрезки ВЕ, ВС, BD и BF . Их 4. Мы не включили сюда отрезок АВ , так как мы записали его в первом пункте.
    3. Продолжим записывать отрезки. И теперь перечислим отрезки с концом в очке С , за исключением тех, которые мы уже записали.
      Это отрезки СЕ, CD и CF . Их 3.
    4. Теперь запишем оставшиеся отрезки: сначала с концом в точке Е – ED и EF , и наконец, в точке F – FD .
      Таким образом, получили 15 отрезков.

Пример 2.

Сколько точек можно провести через 4 точки: А, В, С и К , никакие три из которых не лежат на одной прямой.

Решение:

Будем рассуждать так же, как и в предыдущем задании.

    1. Сначала провеем все прямые, проходящие через точку А : это прямые АВ, АС и АК .
    2. Теперь проведем все прямые, проходящие через точку В , за исключением прямой АВ , так ее мы уже учли в первом пункте. Это прямые ВС и ВК .
    3. Осталась одна прямая СК .

Всего таких прямых проведено 6.

На рисунке 8 изображены 4 точки и прямые, проведенные через них.

Рис. 8. Иллюстрация к примеру 2

Измерение отрезков

Вы знаете, что длину отрезка можно измерить при помощи линейки с делениями.

Узнайте о свойствах длины отрезка, поработав с материалами видеоурока «Измерение отрезков».

Рассмотрим еще пример решения задачи.

Пример 3.

На прямой отмечены четыре точки: А, В, С и D произвольным образом. Известно, что длина отрезка АВ равна 10 см, BD = 12 см, CD = 6 см. Какой может быть длина отрезка АС ?

Решение:

Рассмотрим возможные случаи расположения точек на прямой.

Случай 1 изображен на рисунке 9.

Рис. 9. Первый случай взаимного расположения точек А, В, С и D на прямой

Видно, что в этом случае длина отрезка АС равна сумме длин отрезков АВ и ВС .