Гравитация – это свет. Свет и гравитация

Всякое ускоренно движущееся тело, как утверждает теория Эйнштейна, испускает гравитационные волны. Мир вокруг нас заполнен ими, и в этом факте ничего не меняет то обстоятельство, что техника сегодняшнего дня еще не справилась с обнаружением этих волн. Ведь оттого, что четыреста лет назад человек и не подозревал о существовании радиоволн, инфракрасных и ультрафиолетовых лучей, они не переставали излучаться звездами, просто земными предметами.

Нам не хватает только системы приборов, способной показать волны . Чтобы посылаемые радиостанцией электромагнитные колебания могли быть восприняты радиослушателями, их переводят в звуковые колебания. С одного «языка» техники на другой.

Гравитационные волны, говоря образно, новый незнакомый нам язык природы. Чтобы он был воспринят, надо сделать перевод, преобразование колебаний тяготения в механические или электромагнитные, например в световые. (А еще подобным научным исследованиям вовсе не помешает, например вложение денег , ведь инвестирование в науку всегда было очень перспективным).

Мне язык света кажется, во всяком случае, на первых порах, более удобным. А «переводимым текстом» могут послужить сравнительно мощные гравитационные волны, идущие к нам от рождающихся и двигающихся звезд и целых галактик.

При этом нужно использовать одно самое общее свойство, присущее гравитационной волне. Она является полем тяготения, а всякое поле тяготения влияет на распространение света. Это не только предсказано теорией относительности, но и вот уже сорок лет, как проверено на опыте и подтверждено.

Поле тяготения и перебрасывает мостик между гравитационной и световой волнами. Ведь всякое такое поле служит своего рода линзой, в которой луч света преломляется. Происходит его искривление и одновременно сдвиг фаз световой волны. Конечно, величина поля тяготения будет сравнительно мала, и искривление им луча практически заметить будет невозможно. Но вот сдвиг фаз обнаружить гораздо легче, тем более что прибор, способный отметить сдвиг фаз световой волны, уже существует. Это обычный (для физика, во всяком случае) интерферометр. В нем луч света от какого-то источника разделяется на два, проходящие разные расстояния и среды, а затем лучи совмещаются. Складываясь, оба луча дают так называемую интерференционную картину - чередования темных и светлых полос. При сдвиге фаз волны какого-либо из разделенных лучей эта картина смещается.

Теперь представим себе, что два взаимно перпендикулярных световых луча пересекутся с гравитационной волной. Всякая линза по-разному изменяет лучи, идущие через нее в разных направлениях.

Это относится и к линзе - полю тяготения. И вновь совмещенные два луча уже не совпадут полностью. Результат - смещение полос интерференционной картины. Смещение происходить будет редко - с частотой, равной частоте гравитационной волны. Но из расчетов следует, что чем меньше эта частота, тем лучше. Видимо, этим методом удастся обнаруживать волны, имеющие всего одно колебание в год, в пять, в десять, в сотню лет.

Смещение полос в интерференционной картине должно быть очень невелико, но физика владеет методами, с помощью которых можно измерять фантастически малые величины. Главная трудность не в том, чтобы заметить и измерить колебания, вызванные гравитационной волной, а в том, чтобы выделить их среди других колебаний - случайных. Всякого рода шумы заставляют интерференционную картину беспорядочно смещаться. Даже случайные колебания молекул будут вызывать смещения полос, большие, чем вызванные волнами тяготения. Нужно будет отделить «самозванцев» от истинных посланцев космоса.

Представьте себе, что вы находитесь в парке между четырьмя столбами с радиорепродукторами. По радио передается понравившаяся вам песня, и вы хотите записать слова постоянно повторяющегося припева. Это было бы не трудно, и хватило бы одного репродуктора, если бы у каждого столба не играл мощный шумовой оркестр. А теперь придется поставить у каждого столба по магнитофону, записать все звуки, а потом, сравнив четыре записи, отбросить все, что в них не совпадает, и выделить одинаковые для всех пленок слова припева. Если припев повторили не четыре или пять, а сто, тысячу раз, задача соответственно облегчается.

Ради припева никто не будет проделывать такую процедуру, но для обнаружения волн тяготения можно сделать и большее. Вместо одного интерферометра придется взять несколько и поставить их в совершенно одинаковые условия. Затем выделить колебания картин, одинаковые для всех интерферометров. Эти колебания и выдадут нам, наконец, гравитационные волны.

Перевод будет сделан - первый, приближенный, но очень важный. Важен здесь будет не только сам факт экспериментального подтверждения предсказаний Эйнштейна; волны, родившиеся при космических катастрофах, смогут сильно пополнить наши сведения об истории и строении мира.

Рассказ о детектировании гравитационных волн в лазерном интерферометре часто вызывает такой совершенно естественный вопрос:

Если гравитационная волна растягивает-сжимает пространство, то она также должна растягивать-сжимать и длину волны света. Получается, как расстояние между зеркалами, так и сама «измерительная линейка» изменяются пропорционально друг другу. Каким же образом интерферометр умудряется детектировать гравитационную волну?
Кип Торн, с его полувековым опытом объяснения гравитационных волн и принципа их детектирования для самых разных аудиторий, говорит, что это вообще самый часто задаваемый вопрос на эту тему. В англоязычной литературе есть несколько публикаций, расписывающих ответ на этот «парадокс» на разном уровне, но на русском языке я что-то ничего не встретил. Поэтому я привожу пояснение здесь на максимально простом уровне, в общем-то пересказывая .

* * *

1. Для начала — один технический, но важный момент. Многие знают, что гравитация может влиять на темп хода времени (см. фильм «Интерстеллар») и, как следствие, на скорость света, измеряемую по часам постороннего наблюдателя (эффект Шапиро). Поэтому может возникнуть подозрение, что гравитационная волна растягивает не только пространство, но и время, и вообще делает прочие нехорошие вещи.

К счастью, это не так. В поле гравитационной волны время течет как обычно и свет движется с неизменной скоростью. Так получается потому, что поле гравитационной волны допускает широкую свободу математического описания. Мы можем выбирать разные математические выражения для описания волны, но все они отвечают одной и той же физической ситуации. Это калибровочная симметрия, которую обычно рассказывают на примере электродинамики, но которая есть и для гравитации. Так вот, удобнее всего выбирать такое описание (т.е. такую калибровку), при котором никаких изменений ни со скоростью света, ни с течением времени не происходит. Все рассуждения и вычисления подразумевают обычно этот выбор.

* * *

2. Следующий шаг. Рассмотрим одно плечо интерферометра в какой-то момент до прихода волны. Пусть сквозь него прошла гравитационная волна. Только вместо настоящей волны, т.е. колебания метрики туда-сюда, мы возьмем максимально упрощенный случай: «гравитационную ступеньку», т.е. мгновенное изменение метрики, которое растягивает (тоже мгновенно) наше плечо на длину ΔL.
    Маленькое отступление. Уже здесь начинаются тонкости. Растягивается — в какой системе координат? И значит ли это, что какие-то частицы чувствуют рывок и смещаются под действием этой силы? Ответ: растягиваются в исходной системе координат, где длины измеряются гипотетическим бесконечно жестким стержнем. В «свободно падающей» системе координат частицы, локально, никуда в пространстве не смещаются и никакого рывка не чувствуют. Увеличивается лишь дистанция между ними, вычисленная по исходной системе координат. Это тот же эффект, что и космологическое разбегание галактик по закону Хаббла.
Так вот, в этот момент, сразу после прихода «гравитационной ступеньки», растянется и световая волна (переход от пунктирной к сплошной линии на картинке). Как мы и предполагали, «инструмент измерения» растянулся пропорционально измеряемой длине.

Но только фишка в том, что световая волна — это не неподвижный стержень, с которым мы якобы сверяем длины. Интерферометр сверяет не длины, а фазы волн, прошедших по двум плечам. Интерферометру важно, сколько времени потребуется каждому гребню световых колебаний, чтобы дойти до зеркала и вернуться обратно. Поэтому да, сразу после прихода гравитационной ступеньки сигнал в интерферометре еще нулевой. Но затем растянувшийся свет летит дальше со своей неизменной скоростью, отражается и возвращается, но только пройти ему теперь нужно чуть большую дистанцию, чем в перпендикулярном плече. Поэтому за время прохода туда-обратно τ=2L/c сдвиг фаз в интерферометре вырастет с нуля до некоторого значения.

А после этого все будет еще проще. Новый свет, попадающий в интерферометр после гравитационной ступеньки, будет иметь ту же длину волны, что и раньше. Этот свет уже нерастянутый. Так получается потому, что свет нам выдает лазер, и он его выдает на неизменной частоте светового колебания. Этот новый, нерастянутый свет идет по более длинному пути и, разумеется, тратит на это больше времени, чем свет в соседнем плече.

Если совсем кратко: интерферометр измеряет не длины, сравнивая их с растяжимой линейкой, а времена прохода до зеркала и обратно по показаниям хронометра, неизменного и единого для обоих плечей.

* * *

3. Теперь вернемся к более реалистичной гравитационной волне. Там плавное растяжение-сжатие пространства происходит одновременно с движением света. Но только времена этих двух процессов сильно разные: время прохода туда-сюда τ=2L/c (т.е. 30 мкс) намного меньше периода гравитационной волны T (несколько мс).

Рассмотрим какой-то момент в процессе колебания, когда расстояние между зеркалами уже подросло и продолжает расти дальше. «Свеженькая» световая волна, влетевшая в интерферометр, еще имеет первоначальную длину волны. За то время, пока она слетает туда-сюда, длина волны чуть-чуть подрастет, но этот относительный рост будет слабее относительного удлинения плеча интерферометра — ведь это плечо удлинялось в течение долгого времени, порядка четверти периода грав.волны. Поэтому удлинением световой волны в работающем интерферометре можно пренебречь с точностью до малого параметра τ/T.

* * *

4. Для тех, кто хочет почитать подробнее, а также увидеть некоторые вычисления, вот список ссылок.
  • Изложение базируется на статье Peter R. Saulson,

XX век принес с собой множество удивительных открытий в самых разнообразных областях человеческих знаний, причем большинство из них с трудом укладываются в наши обыденные представления об окружающем мире. К числу явлений, оказавшихся в центре внимания современной науки, относятся и черные дыры — объекты-невидимки, полностью поглощающие любые излучения и ничего не излучающие сами. Прежде чем обратиться к астрофизическим свойствам черных дыр, приглядимся внимательно к той природной силе, которая рождает загадочные объекты, — гравитации. Ведь черная дыра — это своеобразный триумф тяготения.

Гравитация — это сила, которая управляет всей Вселенной. Она держит нас на Земле, определяет орбиты планет, обеспечивает устойчивость Солнечной системы. Именно она играет главную роль при взаимодействии звезд и галактик, определяя, очевидно, прошлое, настоящее и будущее Вселенной. Она всегда притягивает и никогда не отталкивает, действуя на все, что видимо, и на многое из того, что невидимо. И хотя гравитация была первой из четырех фундаментальных сил природы, законы которых были открыты и сформулированы в математической форме, она все еще остается неразгаданной загадкой.

Ньютон открыл закон всемирного тяготения, в котором гравитация была описана как сила притяжения между всеми телами без исключения. Величина ее прямо пропорциональна массам взаимодействующих тел и обратно пропорциональна квадрату расстояния между ними. Закон всемирного тяготения наглядно иллюстрирует различные явления природы, в которых гравитация играет важную роль. С помощью этого закона можно не только объяснить движение небесных тел, но и разобраться в сложной проблеме строения и эволюции Солнца и звезд. Ученые пользуются этим законом для расчета траекторий космических аппаратов, времени стыковок на космических орбитах, запусков ракет.

Как действует этот закон, в принципе ясно, но вот причина, вызывающая притяжение масс, требует более глубокого понимания. Трудно себе представить, как ничем не связанные между собой планеты и звезды, удаленные друг от друга на гигантские расстояния, «узнают» о существовании друг друга. И сегодня, три столетия спустя после открытия гравитации, все еще не существует четкого понимания этого явления.

Процесс сжатия, при котором силы тяготения неудержимо возрастают, называется гравитационным коллапсом. Наше Солнце — шар, и если бы его внутреннее газовое давление не сопротивлялось действию тяготения, оно сжалось бы в точку всего за 29 минут! Вот насколько быстро гравитация расправляется со своими «жертвами», налагая при этом запрет на любые сигналы о состоянии коллапсирующего объекта, идущие наружу и несущие информацию. Посмотрим, почему это происходит.

Чтобы преодолеть силу притяжения небесного объекта и отправиться в космос, необходимо развить вторую космическую скорость, которая иначе называется скоростью убегания. Скорость убегания с поверхности объекта, имеющего достаточно большой радиус, невелика. Но если его радиус будет сокращаться под действием силы тяжести, величина скорости убегания будет расти и может достичь значения, равного скорости света, когда объект сожмется внутри некоторого критического радиуса, зависящего от начальной массы объекта. Объект исчезнет из видимой Вселенной для внешнего наблюдателя, так как его мощное поле тяготения не позволит излучению уйти с его поверхности.

Уже, исходя из теории тяготения Ньютона, можно предсказать возможность появления такого объекта, как черная дыра. В 1916 году Эйнштейн предложил принципиально новую теорию тяготения, названную Общей теорией относительности. Один из главных выводов этой теории — тесная связь между временем, пространством и распределением массы. Согласно Эйнштейну, пространство и время — это формы существования материи.

Исчезнет материя — исчезнут пространство и время. Масса изменяет геометрию пространства своей гравитацией. Геометрия пространства, ее изменение со временем, а также скорость течения самого времени зависят от распределения и движения материи в пространстве, которые в свою очередь зависят от его геометрии. Таким образом, геометрия пространства указывает материи, какие свойства она должна иметь, а материя указывает пространству-времени, как оно должно быть искривлено.

Любые массы искривляют пространство-время тем сильнее, чем больше эти массы. Когда большая масса вещества оказывается в сравнительно небольшом объеме, то под действием собственного тяготения это вещество будет неудержимо сжиматься и наступит катастрофа — гравитационный коллапс. В процессе коллапса растут концентрация массы и кривизна пространства-времени, и, наконец, в результате сжатия наступает момент, когда пространство-время свернется так, что ни один физический сигнал не сможет выйти из коллапсирующего объекта наружу и для внешнего наблюдателя объект перестанет существовать. Такой объект и называется черной дырой. Немало усилий было затрачено теоретиками, чтобы разобраться в особенностях геометрии пространства-времени, связанного с черными дырами.

Согласно современной теории эволюции звезд, «умирая», каждая звезда становится или белым карликом, или нейтронной звездой, или черной дырой. Белые карлики известны уже много десятилетий и долгое время считались последней стадией любой звезды, но затем были открыты пульсары, и астрономы признали реальное существование нейтронных звезд. Теперь же ученые задумались о возможности реального существования самого удивительного класса умирающих звезд — черных дыр. К середине 60-х годов астрофизикам удалось рассчитать подробно структуру звезд и ход их эволюции, и они поняли, что существование устойчивых «мертвых» звезд, масса которых больше трех солнечных, невозможно. А так как во Вселенной достаточно много звезд с очень большими массами, астрофизики стали всерьез обсуждать возможность существования черных дыр, рассеянных повсюду во Вселенной. Массивные звезды стареют очень быстро. В процессе всей своей жизни они теряют массу, то есть выбрасывают вещество в пространство. Как правило, эволюция таких звезд заканчивается мощным взрывом — «вспышкой Сверхновой», в результате которой огромные облака звездного вещества выбрасываются в межзвездную среду. «Остаток» звезды сжимается под действием силы тяготения и может стать нейтронной звездой, то есть звездой, состоящей из вырожденного нейтронного газа. Именно внутреннее давление вырожденного газа противодействует силе гравитации и останавливает сжатие звезды. Однако если масса сжимающейся звезды превышает солнечную массу в 3 и более раз, никакая сила не может остановить процесс сжатия.

По мере сжатия напряженность гравитационного поля вокруг звезды все более нарастает. Теория Ньютона уже не может правильно описывать происходящие явления, и приходится обращаться к теории относительности Эйнштейна. В ходе нарастающего сжатия нарастает и искривление пространства-времени. Наконец, когда звезда сожмется до радиуса в несколько километров, пространство-время «свернется» и звезда исчезнет из видимой Вселенной, от нее останется только гравитационное поле — следовательно, произойдет рождение черной дыры.

Задача поиска и открытия черных дыр в космосе представляется на первый взгляд совершенно безнадежной, так как никакая информация, даже свет, не может вырваться с поверхности подобных объектов. Основной инструмент астрономов — телескоп бессилен в решении этой задачи. Но во Вселенной продолжает «жить» и действовать гравитационное поле черной дыры. Черная дыра поглощает световые лучи, проходящие вблизи нее, и отклоняет лучи, идущие на значительном расстоянии. Она может вступать в гравитационное взаимодействие с другими телами: удерживать возле себя планеты или образовывать двойные системы с другими звездами. Вещество, которое падает на черную дыру, разогревается до очень высоких температур и, прежде чем окончательно исчезнуть в черной дыре, выбрасывает во Вселенную интенсивное рентгеновское излучение.

Для поиска рентгеновских источников по всему небу в 1970 году на околоземную орбиту был запущен американский спутник «Ухуру», и с тех пор рентгеновские источники были открыты во многих двойных системах. В большинстве двойных систем, являющихся источниками рентгеновского излучения, масса невидимого компонента не превышает двух солнечных масс, а значит, это нейтронная звезда. Но некоторые объекты такого типа слишком массивны для нейтронных звезд. А потому предполагается, что в этом случае невидимым компонентом является черная дыра.

Первым кандидатом в черные дыры стал невидимый источник рентгеновского излучения Лебедь-X1, находящийся на расстоянии 8 000 световых лет от Земли. Видимый компонент этой двойной звездной системы — нормальная звезда с массой около 30 масс Солнца, а невидимый — с массой более чем 6 солнечных масс. А так как никакая нейтронная звезда не может содержать больше 3 масс Солнца, то отождествление Лебедя-Х1 с черной дырой представляется вполне вероятным. Но чтобы доказать, что это действительно черная дыра, в соответствии с теорией Эйнштейна, нужны детальные исследования процессов, происходящих в непосредственной близости от «горизонта событий».

Факт существования черных дыр очень важен для космологии, ведь он непосредственно свидетельствует о том, как Вселенная может скрывать большую часть своей материи.

Будущие космические миссии сосредоточат свое внимание главным образом на исследовании мощных супермассивных черных дыр в центрах галактик. Планируются также наблюдения и исследования так называемых джетов, выбрасываемых из окрестностей черных дыр в противоположных направлениях со скоростью, близкой к скорости света, и растягивающихся на миллиарды километров от черной дыры. Обсерватории, регистрирующие гамма-излучение, занимаются их исследованиями для того, чтобы понять механизм их образования. Предусматривается также спектроскопия очень высокого разрешения, которая, как надеются ученые, позволит измерить две основные характеристики черных дыр: массу и момент вращения. Еще планируется получение изображения в основаниях джетов в радиодиапазоне с очень высоким разрешением, что поможет выяснить, как «питаются» черные дыры и как создаются джеты.

Предполагается также создание новой рентгеновской космической обсерватории, более мощной, чем запущенная НАСА в 1999 году «Чандра», которая позволит разрешить «горизонт событий» супермассивных черных дыр в ядрах как близких галактик, так и Млечного Пути.

Людмила Князева, кандидат физико-математических наук

Возобновляемая энергия – последний писк моды в наши дни, а также, вероятно, необходимость и жесткое требование в будущем. Однако энергию не всегда можно добыть из ветра, солнца и воды – иногда нет возможности установить дорогие генераторы, иногда эти генераторы не работают как нужно в той или иной географической точке мира.

В тех местах, где не работают традиционные источники «зеленой энергии», либо нет финансовой возможности для закупки соответствующих генераторов, для добычи «бесплатного» и «экологически чистого» электричества идеально подойдет источник, который на планете Земля всегда в наличии – сила тяготения.

Каким бы ни казался далеким и этот факт для современного человека, пользующегося всеми благами цивилизации, один миллиард людей на планете мечтают хотя бы о постоянном надежном источнике света. Компания Therefore Products, опирающаяся на дизайн и инновации, верит, что она придумала такой источник света - GravityLight.

Принцип действия GravityLight достаточно прост –энергия тяготения конвертируется в электричество, которое затем конвертируется в свет. Многим это напомнит механические часы с кукушкой, где для завода нужно было перетянуть металлическую гирю вверх. GravityLight «заводится» очень похожим способом – вы прикрепляете мешочек, заполненный десятью килограммами песка (можно использовать землю, камни – что угодно) к ремню, проведенному через механизм устройства и поднимаете его вверх.

Гравитация тянет мешок с грузом вниз, механизм генератора вращается, генерируется электричество, от которого питается светодиод. Механизм заставляет мешок спускаться медленно, благодаря чему устройство производит свет около тридцати минут. А если снова поднять груз кверху, вы получаете еще 30 минут «бесплатного» света.

http://vimeo.com/53588182

Проект разрабатывается уже четыре года и призван заменить здорово коптящие (и, как это ни странно звучит, негативно влияющие на экологию) керосиновые лампы, все еще используемые в некоторых регионах мира. По словам создателей «гравитационного светляка», светоотдача у него выше чем у керосиновой лампы.

Компании уже удалось разработать действующий прототип, создатели решили воспользоваться сервисом коллективного финансирования Indiegogo, дабы собрать деньги на начало массового производства.

Целью кампании по сбору средств были 55 тысяч долларов, на которые Therefore Products намеревались обустроить выпуск первой мелкооптовой партии «гравитационных ламп» размером в 1000 штук. Первая тысяча будет произведена, оттестирована, и направлена тем, кто в таком источнике света нуждается.

Проект возымел большой успех у пользователей Indiegogo и уже собрал 400 000 $ (от 5 000 откликнувшихся). На эти деньги создатели лампы обещают улучшить GravityLight, удвоить эффективность и сделать возможной зарядку от этой лампы всяческих электронных устройств – например, сотовых телефонов (для зарядки которых жители некоторых уголков мира, преодолевают пешком десятки километров). Также обещают снизить цену, которая на данный момент равна 10 $, до пяти долларов.

Конечно, такая лампа не поможет накормить всех обитателей планеты. Но она хотя бы даст шанс тем, кто мечтает о бесплатном освещении по ночам (а не размышляет о том, обновить ли в этом году свой «айфон» или «айпад»).

Отыскивая пределы возможностей телескопа Хаббл, международная команда астрономов побила рекорд космической дистанции наблюдений, измерив свойства самой далекой галактики из ранее наблюдавшихся во Вселенной. Эта неожиданно яркая зарождающаяся галактика, названная GN-z11, видна такой, какой она была 13,4 миллиарда лет назад, всего лишь через 400 миллионов лет после Большого взрыва. Галактика GN-z11 расположена в созвездии Большой медведицы.

«Мы сделали наибольший шаг назад во времени, за пределы того, что мы считали возможным сделать с помощью телескопа Хаббл. Мы видим галактику GN-z11 в то время, когда возраст Вселенной составлял всего три процента от нынешнего». — пояснил главный исследователь Паскаль Оеш из Йельского университета.

Астрономы приблизились к первым галактикам, сформировавшимся во Вселенной. Новые наблюдения Хаббла приводят исследователей в ту область, которая, как считалось ранее, может быть достигнута только с помощью космического телескопа Джеймса Уэбба (его запуск запланирован на 2018 год).

Измерения дают убедительные доказательства, что некоторые необычные и неожиданно яркие галактики, ранее обнаруженные на изображениях Хаббла, на самом деле находятся на запредельных расстояниях. Ранее команда ученых оценила расстояние до GN-z11, определив ее цвет с помощью Хаббла и космического телескопа Спитцера. Теперь, впервые для галактики на такой экстремальной дистанции, команда использовала хаббловскую Широкоугольную камеру-3. Для точного измерения расстояния до GN-z11 свет был спектроскопически разделен на составляющие цвета.

Астрономы измеряют большие дистанции, определяя «красное смещение» галактики. Это явление — результат расширения Вселенной. Каждый далекий объект во Вселенной кажется удаляющимся от нас, потому что его свет растягивается в более длинные и более красные световые волны, проходя через расширяющееся пространство, чтобы достигнуть наших телескопов. Чем больше красное смещение, тем дальше галактика.

«Наши спектроскопические наблюдения показывают, что галактика дальше, чем мы первоначально думали, прямо на пределе расстояния, на котором Хаббл может наблюдать», — говорит Габриэль Браммер, соавтор исследования из Института космического телескопа.

До того, как астрономы измерили расстояние до галактики GN-z11, наибольшим расстоянием, измеренным спектроскопически, было красное смещение 8,68 (13,2 миллирада лет в прошлое). Теперь команда подтвердила для GN-z11 красное смещение 11,1, примерно на 200 миллионов лет ближе к Большому взрыву. «Это выдающееся достижение для Хаббла. Ему удалось побить все предыдущие рекорды расстояния, годами удерживавшиеся более крупными наземными телескопами», — говорит исследователь Питер ван Доккум из Йельского университета. — «Этот новый рекорд, скорее всего, устоит до запуска космического телескопа Джейма Уэбба».

Галактика GN-z11 в 25 раз меньше Млечного Пути, и в своих звездах содержит только один процент массы нашей галактики. Тем не менее, новорожденная GN-z11 быстро растет, формируя новые звезды примерно в 20 раз быстрее, чем наша галактика сегодня. Это делает экстремально далекую галактику достаточно яркой для астрономов, чтобы можно было провести детальные исследования с помощью телескопов Хаббла и Спитцера.

Результаты исследований дают удивительные ключи к разгадке природы ранней Вселенной. «Потрясающе, что такая массивная галактика существует всего лишь через 200 или 300 миллионов лет с момента начала формирования самых первых звёзд. Это требует очень быстрого роста, производства звезд с чудовищной скоростью, чтобы так быстро сформировалась галактика в миллиард солнечных масс», — поясняет Гарт Иллинворт, исследователь из Калифорнийского университета.

Эти открытия — увлекательный анонс к исследованиям, которыми займется космический телескоп Джеймс Уэбб после своего запуска в космос в 2018 году. «Это новое открытие показывает, что телескоп Уэбб наверняка обнаружит много таких молодых галактик, заглянув туда, где формируются первые галактики», — говорит Иллингворт.

В команду исследователей входят ученые из Йельского университета, Научного института космического телескопа и Калифорнийского университета.

На этом видео показано расположение галактики GN-z11 на видимом небосводе.

Своеобразный голубой пузырь, окружающий звезду WR 31a — это туманность Вольфа-Райе, межзвездное облако пыли, водорода, гелия и других газов. Такие туманности обычно имеют сферическую или кольцевую форму. Они возникают при взаимодействии быстрого звёздного ветра с внешними слоями водорода, выброшенного звездами Вольфа-Райе. Этот пузырь, сформировавшийся примерно 20 000 лет назад, расширяется со скоростью около 220 000 километров в час!

К сожалению, жизненный цикл звезды Вольфа-Райе продолжается всего лишь несколько сотен тысяч лет — мгновение в космических масштабах. Начиная свою жизнь с массой минимум в 20 раз больше солнечной, звезда Вольфа-Райе теряет половину своей массы менее чем за 100 000 лет.

И звезда WR 31a в этом случае — не исключение. В конце концов она закончит свою жизнь впечатляющей вспышкой , а выброшенное взрывом звёздное вещество станет основой для следующего поколения звёзд и планет.