Энергия ферми в чем измеряется. Энергия ферми и температура вырождения

Энергия Ферми. Влияние температуры на распределение Ферми-Дирака

Функция распределения Ферми-Дирака, описывающая распределение фермионов по состояниям, имеет следующий вид:

здесь E F - химический потенциал системы фермионов, т.е. работа, которую необходимо затратить, чтобы изменить число частиц в системе на одну. В случае электронов величина E F называется энергией Ферми .

Рассмотрим вид функции Ферми-Дирака при температуре, стремящейся к абсолютному нулю. Как нетрудно видеть из формулы (3.4), для любой энергии частицы, большей энергии Ферми, экспонента в знаменателе стремится к бесконечности при , следовательно f(Е) стремится к нулю. Это значит, что все энергетические состояния с Е > E F совершенно свободны при абсолютном нуле. Если Е < E F при , f(E) стремится к единице. Это значит, что все квантовые состояния с энергией, меньше энергии Ферми, полностью заняты электронами. Отсюда понятен физический смысл энергии Ферми как параметра распределения электронов по состояниям: энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля . Энергетический уровень, соответствующий энергии Ферми, называется уровнем Ферми .

Вид функции распределения Ферми-Дирака при Т = 0К представлен на рис. 3.2,а. На рис. 3.2,б показано распределение электронов по энергетическим уровням в зоне проводимости металла при этой же температуре.

Если Т , то при энергии частицы, равной энергии Ферми, функция распределения Ферми-Дирака равна 1/2 . Это значит, что при любой температуре, отличающейся от абсолютного нуля, уровень Ферми заполнен наполовину. Вид функции Ферми-Дирака для двух различных температур показан схематически на рис. 3.3. Изменение характера распределения электронов по состояниям связано с тепловым возбуждением электронов. При этом часть электронов переходит в состояния с энергиями, большей энергии Ферми. Соответственно часть состояний ниже уровня Ферми оказывается свободной. В результате функция f(E) "размыта" вблизи энергии Ферми. Тепловому возбуждению подвергается незначительная часть электронов, находящихся вблизи уровня Ферми. Функция Ферми-Дирака заметно отличается от вида, который она имела при абсолютном нуле, лишь при . Величина "размытия" пропорциональна температуре (рис. 3.3). Чем выше температура, тем более существенному изменению подвергается функция распределения.

При условии

(3.5)

экспонента в знаменателе становится значительно больше единицы в формуле (3.4). В этом случае единицей можно пренебречь и распределение Ферми-Дирака преобразуется к виду

Выражение (3.6) совпадает по форме с функцией распределения Максвелла-Больцмана.

Вероятность того, что некоторый энергетический уровень с энергией Е свободен, т.е. занят дыркой, равна

  • 1.8. Атом водорода в квантовой механике. Квантовые числа
  • Состояния электрона в атоме водорода
  • 1.9. 1S– состояние электрона в атоме водорода
  • 1.10. Спин электрона. Принцип Паули
  • 1.11. Спектр атома водорода
  • 1.12. Поглощение света, спонтанное и вынужденное излучения
  • 1.13. Лазеры
  • 1.13.1. Инверсия населенностей
  • 1.13.2. Способы создания инверсии населенностей
  • 1.13.3. Положительная обратная связь. Резонатор
  • 1.13.4. Принципиальная схема лазера.
  • 1.14. Уравнение Дирака. Спин.
  • 2. Зонная теория твердых тел.
  • 2.1. Понятие о квантовых статистиках. Фазовое пространство
  • 2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
  • Удельное сопротивление твердых тел
  • 2.3. Метод эффективной массы
  • 3. Металлы
  • 3.1. Модель свободных электронов
  • При переходе из вакуума в металл
  • 3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
  • Энергия Ферми и температура вырождения
  • 3.3. Понятие о квантовой теории электропроводности металлов
  • 3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
  • 3.5. Понятие об эффектах Джозефсона
  • 4. Полупроводники
  • 4.1. Основные сведения о полупроводниках. Классификация полупроводников
  • 4.2. Собственные полупроводники
  • 4.3.Примесные полупроводники
  • 4.3.1.Электронный полупроводник (полупроводник n-типа)
  • 4.3.2. Дырочный полупроводник (полупроводник р-типа)
  • 4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
  • 4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
  • 4.4. Температурная зависимость удельной проводимости примесных полупроводников
  • 4.4.1.Температурная зависимость концентрации носителей заряда
  • 4.4.2.Температурная зависимость подвижности носителей заряда
  • 4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
  • 4.4.5. Термисторы и болометры
  • 4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
  • 4.6. Диффузия носителей заряда.
  • 4.6.1. Диффузионная длина
  • 4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
  • 4.7. Эффект Холла в полупроводниках
  • 4.7.1. Возникновение поперечного электрического поля
  • 4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
  • 4.7.3. Преобразователи Холла
  • 4.8. Магниторезистивный эффект
  • 5. Электронно-дырочный переход
  • 5.1.Образование электронно-дырочного перехода
  • 5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
  • 5.1.2.Прямое включение
  • 5.1.3.Обратное включение
  • 5.2.КласСификация полупроводниковых диодов
  • 5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
  • 5.3.1.Уравнение вольт-амперной характеристики
  • Классификация полупроводниковых диодов
  • 5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
  • 5.4. Барьерная емкость. Варикапы
  • 5.5.Пробой электронно-дырочного перехода
  • 5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
  • 6.Внутренний фотоэффект в полупроводниках.
  • 6.1.Фоторезистивный эффект. Фоторезисторы
  • 6.1.1.Воздействие излучения на полупроводник
  • 5.1.2.Устройство и характеристики фоторезисторов
  • 6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
  • 6.2.1.Воздействие света наp-n-переход
  • 7.Люминесценция твердых тел
  • 7.1.Виды люминесценции
  • 7.2.Электролюминесценция кристаллофосфоров
  • 7.2.1. Механизм свечения кристаллофосфоров
  • 7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
  • 7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
  • 7.3.1.Возникновение излучения в диодной структуре
  • 7.3.2.Конструкция светодиода
  • 7.3.3.Основные характеристики светодиодов
  • 7.3.4.Некоторые применения светодиодов
  • 7.4 Понятие об инжекционных лазерах
  • 8. Транзисторы
  • 8.1.Назначение и виды транзисторов
  • 8.2.Биполярные транзисторы
  • 8.2.1 Структура и режимы работы биполярного транзистора
  • 8.2.2.Схемы включения биполярных транзисторов
  • 8.2.3.Физические процессы в транзисторе
  • 8.3.Полевые транзисторы
  • 8.3.1.Разновидности полевых транзисторов
  • 8.3.2.Полевые транзисторы с управляющим переходом
  • 8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
  • 8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
  • 8.3.5. Мдп-транзисторы со встроенным каналом
  • 8.4. Сравнение полевых транзисторов с биполярными
  • Заключение
  • 1.Элементы квантовой механики 4
  • 2. Зонная теория твердых тел. 42
  • 3. Металлы 50
  • 4. Полупроводники 66
  • 5. Электронно-дырочный переход 98
  • 6.Внутренний фотоэффект в полупроводниках. 109
  • 7.Люминесценция твердых тел 114
  • 8. Транзисторы 123
  • Энергия Ферми и температура вырождения

    Средняя энергия классического (невырожденного) газа составляет величину порядка ~ kT . При комнатных температурах (T ≈300 K ) kT ≈ 0,025 эВ. Сравнение этой величины с энергией Ферми показывает, чтоkT << E F . Это означает, чтоэлектронный газ в металлах всегда вырожден , то есть проявляет чисто квантовые свойства.

    Одним из критериев вырождения является температура вырождения , равная

    При T < T F система вырождена и подчиняется квантовым статистикам. ПриT > T F система не вырождена, и ее поведение подчиняется классической статистике Максвелла-Больцмана.

    В таблице 3.1 приведены также температуры вырождения электронного газа. Они составляют по порядку величины десятки и сотни тысяч градусов. Значит электронный газ является вырожденным при всех температурах, при которых металл находится в твердом состоянии. Вырождению газа способствуют малое значение массы электронов m и их высокая концентрацияn .

    Рассмотрим поведение функции распределения f F приТ>0

    .(3.2.8)

    С повышением температуры электроны приобретают тепловую энергию порядка k Т и переходят на более высокие энергетические уровни (выше уровня Ферми), вследствие чего меняется характер распределения их по энергетическим состояниям (рис.3.3, б). По сравнению с нулевой температурой спад кривойf F (E ) происходит не скачком до нуля приE = E F , а происходит плавно в полосе шириной порядка~ 2 kT . Так как энергия теплового движенияk Т значительно меньше энергии Ферми, то тепловому возбуждению могут подвергаться лишь электроны узкой энергетической полосы порядкаk Т ,непосредственно расположенной вблизи уровня Ферми (рис.3.5).

    Электроны, находящиеся на более глубоких энергетических уровнях, остаются практически незатронутыми, так как энергии теплового движенияk Т недостаточно для их возбуждения (для перевода за уровень Ферми). ЭнергииE = E F , соответствует значение функции распределения
    . Поэтому приТ > 0 уровень Ферми - это уровень энергии, вероятность заполнения которого равна .

    На рис.3.3,б заштрихованные площади пропорциональны числу электронов, покидающих состояние с энергией
    , (площадка АДВ) и переходящих на уровни, расположенные выше уровня Ферми
    (площадка ВМС). По величине эти площади равны друг другу. Доля электронов, приходящих в состояние теплового возбуждения, равна

    , (3.2.9)

    При комнатной температуре эта доля незначительна и составляет менее 1% от общего числа электронов проводимости.

    Данным обстоятельством объясняется тот факт, что теплоемкость электронного газа оказывается чрезвычайно малой по сравнению с теплоемкостью решетки. Молярная теплоемкость его
    , а по классической теории
    . (ЗдесьR- универсальная газовая постоянная). Этот результат хорошо согласуется с опытом и снимает одно из затруднений классической электронной теории металлов.

    3.3. Понятие о квантовой теории электропроводности металлов

    Теория электропроводности металлов, построенная на основе квантовой механики и квантовой статистики Ферми-Дирака, называется квантовой теорией электропроводности металла.

    Расчет электропроводимости металлов в квантовой теории был произведен Зоммерфельдом. Был выведен закон Ома в дифференциальной форме

    , (3.3.1)

    где - удельная проводимость;- плотность тока в данной точке;- напряженность электрического поля.

    Для удельной проводимости было получено следующее выражение:

    ; (3.3.2)

    где
    - средняя длина свободного пробега электрона, обладающего энергией Ферми,
    - скорость такого электрона,m - его масса.

    Сравним (3.12) с выражением, полученным из классической электронной теории металлов

    . (3.3.3)

    В этом выражении < λ > - средняя длина свободного пробега электрона,
    - средняя скорость его теплового движения.

    Несмотря на то, что выражения (3.12) и (3.13) по внешнему виду похожи, их содержание различно. Средняя скорость теплового движения
    зависит от температуры, как
    , а
    практически не зависит от температуры, так как с изменением температуры энергия Ферми, а, следовательно, и скорость, остаются практически неизменными.

    Наиболее существенное различие формул (3.3.2) и (3.3.3) состоит в том, какой смысл вкладывается в понятие длины свободного пробега электрона < λ > в классической и квантовой теории металлов.

    Классическая электронная теория рассматривает электроны как обычные частицы и причиной электрического сопротивления металлов считает столкновения электронов с узлами кристаллической решетки. Полагая, что электроны сталкиваются почти со всеми узлами решетки, встречающимися на их пути, классическая теория принимает < λ > равной параметру решеткиd (d 10 -10 м ).

    Квантовая теория рассматривает электрон как частицу, обладающую волновыми свойствами, а электрический ток в металле - как процесс распространения электронных волн, длина волны которых определяется формулой де Бройля

    . (3.3.4)

    Такие представления позволяют объяснить наблюдаемую экспериментально температурную зависимость удельной проводимости и удельного сопротивления. Рассмотрим идеальную кристаллическую решетку металла, в узлах которой находятся неподвижные ионы, а примеси и дефекты отсутствуют. Такая идеальная решетка не рассеивает электронные волны, и электрическое сопротивление такого металла должно быть равно нулю.

    В реальных кристаллах при T > 0 ионы совершают тепловые колебания около положения равновесия, нарушая строгую периодичность решетки. Кроме того, в таких решетках обычно присутствуют структурные дефекты: примеси, вакансии, дислокации и так далее. Все эти неоднородности играют роль центров рассеивания для электронных волн и являются причиной электрического сопротивления. Расчет показывает, что средняя длина свободного пробега< λ F > зависит от температуры по закону

    , (3.3.5)

    где
    - модуль упругости;d - параметр решетки.

    С учетом (3.15) удельная проводимость ,определяемая формулой (3.12), будет иметь вид

    , (3.3.6)

    то есть , а, что хорошо согласуется с опытом в области не слишком низких температур.

    При очень низких температурах формула (3.3.5) не выполняется. При этом длина свободного пробега оказывается обратно пропорциональной не первой, а пятой степени температуры, поэтому и удельное сопротивлениеρ будет пропорционально пятой степени абсолютной температуры.

    На рис.3.7 изображена зависимость удельного электрического сопротивления металла от температуры. При Т=0 удельное сопротивление металла равно не нулю, а остаточному сопротивлению ост , обусловленному рассеиванием электронных волн на структурных дефектах решетки металла.

    Вырожденный электронный газ в металле.

    Распределение электронов по различным квантовым состояниям подчиняется принципу Паули, согласно которому в одном состоянии не может быть двух одинаковых (с одинаковым набором четырех квантовых чисел) электронов, они должны отличаться какой-то характеристикой, например направлением спина. Следовательно, по квантовой теории, электроны в металле не могут располагаться на самом низшем энергетическом уровне даже при 0 К. Принцип Паули вынуждает электроны взбираться вверх «по энергетической лестнице».

    Электроны проводимости в металле можно рассматривать как идеальный газ, подчиняющийся распределению Ферми-Дирака. Если μ 0 – химический потенциал электронного газа при T = 0 К, то, среднее число электронов в квантовом состоянии с энергией Е равно

    (1)

    Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов = f (Е ), где f (Е ) – функция распределения электронов по состояниям. Из (1) следует, что при Т = 0 К функция распределений = 1, если E < μ 0 , и =0, если E > μ 0 ,. График этой функции приведен на рис. 15, а. В области энергий от 0 до μ 0 функция равна единице. При E = μ 0 она скачкообразно изменяется до нуля. Это означает, что при Т = 0 К все нижние квантовые состояния, вплоть до состояния с энергией E = μ 0 , заполнены электронами, а все состояния с энергией, большей μ 0 , свободны. Следовательно, μ 0 есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта максимальная кинетическая энергия называется энергией Ферми и обозначается Е F . ( Е F = μ 0). Поэтому распределение Ферми - Дирака обычно записывается в виде

    (2)

    Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми. Уровню Ферми соответствует энергия Ферми Е F: , которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна «потенциальной ямы», как это делалось в классической теории, а от уровня Ферми, т. с. от верхнего из занятых электронами энергетических уровней.

    Для металлов при не слишком высоких температурах выполняется неравенство kT << E F . Это означает, что электронный газ в металлах практически всегда находится в состоянии сильного вырождения. Температура T 0 вырождения находится из условия kT 0 = E F . Она определяет границу, выше которой квантовые эффекты перестают быть существенными. Соответствующие расчеты показывают, что для электронов в металле Т 0 ≈ 10 4 К, т.е. для всех температур, при которых металл может существовать в твердом состоянии, электронный газ в металле вырожден.


    При температурах, отличных от 0 К, функция распределения Ферми-Дирака (2) плавно изменяется от 1 до 0 в узкой области (порядка kT ) в окрестности Е F (рис. 15, б). (Здесь же для сравнения пунктиром приведена функция распределения при Т = 0 К.) Это объясняется тем, что при T > 0 небольшое число электронов с энергией, близкой к Е F , возбуждается за счет теплового движения и их энергия становится больше Е F . Вблизи границы Ферми при Е < Е F заполнение электронами меньше единицы, а при Е >Е F . - больше нуля. В тепловом движении участвует лишь небольшое число электронов, например при комнатной температуре Т ≈ 300 К и температуре вырождения T 0 = 3 10 4 К, - это 10 -5 от общего числа электронов.

    Если (Е - Е F ) >> kТ («хвост» функции распределения), то единицей в знаменателе (2) можно пренебречь по сравнению с экспонентой и тогда распределение Ферми - Дирака переходит в распределение Максвелла - Больцмана.

    Энергия Фе́рми (EF) системы невзаимодействующих фермионов - это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми - одно из центральных понятий физики твёрдого тела. Физический смысл уровня Ферми: вероятность попадания частицы на уровень Ферми составляет 0,5 при любых температурах. Фермио́н (от фамилии физика Энрико Ферми) - по современным научным представлениям: элементарные частицы, из которых складывается вещество. К фермионам относят кварки, электрон, мюон, тау-лептон, нейтрино. В физике, частица (или квазичастица) с полуцелым значением спина. Фермионы подчиняются статистике Ферми - Дирака: в одном квантовом состоянии может находиться не более одной частицы (принцип Паули). Волновая функция системы одинаковых фермионов антисимметрична относительно перестановки двух любых фермионов. Квантовая система, состоящая из нечётного числа фермионов, сама является фермионом (например, ядро с нечётным массовым числом A; атом или ион с нечётной суммой A и числа электронов)

    Примеры фермионов: кварки (они формируют протоны и нейтроны, которые также являются фермионами), лептоны (электроны, мюоны, нейтрино), дырки (квазичастицы в полупроводнике). Принцип запрета Паули ответственен за стабильность электронных оболочек атомов, делая возможным существование сложных химических элементов. Он также позволяет существовать вырожденной материи под действием высоких давлений (нейтронные звёзды).Поверхность Ферми - поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур. Рис. 1. Заполнение энергетических зон при абсолютном нуле температуры: а - в диэлектриках; б - в металлах; разрешенные зоны заштрихованы, заполненные зоны или их части заштрихованы дважды. Рис. 2. Заполнение энергетических зон в полупроводнике; показаны только валентная зона и зона проводимости; чёрные кружочки - электроны в зоне проводимости, белые - дырки в валентной зоне.

    15. Собственный полупроводник или полупроводник i-типа (англ. intrinsic - собственный) - это чистый полупроводник, содержание посторонних примесей в котором не превышает 10 −8 … 10 −9 %. Концентрация дырок в нём всегда равна концентрации свободных электронов. Примеры: Si, Ge Полупроводник без примесей называют собственным полупроводником или полупроводником i-типа . Он обладает собственной электропроводностью , которая складывается из электронной и дырочной. Если к полупроводнику не приложено напряжение, то электроны и дырки проводимости совершают хаотическое движение и никакого тока, разумеется, нет. Под действием разности потенциалов в полупроводнике возникает электрическое поле, которое ускоряет электроны и дырки и сообщает им еще некоторое поступательное движение, представляющее собой ток проводимости . Движение носителей заряда под действием электрического поля иначе называется дрейфом носителей , а ток проводимости - током дрейфа i др . Полный ток проводимости складывается из электронного и дырочного токов: i др = i nдр + i pдр Индексы n и p соответственно обозначают электронный и дырочный вклады. Удельная проводимость зависит от концентрации носителей и от их подвижности. В полупроводниках при повышении температуры вследствие интенсивной генерации пар носителей концентрация подвижных носителей увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Для изготовления полупроводников применяют в основном германий и кремний, а также некоторые соединения галлия, индия и пр. Для полупроводников характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того электрическое сопротивление полупроводников очень сильно зависит от количества примесей (и от типа примесей тоже), а также таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и т. д. (на этом основан принцип действия фотодиодов, фототранзисторов, магнитоуправляемых приборов и т. п.) Принцип работы полупроводниковых приборов связан с тем, что в полупроводниках существует электропроводность двух типов - электронная и дырочная. Электронная электропроводность характерна для металлов и обусловлена перемещением электронов проводимости. При обычных рабочих температурах в полупроводниках всегда имеются электроны проводимости, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение (колебания) между атомами кристаллической решетки. Эти электроны под действием разности потенциалов могут начать двигаться в определенном направлении. Это движение и есть электрический ток. Полупроводники обладают также дырочной электропроводностью, которая редко наблюдается в металлах. Электроны и дырки, которые могут перемещаться, а потому создавать электропроводность, называются подвижными носителями заряда или просто носителями заряда. Весь этот процесс принято называть генерация пар носителей заряда, то есть возникают пары электрон проводимости-дырка проводимости. Вследствие того, что электроны и дырки совершают хаотическое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне (падающий сверху кружочек на рисунке), то есть объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда. Процессы генерации и рекомбинации всегда происходят одновременно. Рекомбинация ограничивает возрастание пар носителей, и при каждой данной температуре устанавливается определенное число электронов и дырок проводимости, то есть они находятся в состоянии динамического равновесия.Так же следует отметить, что проводимость чистых полупроводников, значительно ниже примесных. Это связанно с тем, что свободных носителей заряда в примесных значительно больше.

    16. Примесные полупроводники Примесный полупроводник - это полупроводник, элек­т­ро­­­фи­зи­­чес­кие свойства которого определяются, в основном, при­ме­ся­­ми дру­гих химических элементов. Процесс вве­дения примесей в по­­лу­­про­водник называется леги­ро­ва­нием полупроводника, а са­ми при­­­­меси называют леги­ру­ю­щи­ми. Для равномерного распре­де­­ле­­ния легирующей примеси в объ­еме полупроводника ле­ги­ро­ва­­ние осу­­щест­в­ля­ет­ся в процессе вы­ращивания монокристалла по­лу­­про­вод­ника из жидкой или га­зо­образной фазы. Локальное ле­ги­­ро­ва­ние части объема полу­про­водника­, например, при­по­ве­р­х­ностной об­­ла­сти, производится методом диффузии при силь­ном нагреве полупроводника или низкотемпературными методами ион­ного ле­ги­ро­вания. Роль примесей могут играть и всевозможные дефекты стру­к­ту­ры кри­­сталлической решетки полупроводника, такие как вакан­сии, ме­ж­ду­узельные атомы, дислокации. При малой концентрации примесей (10 21 ...10 23 м -3) примесные атомы со­­з­­дают дополнительные дискретные энергетические уровни в за­­п­ре­щенной зоне полупроводника. Такой полупроводник на­зы­ва­ется не­вы­рожденным. Повышение концентрации примесных ато­­мов в полупроводнике до 10 24 ...10 25 м -3 сопровождается поя­в­ле­нием в за­пре­щенной зоне по­лу­про­водника вместо дискретных уров­ней зон при­­мес­ных уров­ней. Такие полупроводники на­зы­ва­ют вы­рож­ден­ными. Различают два основных вида примесей, которые ис­поль­зую­т­­ся для преднамеренного легирования полупроводников и соз­да­ю­­щих преимущественно электронный или дырочный тип про­во­ди­­мо­сти. Примеси, введение которых в полупроводник соз­да­­ет эле­к­т­ронный тип проводимости, называются донорными. При­­месь, соз­да­ющая дырочную про­води­мость, называется акцеп­тор­ной. Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, которые обычно движутся случайным образом, имея при этом тепловую энергию, начнут в среднем повышать свою скорость дрейфа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типичными тепловыми скоростями очень мала, так что можно, прикидывая величину тока, принять, что от столкновения к столкновению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен q n . Сила, действующая на носитель в электрическом поле E, будет равна q n E. В гл. 43, §3 (вып. 4) мы как раз подсчитывали среднюю скорость дрейфа в таких условиях и нашли, что она равна Fτ/m, где F - сила, действующая на заряд; т - среднее время свободного пробега между столкновениями, а т - масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим т n . В этом приближении средняя скорость дрейфа будет равна

    Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и E, или проводимость σ, равен

    Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей N n определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, τ n , регулируется главным образом плотностью атомов примеси, а она, ясное дело, от температуры не зависит. Те же рассуждения можно приложить к веществу р-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количество отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из Для очень чистых веществN р и N n примерно равны. Они будут меньше, чем у материалов с примесями, так что и проводимость будет меньше. Кроме того, они будут резко меняться с температурой (по закону е –Е щели /xТ ), так что проводимость с температурой может меняться чрезвычайно быстро.

    При абсолютном нуле в каждом из состояний, энергия которых не превышает находится один электрон; в состояниях с электроны отсутствуют. Следовательно, функция распределения электронов по состояниям с различной энергией имеет при абсолютном нуле вид, показанный на рис. 52.1.

    Найдем функцию распределения при температуре, отличной от абсолютного нуля.

    Следуя Киттелю, рассмотрим неупругие столкновения равновесного электронного газа с атомом примеси, внедренным в кристаллическую решетку металла. Допустим, что атом примеси может находиться лишь в двух состояниях, энергию которых мы положим равной 0 и .

    Из множества процессов столкновений рассмотрим тот, в результате которого электрон переходит из состояния к с энергией Е в состояние к с энергией . Атом примеси переходит при этом с уровня с энергией на уровень с энергией, равной нулю. Вероятность перехода к пропорциональна: 1) вероятности того, что состояние занято электроном, 2) вероятности того, что состояние свободно, 3) вероятности того, что атом примеси находится в состоянии с энергией е. Таким образом,

    Вероятность обратного процесса пропорциональна выражению

    где - вероятность того, что атом примеси находится в состоянии с энергией, равной нулю.

    В силу принципа детального равновесия коэффициент пропорциональности в выражениях (52.1) и (52.2) одинаков.

    В равновесном состоянии вероятности переходов должны быть одинаковыми. Следовательно,

    (мы учли, что вероятности нахождения атома примеси на уровнях подчиняются закону распределения Больцмана).

    Функциональное уравнение (52.3) должно выполняться при любой температуре Т. Это произойдет, если положить

    где - величина, не зависящая от Е. Соответственно

    Произведение этих двух выражений при любой температуре равно

    Решив уравнение (52.4) относительно получим для функции распределения электронов по состояниям с различной энергией выражение

    Это выражение называется функцией распределения Ферми - Дирака. Параметр носит название химического потенциала.

    В соответствии со смыслом функции (52.5) величина представляет собой среднее число электронов, находящихся в состоянии с энергией Е. Поэтому формуле (52.5) можно придать вид

    (ср. с (49.4)). В отличие от (49.4), параметр в распределении (52.6) имеет положительные значенияданном случае это не приводит к отрицательным значениям чисел ). Распределение (52.6) лежит в основе статистики Ферми-Дирака.

    Частицы, подчиняющиеся этой статистике, называются фермионами. К их числу относятся все частицы с полуцелым спином.

    Для фермионов характерно то, что они никогда не занимают состояния, в котором уже находится одна частица. Таким образом, фермионы являются «индивидуалистами». Напомним, что бозоны, напротив, являются «коллективистами» (см. конец § 49).

    Имеющий размерность энергии параметр часто обозначается через и называется уровнем Ферми или энергией Ферми. В этих обозначениях функция (52.5) имеет вид

    Исследуем свойства функции (52.7). При абсолютном нуле

    Таким образом, при 0 К уровень Ферми ЕР совпадает с верхним заполненным электронами уровнем (см. предыдущий параграф).

    Независимо от значения температуры, при функция равна Следовательно, уровень Ферми совпадает с тем энергетическим уровнем, вероятность заполнения которого равна половине.

    Значение ЕР можно найти из условия, что полное число электронов, заполняющих уровни, должно равняться числу свободных электронов в кристалле ( - плотность электронов, V - объем кристалла). Количество состояний, приходящееся на интервал энергий , равно где - плотность состояний. Среднее число электронов, находящихся в случае теплового равновесия в этих состояниях, определяется выражением Интеграл от этого выражения даст полное число свободных электронов в кристалле:

    Это соотношение представляет собой по существу условие нормировки функции

    Подстановка в (52.8) выражений (51.9) и (52.7) дает

    Это соотношение позволяет в принципе найти как функцию . Интеграл в выражении (52.9) не берется. При условии, что удается найти приближенное значение интеграла. В результате для уровня Ферми получается выражение

    (напомним, что ) зависит от ; см. (51.10)).

    Из (52.10) следует, что при низких температурах (для которых только и справедливо это выражение) уровень Ферми хотя и зависит от температуры, но очень слабо. Поэтому во многих случаях можно полагать Однако для понимания, например, термоэлектрических явлений (см. § 63) зависимость от Т имеет принципиальное значение.

    При температурах, отличных от абсолютного нуля, график функции (52.7) имеет вид, показанный на рис. 52.2. В случае больших энергий (т. е. при что выполняется в области «хвоста» кривой распределения) единицей в знаменателе функции можно пренебречь. Тогда распределение электронов по состояниям с различной энергией принимает вид

    т. е. переходит в функцию распределения Больцмана.

    Отметим, что заметное отличие кривой на рис. 52.2 от графика, изображенного на рис. 52.1, наблюдается лишь в области порядка Чем выше температура, тем более полого идет ниспадающий участок кривой.

    Поведение электронного газа в сильной степени зависит от соотношения между температурой кристалла и температурой Ферми, равной Различают два предельных случая.

    Поэтому уже при комнатной температуре электронный газ во многих полупроводниках является невырожденным и подчиняется классической статистике.