Что такое сложение отрицательных чисел. Сложение отрицательных чисел: правило, примеры

В рамках этого материала мы затронем такую важную тему, как сложение отрицательных чисел. В первом параграфе мы расскажем основное правило для этого действия, а во втором – разберем конкретные примеры решения подобных задач.

Yandex.RTB R-A-339285-1

Основное правило сложения натуральных чисел

Перед тем, как вывести правило, вспомним, что мы вообще знаем о положительных и отрицательных числах. Ранее мы условились, что отрицательные числа нужно воспринимать как долг, убыток. Модуль отрицательного числа выражает точные размеры этого убытка. Тогда сложение отрицательных чисел можно представить как сложение двух убытков.

Воспользовавшись этим рассуждением, сформулируем основное правило сложения отрицательных чисел.

Определение 1

Для того чтобы выполнить сложение отрицательных чисел , нужно сложить значения их модулей и поставить минус перед полученным результатом. В буквенном виде формула выглядит как (− a) + (− b) = − (a + b) .

Исходя из этого правила, можно сделать вывод, что сложение отрицательных чисел аналогично сложению положительных, только в итоге у нас обязательно должно получиться отрицательное число, ведь перед суммой модулей надо ставить знак минус.

Какие можно привести доказательства этого правила? Для этого нам потребуется вспомнить основные свойства действий с действительными числами (или с целыми, или с рациональными –они одинаковы для всех этих типов чисел). Для доказательства нам нужно всего лишь продемонстрировать, что разность левой и правой части равенства (− a) + (− b) = − (a + b) будет равна 0 .

Вычесть одно число из другого – это то же самое, что и прибавить к нему такое же противоположное число. Следовательно, (− a) + (− b) − (− (a + b)) = (− a) + (− b) + (a + b) . Вспомним, что числовые выражения со сложением обладают двумя основными свойствами – сочетательным и переместительным. Тогда мы можем сделать вывод, что (− a) + (− b) + (a + b) = (− a + a) + (− b + b) . Поскольку, сложив противоположные числа, мы всегда получаем 0 , то (− a + a) + (− b + b) = 0 + 0 , а 0 + 0 = 0 .Наше равенство можно считать доказанным, значит, и правило сложения отрицательных чисел мы тоже доказали.

Во втором параграфе мы возьмем конкретные задачи, где нужно складывать отрицательные числа, и попробуем применить в них изученное правило.

Пример 1

Найдите сумму двух отрицательных чисел - 304 и - 18 007 .

Решение

Выполним действия пошагово. Сначала нам надо найти модули складываемых чисел: - 304 = 304 , - 180007 = 180007 . Далее нам нужно выполнить действие сложения, для чего мы используем метод подсчета столбиком:

Все, что нам осталось, – это поставить минус перед результатом и получить - 18 311 .

Ответ: - - 18 311 .

От того, какие у нас числа, зависит, к чему мы можем свести действие сложения: к нахождению суммы натуральных чисел, к сложению обыкновенных или десятичных дробей. Разберем задачу с такими числами.

Пример N

Найдите сумму двух отрицательных чисел - 2 5 и − 4 , (12) .

Решение

Находим модули искомых чисел и получаем 2 5 и 4 , (12) . У нас получились две разные дроби. Сведем задачу к сложению двух обыкновенных дробей, для чего представим периодическую дробь в виде обыкновенной:

4 , (12) = 4 + (0 , 12 + 0 , 0012 + . . .) = 4 + 0 , 12 1 - 0 , 01 = 4 + 0 , 12 0 , 99 = 4 + 12 99 = 4 + 4 33 = 136 33

В итоге мы получили дробь, которую будет легко сложить с первым исходным слагаемым (если вы забыли, как правильно складывать дроби с разными знаменателями, повторите соответствующий материал).

2 5 + 136 33 = 2 · 33 5 · 33 + 136 · 5 33 · 5 = 66 165 + 680 165 = 764 165 = 4 86 105

В итоге мы получили смешанное число, перед которым нам осталось только поставить минус. На этом расчеты завершены.

Ответ: - 4 86 105 .

Действительные отрицательные числа складываются аналогичным образом. Результат такого действия принято записывать числовым выражением. Его значение можно и не вычислять или ограничиться примерными расчетами. Так, к примеру, если нам надо найти сумму - 3 + (− 5) , то ответ мы записываем как - 3 − 5 . Сложению действительных чисел мы посвятили отдельный материал, в котором можно найти и другие примеры.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Положительные и отрицательные числа
Координатная прямая
Проведём прямую. Отметим на ней точку 0 (ноль) и примем эту точку за начало отсчёта.

Укажем стрелкой направление движения по прямой вправо от начала координат. В этом направлении от точки 0 будем откладывать положительные числа.

То есть положительными называют уже известные нам числа, кроме нуля.

Иногда положительные числа записывают со знаком «+». Например, «+8».

Для краткости записи знак «+» перед положительным числом обычно опускают и вместо «+8» пишут просто 8.

Поэтому «+3» и «3» - это одно и тоже число, только по разному обозначенное.

Выберем какой-либо отрезок, длину которого примем за единицу и отложим его несколько раз вправо от точки 0. В конце первого отрезка записывается число 1, в конце второго - число 2 и т.д.

Отложив единичный отрезок влево от начала отсчёта получим отрицательные числа: -1; -2; и т.д.

Отрицательные числа используют для обозначения различных величин, таких как: температура (ниже нуля), расход - то есть отрицательный доход, глубина - отрицательная высота и другие.

Как видно из рисунка, отрицательные числа - это уже известные нам числа, только со знаком «минус»: -8; -5,25 и т.д.

  • Число 0 не является ни положительным, ни отрицательным.

Числовую ось обычно располагают горизонтально или вертикально.

Если координатная прямая расположена вертикально, то направление вверх от начала отсчёта обычно считают положительным, а вниз от начала отсчёта - отрицательным.

Стрелкой указывают положительное направление.


Прямая, на которой отмечено:
. начало отсчёта (точка 0);
. единичный отрезок;
. стрелкой указано положительное направление;
называется координатной прямой или числовой осью.

Противоположные числа на координатной прямой
Отметим на координатной прямой две точки A и B, которые расположены на одинаковом расстоянии от точки 0 справа и слева соответственно.

В таком случае длины отрезков OA и OB одинаковы.

Значит, координаты точек A и B отличаются только знаком.


Также говорят, что точки A и B симметричны относительно начала координат.
Координата точки A положительная «+2», координата точки B имеет знак минус «-2».
A (+2), B (-2).

  • Числа, которые отличаются только знаком, называются противоположными числами. Соответствующие им точки числовой (координатной) оси симметричны относительны начала отсчёта.

Каждое число имеет единственное противоположное ему число . Только число 0 не имеет противоположного, но можно сказать, что оно противоположно самому себе.

Запись «-a» означает число, противоположное «a». Помните, что под буквой может скрываться как положительное число, так и отрицательное число.

Пример:
-3 - число противоположное числу 3.

Записываем в виде выражения:
-3 = -(+3)

Пример:
-(-6) - число противоположное отрицательному числу -6. Значит, -(-6) это положительное число 6.

Записываем в виде выражения:
-(-6) = 6

Сложение отрицательных чисел
Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси.

Сложение небольших по модулю чисел удобно выполнять на координатной прямой, мысленно представляя себе как точка, обозначающая число передвигается по числовой оси.

Возьмём какое-нибудь число, например, 3. Обозначим его на числовой оси точкой A.

Прибавим к числу положительное число 2. Это будет означать, что точку A надо переместить на два единичных отрезка в положительном направлении, то есть вправо . В результате мы получим точку B с координатой 5.
3 + (+ 2) = 5


Для того чтобы к положительному числу, например, к 3 прибавить отрицательное число (- 5), точку A надо переместить на 5 единиц длины в отрицательном направлении, то есть влево .

В этом случае координата точки B равна - 2.

Итак, порядок сложения рациональных чисел с помощью числовой оси будет следующим:
. отметить на координатной прямой точку A с координатой равной первому слагаемому;
. передвинуть её на расстояние, равное модулю второго слагаемого в направлении, которое соответствует знаку перед вторым числом (плюс - передвигаем вправо, минус - влево);
. полученная на оси точка B будет иметь координату, которая будет равна сумме данных чисел.

Пример.
- 2 + (- 6) =

Двигаясь от точки - 2 влево (так как перед 6 стоит знак минус), получим - 8.
- 2 + (- 6) = - 8

Сложение чисел с одинаковыми знаками
Складывать рациональные числа можно проще, если использовать понятие модуля.

Пускай нам нужно сложить числа, которые имеют одинаковые знаки.
Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

Пример.

Пример сложения отрицательных чисел.
(- 3,2) + (- 4,3) = - (3,2 + 4,3) = - 7,5

  • Чтобы сложить числа одного знака надо сложить их модули и поставить перед суммой знак, который был перед слагаемыми.

Сложение чисел с разными знаками
Если числа имеют разные знаки, то действуем несколько по-иному, чем при сложении чисел с одинаковыми знаками.
. Отбрасываем знаки перед числами, то есть берём их модули.
. Из большего модуля вычитаем меньший.
. Перед разностью ставим тот знак, который был у числа с бóльшим модулем.

Пример сложения отрицательного и положительного числа.
0,3 + (- 0,8) = - (0,8 - 0,3) = - 0,5

Пример сложения смешанных чисел.

Чтобы сложить числа разного знака надо:
. из бóльшего модуля вычесть меньший модуль;
. перед полученной разностью поставить знак числа, имеющего больший модуль.

Вычитание отрицательных чисел
Как известно вычитание - это действие, противоположное сложению.
Если a и b - положительные числа, то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a

Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.

  • Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.

Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)

Пример.
6 - 8 = 6 + (- 8) = - 2

Пример.
0 - 2 = 0 + (- 2) = - 2

  • Стоит запомнить выражения ниже.
  • 0 - a = - a
  • a - 0 = a
  • a - a = 0

Правила вычитания отрицательных чисел
Как видно из примеров выше вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.

Разность может быть положительным числом, отрицательным числом или числом ноль.

Примеры вычитания отрицательных и положительных чисел.
. - 3 - (+ 4) = - 3 + (- 4) = - 7
. - 6 - (- 7) = - 6 + (+ 7) = 1
. 5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a

+ (- a) = - a

Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a

- (- a) = + a

Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0

Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n

Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всемичислами в этих скобках.

Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел

Или выучить простое правило.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.

Умножение отрицательных чисел
Используя понятие модуля числа, сформулируем правила умножения положительных и отрицательных чисел.

Умножение чисел с одинаковыми знаками
Первый случай, который может вам встретиться - это умножение чисел с одинаковыми знаками.
Чтобы умножить два числа с одинаковыми знаками надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «+» (при записи ответа знак «плюс» перед первым числом слева можно опускать).

Примеры умножения отрицательных и положительных чисел.
. (- 3) . (- 6) = + 18 = 18
. 2 . 3 = 6

Умножение чисел с разными знаками
Второй возможный случай - это умножение чисел с разными знаками.
Чтобы умножить два числа с разными знаками, надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «-».

Примеры умножения отрицательных и положительных чисел.
. (- 0,3) . 0,5 = - 1,5
. 1,2 . (- 7) = - 8,4

Правила знаков для умножения
Запомнить правило знаков для умножения очень просто. Данное правило совпадает с правилом раскрытия скобок.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.


В «длинных» примерах, в которых есть только действие умножение, знак произведения можно определять по количеству отрицательных множителей.

При чётном числе отрицательных множителей результат будет положительным, а при нечётном количестве - отрицательным.
Пример.
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) =

В примере пять отрицательных множителей. Значит, знак результата будет «минус».
Теперь вычислим произведение модулей, не обращая внимание на знаки.
6 . 3 . 4 . 2 . 12 . 1 = 1728

Конечный результат умножения исходных чисел будет:
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) = - 1728

Умножение на ноль и единицу
Если среди множителей есть число ноль или положительная единица, то умножение выполняется по известным правилам.
. 0 . a = 0
. a . 0 = 0
. a . 1 = a

Примеры:
. 0 . (- 3) = 0
. 0,4 . 1 = 0,4
Особую роль при умножении рациональных чисел играет отрицательная единица (- 1).

  • При умножении на (- 1) число меняется на противоположное.

В буквенном выражении это свойство можно записать:
a . (- 1) = (- 1) . a = - a

При совместном выполнении сложения, вычитания и умножения рациональных чисел сохраняется порядок действий, установленный для положительных чисел и нуля.

Пример умножения отрицательных и положительных чисел.


Деление отрицательных чисел
Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление - это действие, обратное умножению.

Если a и b положительные числа, то разделить число a на число b, значит найти такое число с, которое при умножении на b даёт число a.

Данное определение деления действует для любых рациональных чисел, если делители отличны от нуля.

Поэтому, например, разделить число (- 15) на число 5 - значит, найти такое число, которое при умножении на число 5 даёт число (- 15). Таким числом будет (- 3), так как
(- 3) . 5 = - 15

значит

(- 15) : 5 = - 3

Примеры деления рациональных чисел.
1. 10: 5 = 2, так как 2 . 5 = 10
2. (- 4) : (- 2) = 2, так как 2 . (- 2) = - 4
3. (- 18) : 3 = - 6, так как (- 6) . 3 = - 18
4. 12: (- 4) = - 3, так как (- 3) . (- 4) = 12

Из примеров видно, что частное двух чисел с одинаковыми знаками - число положительное (примеры 1, 2), а частное двух чисел с разными знаками - число отрицательное (примеры 3,4).

Правила деления отрицательных чисел
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

. перед результатом поставить знак «+».

Примеры деления чисел с одинаковыми знаками:
. (- 9) : (- 3) = + 3
. 6: 3 = 2

Чтобы разделить два числа с разными знаками, надо:
. модуль делимого разделить на модуль делителя;
. перед результатом поставить знак «-».

Примеры деления чисел с разными знаками:
. (- 5) : 2 = - 2,5
. 28: (- 2) = - 14
Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби

Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».

Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:

  • Частное от деления нуля на число, отличное от нуля, равно нулю.
  • 0: a = 0, a ≠ 0
  • Делить на ноль НЕЛЬЗЯ!

Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
. а: 1 = a
. а: (- 1) = - a
. а: a = 1

, где а - любое рациональное число.

Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
. если a . b = с; a = с: b; b = с: a;
. если a: b = с; a = с. b; b = a: c

Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.

Пример нахождения неизвестного.
x . (- 5) = 10

x = 10: (- 5)

x = - 2

Знак «минус» в дробях
Разделим число (- 5) на 6 и число 5 на (- 6).

Напоминаем, что черта в записи обыкновенной дроби - это тот же знак деления, и запишем частное каждого из этих действий в виде отрицательной дроби.

Таким образом знак "минус" в дроби может находиться:
. перед дробью;
. в числителе;
. в знаменателе.

  • При записи отрицательных дробей знак «минус» можно ставить перед дробью, переносить его из числителя в знаменатель или из знаменателя в числитель.

Это часто используется при выполнении действий с дробями, облегчая вычисления.

Пример. Обратите внимание, что после вынесения знака «минуса» перед скобкой мы из большего модуля вычитаем меньший по правилам сложения чисел с разными знаками.


Используя описанное свойство переноса знака в дроби, можно действовать, не выясняя, модуль какого из данных дробных чисел больше.

Тема «Сложение отрицательных чисел» изучается в курсе математики 6 класса. К сожалению не всем обучающимся легко дается материал по данной теме. Чтобы улучшить восприятие и понимание, необходимо использовать различные способы и методы обучения. Видеоуроки являются эффективным средством обучения, особенно при изучении темы «Сложение отрицательных чисел».

Урок «Сложение отрицательных чисел» длится всего 3,5 минуты. Но за это время автор успевает полностью раскрыть тему. Обучающимся только останется закрепить полученную информацию как самостоятельно, так и с помощью учителя.

Начинается данный урок с рассмотрения частного случая, а именно, с иллюстрации того, как меняется температура. Первоначально температура воздуха была -6 градусов, после чего понизилась на 3 градуса. В результате значение температуры установилось на уровне -9 градусов. При этом автор записывает сумму отрицательных чисел (-6)+(-3), параллельно демонстрируя все на рисунке, изображающем термометры до и после понижения температуры. После этого автор предлагает найти значение суммы этих чисел с помощью координатной прямой. Это обучающиеся должны уже уметь с предыдущих уроков, которые, кстати, можно найти здесь, в базе видеоуроков. Автор показывает, как к числу прибавить отрицательное число, то есть от точки со значением -6 необходимо отсчитать 3 единицы влево, так как -3 число отрицательное. В результате получается новое значение температуры, равное -9. Таким образом получается, что (-6)+(-3)=-9. При этом, автор обращает внимание на то, что число 9 получается при сложении чисел 6 и 3. А, как известно, |-6|=6 и |-3|=3, получается, что для сложения чисел -6 и -3 необходимо найти их модули, сложить их и подставить знак «-».

  1. Сложить их модули;
  2. Поставить перед полученным числом знак «-».

Это правило закрепляется примером, который демонстрирует сумму чисел -8,7 и -3,5. Согласно только что озвученному правилу, необходимо сложить модули чисел, записав их в скобках, и поставить знак «-» перед скобками, чтобы результат не утратил свой смысл. В итоге получилось отрицательное число -12,2. При этом, автор отмечает, что таким способом можно складывать абсолютно любые отрицательные числа. Это он демонстрирует на примере сложения двух отрицательных дробей.

После того, как теория изучена, примеры рассмотрены, автор предлагает ответить на вопросы, которые относятся непосредственно к данной теме. Первый вопрос предлагает сформулировать правило сложения отрицательных чисел. Второй вопрос - провокационный, который заставляет обучающихся немного подумать, проанализировав полученную из урока информацию.

Урок будет полезен для учителей как на обычном уроке в курсе математики 6 класса, так и на дополнительных занятиях.

В этой статье мы поговорим про сложение отрицательных чисел . Сначала дадим правило сложения отрицательных чисел и докажем его. После этого разберем характерные примеры сложения отрицательных чисел.

Навигация по странице.

Прежде чем дать формулировку правила сложения отрицательных чисел, обратимся к материалу статьи положительные и отрицательные числа. Там мы упоминали, что отрицательные числа можно воспринимать как долг, а модуль числа в этом случае определяет величину этого долга. Следовательно, сложение двух отрицательных чисел – это есть сложение двух долгов.

Этот вывод позволяет осознать правило сложения отрицательных чисел . Чтобы сложить два отрицательных числа, нужно:

  • сложить их модули;
  • поставить перед полученной суммой знак минус.

Запишем правило сложения отрицательных чисел −a и −b в буквенном виде: (−a)+(−b)=−(a+b) .

Понятно, что озвученное правило сводит сложение отрицательных чисел к сложению положительных чисел (модуль отрицательного числа является числом положительным). Также понятно, что результатом сложения двух отрицательных чисел является отрицательное число, о чем свидетельствует знак минус, который ставится перед суммой модулей.

Правило сложения отрицательных чисел можно доказать, основываясь на свойствах действий с действительными числами (или таких же свойствах действий с рациональными или целыми числами). Для этого достаточно показать, что разность левой и правой частей равенства (−a)+(−b)=−(a+b) равна нулю.

Так как вычитание числа – это все равно, что прибавление противоположного числа (смотрите правило вычитания целых чисел), то (−a)+(−b)−(−(a+b))=(−a)+(−b)+(a+b) . В силу переместительного и сочетательного свойств сложения имеем (−a)+(−b)+(a+b)=(−a+a)+(−b+b) . Так как сумма противоположных чисел равна нулю, то (−a+a)+(−b+b)=0+0 , а 0+0=0 в силу свойства сложения числа с нулем. Этим доказано равенство (−a)+(−b)=−(a+b) , а значит, и правило сложения отрицательных чисел.

Таким образом, данное правило сложения применимо как к отрицательным целым числам, так и к рациональным числам, а также к действительным числам.

Осталось лишь научиться применять правило сложения отрицательных чисел на практике, что мы и сделаем в следующем пункте.

Примеры сложения отрицательных чисел

Разберем примеры сложения отрицательных чисел . Начнем с самого простого случая – сложения отрицательных целых чисел, сложение будем проводить по правилу, рассмотренному в предыдущем пункте.

Выполните сложение отрицательных чисел −304 и −18 007 .

Выполним все шаги правила сложения отрицательных чисел.

Сначала находим модули складываемых чисел: и . Теперь нужно сложить полученные числа, здесь удобно выполнить сложение столбиком:

Теперь ставим знак минус перед полученным числом, в результате имеем −18 311 .

Запишем все решение в краткой форме: (−304)+(−18 007)= −(304+18 007)=−18 311 .

Сложение отрицательных рациональных чисел в зависимости от самих чисел можно свести либо к сложению натуральных чисел, либо к сложению обыкновенных дробей, либо к сложению десятичных дробей.

Сложите отрицательное число и отрицательное число −4,(12) .

По правилу сложения отрицательных чисел сначала нужно вычислить сумму модулей. Модули складываемых отрицательных чисел равны соответственно 2/5 и 4,(12) . Сложение полученных чисел можно свести к сложению обыкновенных дробей. Для этого переведем периодическую десятичную дробь в обыкновенную дробь: . Таким образом, 2/5+4,(12)=2/5+136/33 . Теперь выполним сложение дробей с разными знаменателями: .

Осталось поставить перед полученным числом знак минус: . На этом сложение исходных отрицательных чисел завершено.

По этому же правилу сложения отрицательных чисел складываются и отрицательные действительные числа. Здесь стоит отметить, что результат сложения действительных чисел очень часто записывается в виде числового выражения, а значение этого выражение вычисляется приближенно, и то при необходимости.

Для примера найдем сумму отрицательных чисел и −5 . Модули этих чисел равны квадратному корню из трех и пяти соответственно, а сумма исходных чисел равна . В таком виде и записывается ответ. Другие примеры можно посмотреть в статье сложение действительных чисел .

www.cleverstudents.ru

Правило как сложить два отрицательных числа

Действия с отрицательными и положительными числами

Абсолютная величина (модуль). Сложение.

Вычитание. Умножение. Деление.

Абсолютная величина (модуль). Для отрицательного числа – это положительное число, получаемое от перемены его знака с « – » на « + »; для положительного числа и нуля – само это число. Для обозначения абсолютной величины (модуля) числа используются две прямые черты, внутри которых записывается это число.

П р и м е р ы: | – 5 | = 5, | 7 | = 7, | 0 | = 0.

1) при сложении двух чисел с одинаковыми знаками складываются

их абсолютные величины и перед суммой ставится общий знак.

2) при сложении двух чисел с разными знаками их абсолютные

величины вычитаются (из большей меньшая) и ставится знак

числа с большей абсолютной величиной.

Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.

(+ 8) – (+ 5) = (+ 8) + (– 5) = 3;

(+ 8) – (– 5) = (+ 8) + (+ 5) = 13;

(– 8) – (– 5) = (– 8) + (+ 5) = – 3;

(– 8) – (+ 5) = (– 8) + (– 5) = – 13;

Умножение. При умножении двух чисел их абсолютные величины умножаются, а произведение принимает знак « + » , если знаки сомножителей одинаковы, и знак « – » , если знаки сомножителей разные.

Полезна следующая схема (правила знаков при умножении ):

При умножении нескольких чисел (двух и более) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.

Деление. При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.

Здесь действуют те же правила знаков, что и при умножении :

Сложение отрицательных чисел

Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси.

Сложение чисел с помощью координатной прямой

Сложение небольших по модулю чисел удобно выполнять на координатной прямой, мысленно представляя себе как точка, обозначающая число передвигается по числовой оси.

Возьмём какое-нибудь число, например, 3 . Обозначим его на числовой оси точкой « A ».

Прибавим к числу положительное число 2 . Это будет означать, что точку « A » надо переместить на два единичных отрезка в положительном направлении, то есть вправо. В результате мы получим точку « B » с координатой 5 .

Для того чтобы к положительному числу, например, к 3 прибавить отрицательное число « −5 », точку « A » надо переместить на 5 единиц длины в отрицательном направлении, то есть влево.

В этом случае координата точки « B » равна - « 2 ».

Итак, порядок сложения рациональных чисел с помощью числовой оси будет следующим:

  • отметить на координатной прямой точку « A » с координатой равной первому слагаемому;
  • передвинуть её на расстояние, равное модулю второго слагаемого в направлении, которое соответствует знаку перед вторым числом (плюс - передвигаем вправо, минус - влево);
  • полученная на оси точка « B » будет иметь координату, которая будет равна сумме данных чисел.
  • Двигаясь от точки - 2 влево (так как перед 6 стоит знак минус), получим - 8 .

    Сложение чисел с одинаковыми знаками

    Складывать рациональные числа можно проще, если использовать понятие модуля.

    Пускай нам нужно сложить числа, которые имеют одинаковые знаки.

    Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

    Пример сложения отрицательных чисел.

    Чтобы сложить числа одного знака надо сложить их модули и поставить перед суммой знак, который был перед слагаемыми.

    Сложение чисел с разными знаками

    Если числа имеют разные знаки, то действуем несколько по-иному, чем при сложении чисел с одинаковыми знаками.

  • Отбрасываем знаки перед числами, то есть берём их модули.
  • Из большего модуля вычитаем меньший.
  • Перед разностью ставим тот знак, который был у числа с бóльшим модулем.
  • Пример сложения отрицательного и положительного числа .

    Пример сложения смешанных чисел.

    Чтобы сложить числа разного знака надо:

    • из бóльшего модуля вычесть меньший модуль;
    • перед полученной разностью поставить знак числа, имеющего больший модуль.
    • Сложение и вычитание положительных и отрицательных чисел

      Ничего непонятно?

      Попробуй обратиться за помощью к преподавателям

      Правило сложения отрицательных чисел

      Для сложения двух отрицательных чисел необходимо:

    • выполнить сложение их модулей;
    • дописать к полученной сумме знак «–».
    • Согласно правилу сложения можно записать:

      Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.

      Сложить отрицательные числа $−185$ и $−23 \ 789.$

      Воспользуемся правилом сложения отрицательных чисел.

      Выполним сложение полученных чисел:

      $185+23 \ 789=23 \ 974$.

      Поставим знак $«–»$ перед найденным числом и получим $−23 974$.

      Краткая запись решения: $(−185)+(−23 \ 789)=−(185+23 \ 789)=−23 \ 974$.

      При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.

      Сложить отрицательные числа $-\frac $ и $−7,15$.

      Согласно правилу сложения отрицательных чисел сначала необходимо найти сумму модулей:

      Полученные значения удобно свести к десятичным дробям и выполнить их сложение:

      Поставим перед полученным значением знак $«–»$ и получим $–7,4$.

      Краткая запись решения:

      Сложение чисел с противоположными знаками

      Правило сложения чисел с противоположными знаками:

    • вычислить модули чисел;
    • выполнить сравнение полученных чисел:
    • если они равны, то исходные числа являются противоположными и их сумма равна нулю;

      если они не равны, то нужно запомнить знак числа, у которого модуль больше;

    • из большего модуля вычесть меньший;
    • перед полученным значением поставить знак того числа, у которого модуль больше.
    • Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.

      Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.

      Сложить числа $4$ и $−8$.

      Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.

      Найдем модули данных чисел:

      Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.

      Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$

      Лень читать?

      Задай вопрос специалистам и получи
      ответ уже через 15 минут!

      Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.

      Вычитание отрицательных чисел

      Правило вычитания отрицательных чисел:

      Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.

      Согласно правилу вычитания можно записать:

      Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.

      Вычесть из отрицательного числа $−28$ отрицательное число $−5$.

      Противоположное число для числа $–5$ – это число $5$.

      Согласно правилу вычитания отрицательных чисел получим:

      Выполним сложение чисел с противоположными знаками:

      Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

      При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.

      Вычитание чисел с противоположными знаками

      Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.

      Вычесть положительное число $7$ из отрицательного числа $−11$.

      Противоположное число для числа $7$ – это число $–7$.

      Согласно правилу вычитания чисел с противоположными знаками получим:

      Выполним сложение отрицательных чисел:

      При вычитании дробных чисел с противоположными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.

      Так и не нашли ответ
      на свой вопрос?

      Просто напиши с чем тебе
      нужна помощь

      Сложение отрицательных чисел: правило, примеры

      В рамках этого материала мы затронем такую важную тему, как сложение отрицательных чисел. В первом параграфе мы расскажем основное правило для этого действия, а во втором – разберем конкретные примеры решения подобных задач.

      Основное правило сложения натуральных чисел

      Перед тем, как вывести правило, вспомним, что мы вообще знаем о положительных и отрицательных числах. Ранее мы условились, что отрицательные числа нужно воспринимать как долг, убыток. Модуль отрицательного числа выражает точные размеры этого убытка. Тогда сложение отрицательных чисел можно представить как сложение двух убытков.

      Воспользовавшись этим рассуждением, сформулируем основное правило сложения отрицательных чисел.

      Для того чтобы выполнить сложение отрицательных чисел , нужно сложить значения их модулей и поставить минус перед полученным результатом. В буквенном виде формула выглядит как (− a) + (− b) = − (a + b) .

      Исходя из этого правила, можно сделать вывод, что сложение отрицательных чисел аналогично сложению положительных, только в итоге у нас обязательно должно получиться отрицательное число, ведь перед суммой модулей надо ставить знак минус.

      Какие можно привести доказательства этого правила? Для этого нам потребуется вспомнить основные свойства действий с действительными числами (или с целыми, или с рациональными –они одинаковы для всех этих типов чисел). Для доказательства нам нужно всего лишь продемонстрировать, что разность левой и правой части равенства (− a) + (− b) = − (a + b) будет равна 0 .

      Вычесть одно число из другого – это то же самое, что и прибавить к нему такое же противоположное число. Следовательно, (− a) + (− b) − (− (a + b)) = (− a) + (− b) + (a + b) . Вспомним, что числовые выражения со сложением обладают двумя основными свойствами – сочетательным и переместительным. Тогда мы можем сделать вывод, что (− a) + (− b) + (a + b) = (− a + a) + (− b + b) . Поскольку, сложив противоположные числа, мы всегда получаем 0 , то (− a + a) + (− b + b) = 0 + 0 , а 0 + 0 = 0 .Наше равенство можно считать доказанным, значит, и правило сложения отрицательных чисел мы тоже доказали.

      Задачи на сложение отрицательных чисел

      Во втором параграфе мы возьмем конкретные задачи, где нужно складывать отрицательные числа, и попробуем применить в них изученное правило.

      Найдите сумму двух отрицательных чисел — 304 и — 18 007 .

      Решение

      Выполним действия пошагово. Сначала нам надо найти модули складываемых чисел: — 304 = 304 , — 180007 = 180007 . Далее нам нужно выполнить действие сложения, для чего мы используем метод подсчета столбиком:

      Все, что нам осталось, – это поставить минус перед результатом и получить — 18 311 .

      Ответ: — — 18 311 .

      От того, какие у нас числа, зависит, к чему мы можем свести действие сложения: к нахождению суммы натуральных чисел, к сложению обыкновенных или десятичных дробей. Разберем задачу с такими числами.

      Найдите сумму двух отрицательных чисел — 2 5 и − 4 , (12) .

      Находим модули искомых чисел и получаем 2 5 и 4 , (12) . У нас получились две разные дроби. Сведем задачу к сложению двух обыкновенных дробей, для чего представим периодическую дробь в виде обыкновенной:

      4 , (12) = 4 + (0 , 12 + 0 , 0012 + . . .) = 4 + 0 , 12 1 — 0 , 01 = 4 + 0 , 12 0 , 99 = 4 + 12 99 = 4 + 4 33 = 136 33

      В итоге мы получили дробь, которую будет легко сложить с первым исходным слагаемым (если вы забыли, как правильно складывать дроби с разными знаменателями, повторите соответствующий материал).

      2 5 + 136 33 = 2 · 33 5 · 33 + 136 · 5 33 · 5 = 66 165 + 680 165 = 764 165 = 4 86 105

      В итоге мы получили смешанное число, перед которым нам осталось только поставить минус. На этом расчеты завершены.

      Ответ: — 4 86 105 .

      Действительные отрицательные числа складываются аналогичным образом. Результат такого действия принято записывать числовым выражением. Его значение можно и не вычислять или ограничиться примерными расчетами. Так, к примеру, если нам надо найти сумму — 3 + (− 5) , то ответ мы записываем как — 3 − 5 . Сложению действительных чисел мы посвятили отдельный материал, в котором можно найти и другие примеры.


      В этой статье мы поговорим про сложение отрицательных чисел . Сначала дадим правило сложения отрицательных чисел и докажем его. После этого разберем характерные примеры сложения отрицательных чисел.

      Навигация по странице.

      Правило сложения отрицательных чисел

      Прежде чем дать формулировку правила сложения отрицательных чисел, обратимся к материалу статьи положительные и отрицательные числа . Там мы упоминали, что отрицательные числа можно воспринимать как долг, а в этом случае определяет величину этого долга. Следовательно, сложение двух отрицательных чисел – это есть сложение двух долгов.

      Этот вывод позволяет осознать правило сложения отрицательных чисел . Чтобы сложить два отрицательных числа, нужно:

      • сложить их модули;
      • поставить перед полученной суммой знак минус.

      Запишем правило сложения отрицательных чисел −a и −b в буквенном виде: (−a)+(−b)=−(a+b) .

      Понятно, что озвученное правило сводит сложение отрицательных чисел к сложению положительных чисел (модуль отрицательного числа является числом положительным). Также понятно, что результатом сложения двух отрицательных чисел является отрицательное число, о чем свидетельствует знак минус, который ставится перед суммой модулей.

      Правило сложения отрицательных чисел можно доказать, основываясь на свойствах действий с действительными числами (или таких же свойствах действий с рациональными или целыми числами). Для этого достаточно показать, что разность левой и правой частей равенства (−a)+(−b)=−(a+b) равна нулю.

      Так как вычитание числа – это все равно, что прибавление противоположного числа (смотрите правило вычитания целых чисел), то (−a)+(−b)−(−(a+b))=(−a)+(−b)+(a+b) . В силу переместительного и сочетательного свойств сложения имеем (−a)+(−b)+(a+b)=(−a+a)+(−b+b) . Так как сумма противоположных чисел равна нулю, то (−a+a)+(−b+b)=0+0 , а 0+0=0 в силу свойства сложения числа с нулем. Этим доказано равенство (−a)+(−b)=−(a+b) , а значит, и правило сложения отрицательных чисел.

      Осталось лишь научиться применять правило сложения отрицательных чисел на практике, что мы и сделаем в следующем пункте.

      Примеры сложения отрицательных чисел

      Разберем примеры сложения отрицательных чисел . Начнем с самого простого случая – сложения отрицательных целых чисел, сложение будем проводить по правилу, рассмотренному в предыдущем пункте.

      Пример.

      Выполните сложение отрицательных чисел −304 и −18 007 .

      Решение.

      Выполним все шаги правила сложения отрицательных чисел.

      Сначала находим модули складываемых чисел: и . Теперь нужно сложить полученные числа, здесь удобно выполнить сложение столбиком :

      Теперь ставим знак минус перед полученным числом, в результате имеем −18 311 .

      Запишем все решение в краткой форме: (−304)+(−18 007)= −(304+18 007)=−18 311 .

      Ответ:

      −18 311 .

      Сложение отрицательных рациональных чисел в зависимости от самих чисел можно свести либо к сложению натуральных чисел , либо к сложению обыкновенных дробей , либо к сложению десятичных дробей .

      Пример.

      Сложите отрицательное число и отрицательное число −4,(12) .

      Решение.

      По правилу сложения отрицательных чисел сначала нужно вычислить сумму модулей. Модули складываемых отрицательных чисел равны соответственно 2/5 и 4,(12) . Сложение полученных чисел можно свести к сложению обыкновенных дробей. Для этого переведем периодическую десятичную дробь в обыкновенную дробь : . Таким образом, 2/5+4,(12)=2/5+136/33 . Теперь выполним