Найти площадь n угольника. Площадь многоугольника через радиус вписанной окружности

В задачах по геометрии часто требуется вычислить площадь многоугольника. Причем он может иметь довольно разнообразную форму - от всем знакомого треугольника до некоторого n-угольника с каким-то невообразимым числом вершин. К тому же эти многоугольники бывают выпуклыми или вогнутыми. В каждой конкретной ситуации полагается отталкиваться от внешнего вида фигуры. Так получится выбрать оптимальный путь решения задачи. Фигура может оказаться правильной, что существенно упростит решение задачи.

Немного теории о многоугольниках

Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру. Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет. Они дают название получившейся фигуре. Это может быть:

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.

Какие их виды существуют?

Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника. В выпуклом всегда все вершины лежат с одной стороны от такой прямой.

В школьном курсе геометрии большая часть времени уделяется именно выпуклым фигурам. Поэтому в задачах требуется узнать площадь выпуклого многоугольника. Тогда существует формула через радиус описанной окружности, которая позволяет найти искомую величину для любой фигуры. В других случаях однозначного решения не существует. Для треугольника формула одна, а для квадрата или трапеции совершенно другие. В ситуациях, когда фигура неправильная или вершин очень много, принято разделять их на простые и знакомые.

Как поступить, если фигура имеет три или четыре вершины?

В первом случае он окажется треугольником, и можно воспользоваться одной из формул:

  • S = 1/2 * а * н, где а — сторона, н — высота к ней;
  • S = 1/2 * а * в * sin (А), где а, в — сторон\ы треугольника, А — угол между известными сторонами;
  • S = √(p * (p - а) * (p - в) * (p - с)), где с — сторона треугольника, к уже обозначенным двум, р — полупериметр, то есть сумма всех трех сторон, разделенная на два.

Фигура с четырьмя вершинами может оказаться параллелограммом:

  • S = а * н;
  • S = 1/2 * d 1 * d 2 * sin(α), где d 1 и d 2 — диагонали, α — угол между ними;
  • S = a * в * sin(α).

Формула для площади трапеции: S = н * (a + в) / 2, где а и в — длины оснований.

Как поступить с правильным многоугольником, у которого больше четырех вершин?

Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы.

Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула:

S n = 1/2 * n * R n 2 * sin (360º/n), где n — количество вершин многоугольника.

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R 2 ;
  2. квадрата: S = 2 * R 2 ;
  3. шестиугольника: S = (3√3)/2 * R 2 .

Ситуация с неправильной фигурой

Выходом для того, как узнать площадь многоугольника, если он не является правильным и его нельзя отнести ни к одной из известных ранее фигур, является алгоритм:

  • разбить его на простые фигуры, например, треугольники, чтобы они не пересекались;
  • вычислить их площади по любой формуле;
  • сложить все результаты.

Что делать, если в задаче даны координаты вершин многоугольника?

То есть известен набор пар чисел для каждой точки, которые ограничивают стороны фигуры. Обычно они записываются как (x 1 ; y 1) для первой, (x 2 ; y 2) — для второй, а n-ая вершина имеет такие значения (x n ; y n). Тогда площадь многоугольника определяется, как сумма n слагаемых. Каждое из них выглядит так: ((y i+1 +y i)/2) * (x i+1 - x i). В этом выражении i изменяется от единицы до n.

Стоит отметить, что знак результата будет зависеть от обхода фигуры. При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 - 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 - 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = - 3.915.

Совет по решению задачи, для которой многоугольник изображен на бумаге в клетку

Чаще всего озадачивает то, что в данных имеется только размер клеточки. Но оказывается, что больше сведений не нужно. Рекомендацией к решению такой задачи является разбивание фигуры на множество треугольников и прямоугольников. Их площади довольно просто сосчитать по длинам сторон, которые потом легко сложить.

Но часто есть более простой подход. Он заключается в том, чтобы дорисовать фигуру до прямоугольника и вычислить значение его площади. Потом сосчитать площади тех элементов, которые оказались лишними. Вычесть их из общего значения. Этот вариант порой предполагает несколько меньшее число действий.

Площадь многоугольника. Друзья! К вашему вниманию пару задачек с многоугольником и вписанной в него окружностью. Существует формула, которой связывается радиус указанной окружности и периметр с площадью такого многоугольника. Вот она:

Как выводится эта формула? Просто!

Имеем многоугольник и вписанную окружность. *Рассмотрим вывод на примере пятиугольника. Разобьём его на треугольники (соединим центр окружности и вершины отрезками). Получается, что у каждого треугольника основание является стороной многоугольника, а высоты образованных треугольников равны радиусу вписанной окружности:

Используя формулу площади треугольника можем записать:


Вынесем общие множители:

Уверен, сам принцип вам понятен.

*При выводе формулы количество сторон взятого многоугольника не имеет значения. В общем виде вывод формулы выглядел бы так:


*Дополнительная информация!

Известна формула радиуса окружности вписанной в треугольник

Не трудно заметить, что она исходит из полученной нами формулы, посмотрите (a,b,c – это стороны треугольника):

27640. Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

Вычисляем:

Ещё пара задач с многоугольниками.

27930. Угол между стороной правильного n -угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 54 0 . Найдите n .

Если угол между радиусом окружности и стороной многоугольника равен 54 0 , то угол между сторонами многоугольника будет равен 108 0 . Тут необходимо вспомнить формулу угла правильного многоугольника:

Остаётся подставить в формулу значение угла и вычислить n:

27595. Периметры двух подобных многоугольников относятся как 2:7. Площадь меньшего многоугольника равна 28. Найдите площадь большего многоугольника.

Здесь нужно вспомнить о том, что если линейные размеры фигуры увеличивается в k раз, то площадь фигуры увеличивается в k 2 раз. *Свойство подобия фигур.

Периметр большего многоугольника больше периметра меньшего в 7/2 раза, значит площадь увеличилась в (7/2) 2 раза. Таким образом, площадь большего многоугольника равна.

Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

У этого термина существуют и другие значения, см. Площадь (значения). Площадь плоской фигуры аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное… … Википедия

I Площадь одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П.… … Большая советская энциклопедия

У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Ж. 1. Часть земной поверхности, пространство, естественно ограниченное или специально выделенное для какой либо цели. отт. Водное пространство. отт. Большое, ровное место, пространство. 2. Ровное незастроенное пространство общественного… … Современный толковый словарь русского языка Ефремовой

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/2 сентября 2012. Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует… … Википедия

Две фигуры в R2, имеющие равные площади и соответственно два многоугольника M1 и М 2 такие, что их можно разрезать на многоугольники так, что части, составляющие М 1, соответственно конгруэнтны частям, составляющим М 2. Для, равновеликость… … Математическая энциклопедия

В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

У этого термина существуют и другие значения, см. Теорема Пика. В = 7, Г = 8, В + Г/2 − 1 = 10 Формула Пика (или теорема Пика) классический результат комбинаторной геометрии и геометрии чисел. Площадь … Википедия

Область (связное открытое множество) на границе выпуклого тела в евклидовом пространстве Е 3. Вся граница выпуклого тела наз. полной В. п. Если тело конечно, то полная В. п. наз. замкнутой. Если тело бесконечно, то полная В. п. наз. бесконечной.… … Математическая энциклопедия

Книги

  • Комплект таблиц. Геометрия. 8 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов.…
  • Комплект таблиц. Математика. Геометрические фигуры и величины (9 таблиц) , . Учебный альбом из 9 листов. Точки. Линии. Многоугольники. Периметр многоугольника. Площадь геометрических фигур. Угол. Виды углов. Величины. Единицы времени. Единицыдлины. Единицы массы.…
  • обучающие: научить учащихся находить площадь многоугольника, используя выбранные ими способы, сформировать начальные представления
  • многоугольнике, графические и измерительные навыки;
  • развивающие: развитие способов умственной деятельности учащихся при выполнении заданий от наблюдения, расчетов до выяснения закономерностей вычисления площади многоугольника;
  • воспитывающие: раскрытие субъективного опыта учащихся, поощрение действий, стремлений учащихся как основы воспитания положительных качеств личности;
  • методическая: создание условий для проявления познавательной активности учащихся.

Оснащение урока:

  1. Оформление доски: слева - фигуры многоугольника, справа - чистое полотно доски для записи на уроке, в центре – многоугольник-прямоугольник.
  2. Листок “К исследованию”.
  3. Инструментарии учителя и учащихся (мел, указка, линейка, листок исследования, фигуры, ватман, маркер).

Метод урока:

  • По взаимодействию учителя и учащихся – диалог-общение;
  • По способу решения задач – частично-поисковый;
  • По способу умственной деятельности - (СУД) развивающее обучение.

Форма урока - фронтальная, в парах, индивидуальная.

Тип урока - урок усвоения новых знаний, умений и навыков.

Структура урока - постепенное углубление в тему, гибкая, диалогическая.

Ход урока

Приветствие.

Урок прекрасен и приносит радость, когда мы мыслим, дружно работаем. Сегодня мы будем рассматривать фигуры, определять их названия, думать, искать и находить решения. Пожелаем друг другу успешной работы.

Актуализация знаний.

Рассмотрите фигуры (на доске многоугольники).

Они все вместе. Почему? Какой у них общий признак? (Многоугольники).

Назовите этот многоугольник (5-угольник, 6-угольник…)

Может быть, вы знаете, что такое площадь многоугольника?

Тогда покажите на одной из фигур.

(Обобщение учителем: площадь - часть плоскости внутри замкнутой геометрической фигуры.)

В русском языке это слово имеет несколько значений.

(Ученик по словарю знакомит со значениями.)

  1. Часть плоскости внутри замкнутой геометрической фигуры.
  2. Большое незастроенное и ровное место.
  3. Помещение для какой-либо цели.

Какое из значений используется в математике?

В математике используется первое значение.

(На доске фигура).

Это многоугольник? Да.

Назовите фигуру по-другому. Прямоугольник.

Покажи длину, ширину.

Как найти площадь многоугольника?

Запишите при помощи букв и знаков формулу.

Если длина нашего прямоугольника 20 см, ширина 10см. Чему равна площадь?

Площадь равна 200 см 2

Подумайте, как приложить линейку, чтобы фигура разделилась на:

Увидели, из каких частей состоит фигура? А теперь, наоборот, по частям соберем целое.

(Части фигуры лежат на партах. Дети собирают из них прямоугольник).

Сделайте вывод по наблюдениям.

Целую фигуру можно разделить на части и из частей составить целую.

Дома на основе треугольников и четырехугольников составляли фигуры, силуэты. Вот какие они получились.

(Демонстрация рисунков, выполненных дома учащимися. Одна из работ анализируется).

Какие фигуры использовал? У тебя получился сложный многоугольник.

Постановка учебной задачи.

На уроке мы должны ответить на вопрос: как найти площадь сложного многоугольника?

Для чего человеку нужно находить площадь?

(Ответы детей и обобщение учителем).

Задача определения площади возникла из практики.

(Показывается план школьного участка).

Для того чтобы построить школу, сначала создали план. Потом разбивалась территория на участки определенной площади, размещались строения, клумбы, стадион. При этом участок имеет определенную форму - форму многоугольника.

Решение учебной задачи.

(Раздаются листы для исследования).

Перед вами фигура. Назовите ее.

Многоугольник, шестиугольник.

Найдем площадь многоугольника. Что для этого надо делать?

Разделить на прямоугольники.

(При затруднении будет другой вопрос: “Из каких фигур состоит многоугольник?”).

Из двух прямоугольников.

С помощью линейки и карандаша разделите фигуру на прямоугольники. Обозначьте цифрами 1 и 2 полученные части.

Проведем измерения.

Найдем площадь первой фигуры.

(Учащиеся предлагают следующие варианты решений и записывают их на доске).

  • S 1 = 5 ? 2 = 10 см 2
  • S 2 = 5 ? 1 = 5 см 2

Зная площадь частей, как найти площадь целой фигуры?

S = 10 + 5 = 15 см 2

  • S 1 = 6 ? 2 = 12 см 2
  • S 2 = 3 ? 1 = 3 см 2
  • S = 12 + 3 = 15 см 2 .

Сравните результаты и сделайте вывод.

Проследим наши действия

Как находили площадь многоугольника?

Составляется и записывается на плакате алгоритм:?

1. Делим фигуру на части

2. Находим площади частей этих многоугольников (S 1 , S 2).

3. Находим площадь целого многоугольника (S 1 + S 2).

Проговорить алгоритм.

(Несколько учащихся проговаривают алгоритм).

Мы нашли два способа, а может, есть еще?

А можно фигуру достроить.

Сколько прямоугольников получилось?

Обозначим части 1 и 2. Проведем измерения.

Найдите площадь каждой части многоугольника.

  • S 1= 6? 5=30см 2
  • S 2 = 5 ? 3 = 15 см 2

Как найти площадь нашего шестиугольника?

S = 30 – 15 = 15 см 2

Составим алгоритм:

Достроили фигуру до прямоугольника

Нашли S 1 и S 2 .

Нашли разность S 1 – S 2 .

Сравните два алгоритма. Сделайте вывод. Какие действия одинаковые? Где разошлись наши действия?

Закройте глазки, опустите головки. Мысленно повторите алгоритм.

Мы провели исследовательскую работу, рассмотрели разные способы и теперь можем находить площадь любого многоугольника.

Проверка результативности.

Проверьте себя.

Перед вами многоугольники.

Найти площадь одной фигуры по выбору, при этом можете пользоваться разными способами.

Работа выполняется самостоятельно. Дети выбирают фигуру. Находят площадь одним из способов. Проверка – ключ на доске.

Что можно сказать о форме? (Форма разная)

А какова площадь этих многоугольников? (Площади этих многоугольников равны)

Оценивают результаты.

У кого правильно – поставь “+”.

У кого сомнения, затруднения – “?”

Консультанты оказывают помощь ребятам, ищут ошибки, помогают исправить.

Домашнее задание:

Составить свои листки исследования, вычислить площадь многоугольника разными способами.

Итог урока.

Итак, ребята, что вы расскажите родителям, о том как найти площадь геометрической фигуры – многоугольника.

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Решения многих задач вычислительной геометрии основывается на нахождении площади многоугольника . На этом уроке мы выведем формулу для вычисления площади многоугольника через координаты его вершин, напишем функцию для вычисления этой площади.

Задача. Вычислить площадь многоугольника , заданного координатами своих вершин, в порядке их обхода по часовой стрелке.

Сведения из вычислительной геометрии

Для вывода формулы площади многоугольника нам понадобятся сведения из вычислительной геометрии, а именно, понятие ориентированной площади треугольника.

Ориентированная площадь треугольника – это обычная площадь, снабженная знаком. Знак ориентированной площади треугольника АВС такой же, как у ориентированного угла между векторами и. То есть ее знак зависит от порядка перечисления вершин.

На рис. 1 треугольник АВС – прямоугольный. Его ориентированная площадь равна (она больше нуля, так как пара, ориентирована положительно). Эту же величину можно вычислить другим способом.

Пусть О произвольная точка плоскости. На нашем рисунке площадь треугольника ABC получится, если из площади треугольника OBC вычесть площади OAB и OCA. Таким образом, нужно просто сложить ориентированные площади треугольников OAB, OBC и OCA. Это правило работает при любом выборе точки О .

Точно так же для вычисления площади любого многоугольника нужно сложить ориентированные площади треугольников

В сумме получится площадь многоугольника, взятая со знаком плюс, если при обходе ломаной многоугольника находится слева (обход границы против часовой стрелки), и со знаком минус, если он находится справа (обход по часовой стрелке).

Итак, вычисление площади многоугольника свелось к нахождению площади треугольника. Посмотрим, как выразить ее в координатах.

Векторное произведение двух векторов на плоскости есть площадь параллелограмма, построенного на этих векторах.

Векторное произведение, выраженное через координаты векторов:

Если координаты вершин были заданы в порядке обхода против часовой стрелки, то число S, вычисленное по этой формуле, получится положительным. В противном случае оно будет отрицательным, и для получения обычной геометрической площади нам необхо­димо взять его абсолютное значение.

Итак, рассмотрим программу для нахождения площади многоугольника, заданного координатами вершин.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной \(a\) равна \(a^2\) .

\[{\Large{\text{Площадь прямоугольника и параллелограмма}}}\]

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами \(a\) и \(b\) равна \(S=ab\) .

Доказательство

Достроим прямоугольник \(ABCD\) до квадрата со стороной \(a+b\) , как показано на рисунке:

Данный квадрат состоит из прямоугольника \(ABCD\) , еще одного равного ему прямоугольника и двух квадратов со сторонами \(a\) и \(b\) . Таким образом,

\(\begin{multline*} S_{a+b}=2S_{\text{пр-к}}+S_a+S_b \Leftrightarrow (a+b)^2=2S_{\text{пр-к}}+a^2+b^2 \Leftrightarrow\\ a^2+2ab+b^2=2S_{\text{пр-к}}+a^2+b^2 \Rightarrow S_{\text{пр-к}}=ab \end{multline*}\)

Определение

Высота параллелограмма - это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота \(BK\) падает на сторону \(AD\) , а высота \(BH\) - на продолжение стороны \(CD\) :

Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

Доказательство

Проведем перпендикуляры \(AB"\) и \(DC"\) , как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма \(ABCD\) .

Тогда \(AB"C"D\) – прямоугольник, следовательно, \(S_{AB"C"D}=AB"\cdot AD\) .

Заметим, что прямоугольные треугольники \(ABB"\) и \(DCC"\) равны. Таким образом,

\(S_{ABCD}=S_{ABC"D}+S_{DCC"}=S_{ABC"D}+S_{ABB"}=S_{AB"C"D}=AB"\cdot AD.\)

\[{\Large{\text{Площадь треугольника}}}\]

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

Доказательство

Пусть \(S\) – площадь треугольника \(ABC\) . Примем сторону \(AB\) за основание треугольника и проведём высоту \(CH\) . Докажем, что \ Достроим треугольник \(ABC\) до параллелограмма \(ABDC\) так, как показано на рисунке:

Треугольники \(ABC\) и \(DCB\) равны по трем сторонам (\(BC\) – их общая сторона, \(AB = CD\) и \(AC = BD\) как противоположные стороны параллелограмма \(ABDC\)), поэтому их площади равны. Следовательно, площадь \(S\) треугольника \(ABC\) равна половине площади параллелограмма \(ABDC\) , то есть \(S = \dfrac{1}{2}AB\cdot CH\) .

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_1B_1C_1\) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.

Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_2B_2C_2\) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.

Доказательство

Пусть \(\angle A=\angle A_2\) . Совместим эти углы так, как показано на рисунке (точка \(A\) совместилась с точкой \(A_2\)):

Проведем высоты \(BH\) и \(C_2K\) .

Треугольники \(AB_2C_2\) и \(ABC_2\) имеют одинаковую высоту \(C_2K\) , следовательно: \[\dfrac{S_{AB_2C_2}}{S_{ABC_2}}=\dfrac{AB_2}{AB}\]

Треугольники \(ABC_2\) и \(ABC\) имеют одинаковую высоту \(BH\) , следовательно: \[\dfrac{S_{ABC_2}}{S_{ABC}}=\dfrac{AC_2}{AC}\]

Перемножая последние два равенства, получим: \[\dfrac{S_{AB_2C_2}}{S_{ABC}}=\dfrac{AB_2\cdot AC_2}{AB\cdot AC} \qquad \text{ или } \qquad \dfrac{S_{A_2B_2C_2}}{S_{ABC}}=\dfrac{A_2B_2\cdot A_2C_2}{AB\cdot AC}\]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:

Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

Теорема: формула Герона

Пусть \(p\) – полупериметр треугольника, \(a\) , \(b\) , \(c\) – длины его сторон, тогда его площадь равна \

\[{\Large{\text{Площадь ромба и трапеции}}}\]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

Доказательство

Рассмотрим четырехугольник \(ABCD\) . Обозначим \(AO=a, CO=b, BO=x, DO=y\) :

Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников, следовательно, его площадь равна сумме площадей этих треугольников:

\(\begin{multline*} S_{ABCD}=\frac12ax+\frac12xb+\frac12by+\frac12ay=\frac12(ax+xb+by+ay)=\\ \frac12((a+b)x+(a+b)y)=\frac12(a+b)(x+y)\end{multline*}\)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: \

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

Доказательство

Рассмотрим трапецию \(ABCD\) с основаниями \(BC\) и \(AD\) . Проведем \(CD"\parallel AB\) , как показано на рисунке:

Тогда \(ABCD"\) – параллелограмм.

Проведем также \(BH"\perp AD, CH\perp AD\) (\(BH"=CH\) – высоты трапеции).

Тогда \(S_{ABCD"}=BH"\cdot AD"=BH"\cdot BC, \quad S_{CDD"}=\dfrac12CH\cdot D"D\)

Т.к. трапеция состоит из параллелограмма \(ABCD"\) и треугольника \(CDD"\) , то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

\ \[=\dfrac12 CH\left(BC+AD"+D"D\right)=\dfrac12 CH\left(BC+AD\right)\]

Каждый, кто изучал в школе математику и геометрию, хотя бы поверхностно знает эти науки. Но со временем, если в них не практиковаться, познания забываются. Многие даже считают, что только зря потратили своё время, изучая геометрические расчёты. Однако они ошибаются. Технические работники выполняют повседневную работу, связанную с геометрическими расчётами. Что касается расчета площади многоугольника, то и эти знания находят своё применение в жизни. Понадобятся они хотя бы для того, чтобы рассчитать площадь земельного участка . Итак, давайте узнаем, как найти площадь многоугольника.

Определение многоугольника

Сначала определимся с тем, что такое многоугольник. Это плоская геометрическая фигура, которая образовалась в результате пересечения трех или более прямых. Другое простое определение: многоугольник - это замкнутая ломаная. Естественно, при пересечении прямых образуются точки пересечения, их количество равно количеству прямых, образовывающих многоугольник. Точки пересечения называют вершинами, а отрезки, образованные от прямых, - сторонами многоугольника. Смежные отрезки многоугольника находятся не на одной прямой. Отрезки, являющиеся несмежными, - это те, которые не проходят через общие точки.

Сумма площадей треугольников

Как находить площадь многоугольника? Площадь многоугольника - это внутренняя часть плоскости, которая образовалась при пересечении отрезков или сторон многоугольника. Поскольку многоугольник - это сочетание таких фигур, как треугольник, ромб, квадрат, трапеция, то универсальной формулы для вычисления его площади просто нет. На практике наиболее универсальным является метод разбиения многоугольника на более простые фигуры, нахождение площади которых не вызывают затруднений. Сложив суммы площадей этих простых фигур , получают площадь многоугольника.

Через площадь окружности

В большинстве случаев многоугольник имеет правильную форму и образует фигуру с равными сторонами и углами между ними. Рассчитать площадь в этом случае очень просто при помощи вписанной или описанной окружности. Если известна площадь окружности, то её необходимо умножить на периметр многоугольника, а затем полученное произведение поделить на 2. В итоге получается формула расчёта площади такого многоугольника: S = ½∙P∙r., где P - площадь окружности, а r - периметр многоугольника.

Метод разбиения многоугольника на «удобные» фигуры - самый популярный в геометрии, он позволяет быстро и правильно найти площадь многоугольника. 4 класс средней школы обычно изучает такие методы.

Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

У этого термина существуют и другие значения, см. Площадь (значения). Площадь плоской фигуры аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное… … Википедия

I Площадь одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П.… … Большая советская энциклопедия

У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Ж. 1. Часть земной поверхности, пространство, естественно ограниченное или специально выделенное для какой либо цели. отт. Водное пространство. отт. Большое, ровное место, пространство. 2. Ровное незастроенное пространство общественного… … Современный толковый словарь русского языка Ефремовой

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/2 сентября 2012. Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует… … Википедия

Две фигуры в R2, имеющие равные площади и соответственно два многоугольника M1 и М 2 такие, что их можно разрезать на многоугольники так, что части, составляющие М 1, соответственно конгруэнтны частям, составляющим М 2. Для, равновеликость… … Математическая энциклопедия

В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

У этого термина существуют и другие значения, см. Теорема Пика. В = 7, Г = 8, В + Г/2 − 1 = 10 Формула Пика (или теорема Пика) классический результат комбинаторной геометрии и геометрии чисел. Площадь … Википедия

Область (связное открытое множество) на границе выпуклого тела в евклидовом пространстве Е 3. Вся граница выпуклого тела наз. полной В. п. Если тело конечно, то полная В. п. наз. замкнутой. Если тело бесконечно, то полная В. п. наз. бесконечной.… … Математическая энциклопедия

В задачах по геометрии часто требуется вычислить площадь многоугольника. Причем он может иметь довольно разнообразную форму - от всем знакомого треугольника до некоторого n-угольника с каким-то невообразимым числом вершин. К тому же эти многоугольники бывают выпуклыми или вогнутыми. В каждой конкретной ситуации полагается отталкиваться от внешнего вида фигуры. Так получится выбрать оптимальный путь решения задачи. Фигура может оказаться правильной, что существенно упростит решение задачи.

Немного теории о многоугольниках

Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру. Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет. Они дают название получившейся фигуре. Это может быть:

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.

Какие их виды существуют?

Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника. В выпуклом всегда все вершины лежат с одной стороны от такой прямой.

В школьном курсе геометрии большая часть времени уделяется именно выпуклым фигурам. Поэтому в задачах требуется узнать площадь выпуклого многоугольника. Тогда существует формула через радиус описанной окружности, которая позволяет найти искомую величину для любой фигуры. В других случаях однозначного решения не существует. Для треугольника формула одна, а для квадрата или трапеции совершенно другие. В ситуациях, когда фигура неправильная или вершин очень много, принято разделять их на простые и знакомые.

Как поступить, если фигура имеет три или четыре вершины?

В первом случае он окажется треугольником, и можно воспользоваться одной из формул:

  • S = 1/2 * а * н, где а — сторона, н — высота к ней;
  • S = 1/2 * а * в * sin (А), где а, в — сторон\ы треугольника, А — угол между известными сторонами;
  • S = √(p * (p - а) * (p - в) * (p - с)), где с — сторона треугольника, к уже обозначенным двум, р — полупериметр, то есть сумма всех трех сторон, разделенная на два.

Фигура с четырьмя вершинами может оказаться параллелограммом:

  • S = а * н;
  • S = 1/2 * d 1 * d 2 * sin(α), где d 1 и d 2 — диагонали, α — угол между ними;
  • S = a * в * sin(α).

Формула для площади трапеции: S = н * (a + в) / 2, где а и в — длины оснований.

Как поступить с правильным многоугольником, у которого больше четырех вершин?

Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы.

Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула:

S n = 1/2 * n * R n 2 * sin (360º/n), где n — количество вершин многоугольника.

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R 2 ;
  2. квадрата: S = 2 * R 2 ;
  3. шестиугольника: S = (3√3)/2 * R 2 .

Ситуация с неправильной фигурой

Выходом для того, как узнать площадь многоугольника, если он не является правильным и его нельзя отнести ни к одной из известных ранее фигур, является алгоритм:

  • разбить его на простые фигуры, например, треугольники, чтобы они не пересекались;
  • вычислить их площади по любой формуле;
  • сложить все результаты.

Что делать, если в задаче даны координаты вершин многоугольника?

То есть известен набор пар чисел для каждой точки, которые ограничивают стороны фигуры. Обычно они записываются как (x 1 ; y 1) для первой, (x 2 ; y 2) — для второй, а n-ая вершина имеет такие значения (x n ; y n). Тогда площадь многоугольника определяется, как сумма n слагаемых. Каждое из них выглядит так: ((y i+1 +y i)/2) * (x i+1 - x i). В этом выражении i изменяется от единицы до n.

Стоит отметить, что знак результата будет зависеть от обхода фигуры. При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 - 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 - 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = - 3.915.

Совет по решению задачи, для которой многоугольник изображен на бумаге в клетку

Чаще всего озадачивает то, что в данных имеется только размер клеточки. Но оказывается, что больше сведений не нужно. Рекомендацией к решению такой задачи является разбивание фигуры на множество треугольников и прямоугольников. Их площади довольно просто сосчитать по длинам сторон, которые потом легко сложить.

Но часто есть более простой подход. Он заключается в том, чтобы дорисовать фигуру до прямоугольника и вычислить значение его площади. Потом сосчитать площади тех элементов, которые оказались лишними. Вычесть их из общего значения. Этот вариант порой предполагает несколько меньшее число действий.