Площадь разностороннего многоугольника. Как узнать площадь многоугольника? Как найти площадь многоугольника – треугольник

В данной статье речь пойдёт о том, как выразить площадь многоугольника, в который можно вписать окружность, через радиус этой окружности. Сразу стоит отметить, что не во всякий многоугольник можно вписать окружность. Однако, если это возможно, то формула, по которой вычисляется площадь такого многоугольника, становится очень простой. Дочитайте эту статью до конца или посмотрите прилагающийся видеоурок, и вы узнаете, как же выразить площадь многоугольника через радиус вписанной в него окружности.

Формула площади многоугольника через радиус вписанной окружности


Нарисуем многоугольник A 1 A 2 A 3 A 4 A 5 , не обязательно правильный, но такой, в который можно вписать окружность. Напомню, что вписанной называется окружность, которая касается всех сторон многоугольника. На рисунке это зелёная окружность с центром в точке O :

Мы взяли здесь для примера 5-угольник. Но на самом деле это не имеет существенного значения, поскольку дальнейшее доказательство справедливо и для 6-угольника и для 8-угольника и вообще для любого сколь угодно «угольника».

Если соединить центр вписанной окружности со всеми вершинами многоугольника, то он разобьётся на столько треугольников, сколько вершин в данном многоугольнике. В нашем случае: на 5 треугольников. Если же соединить точку O со всеми точками касания вписанной окружности со сторонами многоугольника, то получится 5 отрезков (на рисунке снизу это отрезки OH 1 , OH 2 , OH 3 , OH 4 и OH 5), которые равны радиусу окружности и перпендикулярны сторонам многоугольника, к которым они проведены. Последнее справедливо, поскольку радиус, проведенный в точку касания, перпендикулярен касательной:

Как же найти площадь нашего описанного многоугольника? Ответ прост. Нужно сложить площади всех полученных в результате разбиения треугольников:

Рассмотрим, чему равна площадь треугольника . На рисунке снизу он выделен жёлтым цветом:

Она равна половине произведения основания A 1 A 2 на высоту OH 1 , проведённую к этому основанию. Но, как мы уже выяснили, эта высота равна радиусу вписанной окружности. То есть формула площади треугольника принимает вид: , где r — радиус вписанной окружности. Аналогично находятся площади всех оставшихся треугольников. В результате искомая площадь многоугольника оказывается равна:

Видно, что во всех слагаемых этой суммы ест общий множитель , который можно вынести за скобки. В результате получится вот такое выражение:

То есть в скобках осталась просто сумма всех сторон многоугольника, то есть его периметр P . Чаще всего в этой формуле выражение заменяют просто на p и называют эту букву «полупериметром». В результате, окончательная формула принимает вид:

То есть площадь многоугольника, в который вписана окружность известного радиуса, равна произведению этого радиуса на полупериметр многоугольника. Это и есть тот результат, в которому мы стремились.

Отметит напоследок, что в треугольник, который является частным случаем многоугольника, всегда можно вписать окружность. Поэтому для треугольника эту формулу можно применять всегда. Для остальных многоугольников, с количеством сторон большим 3, сперва нужно убедиться, что в них можно вписать окружность. Если это так, можно смело использовать эту простую формулу и находить по ней площадь этого многоугольника.

Материал подготовил , Сергей Валерьевич

Многоугольник – это плоская или выпуклая фигура, которая состоит из пересеченных прямых (больше 3-х) и образует большое количество точек пересечения линий. Еще многоугольник можно определить как ломаную линию, которая замыкается. По-другому точки пересечения можно назвать вершинами фигуры. В зависимости от количества вершин фигура может называться пятиугольником, шестиугольником и так далее. Угол многоугольника – это угол, который образовывается сторонами, сходящимися в одной вершине. Угол находится внутри многоугольника. Причем углы могут быть разными, вплоть до 180 градусов. Есть также и внешние углы, которые обычно являются смежными внутренним.

Прямые линии, которые впоследствии пересекаются, называются сторонами многоугольника. Они могут быть соседними, смежными и не смежными. Очень важной характеристикой представленной геометрической фигуры является то, что несмежные ее стороны не пересекаются, а значит, не имеют общих точек. Смежные стороны фигуры не могут находиться на одной прямой.

Те вершины фигуры, которые принадлежат одной и той же прямой, можно назвать соседними. Если провести линию между двумя вершинами, не являющимися соседними, то получится диагональ многоугольника. Что касается площади фигуры, — это внутренняя часть плоскости геометрической фигуры с большим количеством вершин, которая создается разделяющими ее отрезками многоугольника.

Какого-либо одного решения для определения площади представленной геометрической фигуры нет, так как вариантов фигуры может быть бесконечное множество и для каждого варианта существует свое решение. Однако некоторые самые частые варианты нахождения площади фигуры все же нужно рассмотреть (они чаще всего используются на практике и включены даже в школьную программу).

Прежде всего, рассмотрим правильный многоугольник, то есть такую фигуру, в которой все углы, образованные равными сторонами, являются также равными. Итак, как найти площадь многоугольника в конкретном примере? Для этого случая нахождение площади многоугольной фигуры возможно, если дан радиус окружности, вписанной в фигуру или описанной вокруг нее. Для этого можно воспользоваться следующей формулой:

S = ½∙P∙r, где r – радиус окружности (вписанной или описанной), а P – является периметром геометрической многоугольной фигуры, которую можно узнать, умножив количество сторон фигуры на их длину.

Как находить площадь многоугольника

Чтобы ответить на вопрос, как находить площадь многоугольника, достаточно следовать следующему интересному свойству многоугольной фигуры, в свое время нашел известный австрийский математик – Георг Пик. Например, по формуле S = N + M/2 -1 можно найти площадь такого многоугольника, вершины которого размещены в узлах квадратной сетки. При этом S – это, соответственно, площадь; N – количество узлов квадратной сетки, которые разместились внутри фигуры с множеством углов; M – количество тех узлов квадратной сетки, которые разместились на вершинах и сторонах многоугольника. Однако, несмотря на свою красоту, формула Пика практически не применяется в практической геометрии.

Самым простым и известным методом определения площади, который изучают в школе, является разделение многоугольной геометрической фигуры на более простые части (трапеции, прямоугольники, треугольники). Найти площадь этих фигур не трудно. В этом случае площадь многоугольника определяется просто: нужно найти площади всех тех фигур, на которые разделен многоугольник.

В основном определение площади многоугольника определяется в механике (размеры деталей).

Каждый, кто изучал в школе математику и геометрию, хотя бы поверхностно знает эти науки. Но со временем, если в них не практиковаться, познания забываются. Многие даже считают, что только зря потратили своё время, изучая геометрические расчёты. Однако они ошибаются. Технические работники выполняют повседневную работу, связанную с геометрическими расчётами. Что касается расчета площади многоугольника, то и эти знания находят своё применение в жизни. Понадобятся они хотя бы для того, чтобы рассчитать площадь земельного участка. Итак, давайте узнаем, как найти площадь многоугольника.

Определение многоугольника

Сначала определимся с тем, что такое многоугольник. Это плоская геометрическая фигура, которая образовалась в результате пересечения трех или более прямых. Другое простое определение: многоугольник — это замкнутая ломаная. Естественно, при пересечении прямых образуются точки пересечения, их количество равно количеству прямых, образовывающих многоугольник. Точки пересечения называют вершинами, а отрезки, образованные от прямых, - сторонами многоугольника. Смежные отрезки многоугольника находятся не на одной прямой. Отрезки, являющиеся несмежными, - это те, которые не проходят через общие точки.

Сумма площадей треугольников

Как находить площадь многоугольника? Площадь многоугольника - это внутренняя часть плоскости, которая образовалась при пересечении отрезков или сторон многоугольника. Поскольку многоугольник - это сочетание таких фигур, как треугольник, ромб, квадрат, трапеция, то универсальной формулы для вычисления его площади просто нет. На практике наиболее универсальным является метод разбиения многоугольника на более простые фигуры, нахождение площади которых не вызывают затруднений. Сложив суммы площадей этих простых фигур, получают площадь многоугольника.

Через площадь окружности

В большинстве случаев многоугольник имеет правильную форму и образует фигуру с равными сторонами и углами между ними. Рассчитать площадь в этом случае очень просто при помощи вписанной или описанной окружности. Если известна площадь окружности, то её необходимо умножить на периметр многоугольника, а затем полученное произведение поделить на 2. В итоге получается формула расчёта площади такого многоугольника: S = ½∙P∙r., где P — площадь окружности, а r — периметр многоугольника.

Метод разбиения многоугольника на «удобные» фигуры - самый популярный в геометрии, он позволяет быстро и правильно найти площадь многоугольника. 4 класс средней школы обычно изучает такие методы.

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Решения многих задач вычислительной геометрии основывается на нахождении площади многоугольника . На этом уроке мы выведем формулу для вычисления площади многоугольника через координаты его вершин, напишем функцию для вычисления этой площади.

Задача. Вычислить площадь многоугольника , заданного координатами своих вершин, в порядке их обхода по часовой стрелке.

Сведения из вычислительной геометрии

Для вывода формулы площади многоугольника нам понадобятся сведения из вычислительной геометрии, а именно, понятие ориентированной площади треугольника.

Ориентированная площадь треугольника – это обычная площадь, снабженная знаком. Знак ориентированной площади треугольника АВС такой же, как у ориентированного угла между векторами и . То есть ее знак зависит от порядка перечисления вершин.

На рис. 1 треугольник АВС – прямоугольный. Его ориентированная площадь равна (она больше нуля, так как пара , ориентирована положительно). Эту же величину можно вычислить другим способом.

Пусть О произвольная точка плоскости. На нашем рисунке площадь треугольника ABC получится, если из площади треугольника OBC вычесть площади OAB и OCA. Таким образом, нужно просто сложить ориентированные площади треугольников OAB, OBC и OCA. Это правило работает при любом выборе точки О .

Точно так же для вычисления площади любого многоугольника нужно сложить ориентированные площади треугольников

В сумме получится площадь многоугольника, взятая со знаком плюс, если при обходе ломаной многоугольника находится слева (обход границы против часовой стрелки), и со знаком минус, если он находится справа (обход по часовой стрелке).

Итак, вычисление площади многоугольника свелось к нахождению площади треугольника. Посмотрим, как выразить ее в координатах.

Векторное произведение двух векторов на плоскости есть площадь параллелограмма, построенного на этих векторах.

Векторное произведение, выраженное через координаты векторов:

Площадь треугольника будет равна половине этой площади:

В качестве точки О удобно взять начало координат, тогда координаты векторов, на основании которых вычисляются ориентированные площади, совпадут с координатами точек.

Пусть (х 1 , y 1), (x 2 , у 2), …, (х N ,у N) - координаты вершин заданного многоугольника в порядке обхода по или против часовой стрелки. Тогда его ориентированная площадь S будет равна:

Это и есть наша рабочая формула, она используется в нашей программе.

Если координаты вершин были заданы в порядке обхода против часовой стрелки, то число S, вычисленное по этой формуле, получится положительным. В противном случае оно будет отрицательным, и для получения обычной геометрической площади нам необхо­димо взять его абсолютное значение.

Итак, рассмотрим программу для нахождения площади многоугольника, заданного координатами вершин.

Program geom6; Const n_max=200; {максимальное количество точек+1} type b=record x,y:real; end; myArray= array of b; var input:text; A:myArray; s:real; i,n:integer; procedure ZapMas(var n:integer; var A:myArray); {Заполнение массива } begin assign(input,"input.pas"); reset(input); readln(input, n); for i:=1 to n do read(input, a[i].x,a[i].y); close(input); end; function Square (A:myarray): real; {Вычисление площади многоугольника} var i:integer; S: real; begin a.x:=a.x; a.y:=a.y; s:=0; for i:=1 to n do s:= s + (a[i].x*a.y - a[i].y*a.x); s:=abs(s/2); Square:= S end; {Square} begin {main} Zapmas(n, a); PrintMas(a); S:= Square(a); writeln("S= ",s:6:2); end.

Координаты вершин считывается из файла input.pas., хранятся в массиве А в виде записей с двумя полями. Для удобства обхода многоугольника в массиве вводится n+1 элемент, значение которого равно значению первого элемента массива.

Содержимое:

Очень легко вычислить площадь правильного треугольника (это многоугольник!) и очень непросто сделать это в случае неправильного одиннадцатиугольника (это тоже многоугольник!). Данная статья расскажет вам, как вычислять площадь различных многоугольников.

Шаги

1 Вычисление площади правильного многоугольника по апофеме

  1. 1 Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.
    • Периметр – сумма сторон многоугольника.
    • Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
  2. 2 Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.
  3. 3 Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.
    • Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
    • В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
    • «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
  4. 4 Подставьте значения апофемы и периметра в формулу. В нашем примере:
    • площадь = 1/2 х 120 х 10√3
    • площадь = 60 х 10√3
    • площадь = 600√3
  5. 5 Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.

2 Вычисление площади правильного многоугольника по другим формулам

  1. 1 . Формула: Площадь = 1/2 х основание х высота.
    • Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
  2. 2 . Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.
    • Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
  3. 3 . Формула: Площадь = длина х ширина.
    • Если длина прямоугольника равна 4, а ширина равна 3, то его площадь = 4 х 3 = 12.
  4. 4 . Формула: Площадь = [(основание1 + основание2) х высота] / 2.
    • Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8) 10]/2 = (14 х 10)/2 = 140/2 = 70.

3 Вычисление площади неправильного многоугольника

  1. 1 Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.
  2. 2 Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.
  3. 3 Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).
  4. 4 Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).
  5. 5 Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) - (-38) = 120.
  6. 6 Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).
  • Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
  • Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.