Решение егэ ларин вариант 194.

Разработка нефтяного или газового месторождения - это комплекс мероприятий, направленных на обеспечение притока нефти и газа из залежи к забою скважин, предусматривающих с этой целью определенный порядок размещения скважин на площади, очередность их бурения и ввода в эксплуатацию, установление и поддержание определенного режима их работы. Всякая нефтяная и газовая залежь, обладает потенциальной энергией, которая в процессе разработки залежи переходит в кинетическую, и расходуется на вытеснение нефти и газа из пласта.

Природные режимы

Природным режимом залежи называют совокупность естественных сил (видов энергии), которые обеспечивают перемещение нефти или газа в пласте к забоям добывающих скважин.

В нефтяных залежах к основным силам, перемещающим нефть в пластах, относятся:

v напор контурной воды под действием ее массы - водонапорный режим;

v напор контурной воды в результате упругого расширения породы и воды - упруговодонапорный;

v давление газа газовой шапки - газонапорный (режим газовой шапки);

v упругость выделяющегося из нефти растворенного в ней газа - растворенного газа;

v сила тяжести нефти - гравитационный.

В газовых и газоконденсатных залежах источниками энергии являются давление, под которым находится газ в пласте, и напор краевых пластовых вод. Соответственно различают газовый и упруговодогазонапорный режимы.

Природный режим залежи определяется главным образом геологическими факторами: характеристикой водонапорной системы, к которой принадлежит залежь, и расположением залежи в этой системе относительно области питания; геолого-физической характеристикой залежи - термобарическими условиями, фазовым состоянием УВ, условиями залегания и свойствами пород-коллекторов и другими факторами; степенью гидродинамической связи залежи с водонапорной системой.

На режим пласта существенное влияние могут оказывать условия эксплуатации залежей. При использовании для разработки залежи природных видов энергии от режима зависят интенсивность падения пластового давления и, следовательно, энергетический запас залежи на каждом этапе разработки, а также поведение подвижных границ залежи (ГНК, ГВК, ВНК) и соответствующие тенденции изменения ее объема по мере отбора запасов нефти и газа. Все это необходимо учитывать при выборе плотности сети и расположения скважин, установлении их дебита, выборе интервалов перфорации, а также при обосновании рационального комплекса и объема геолого-промысловых исследований для контроля за разработкой.

Природный режим при его использовании обусловливает эффективность разработки залежи - темпы годовой добычи нефти (газа), динамику других важных показателей разработки, возможную степень конечного извлечения запасов нефти (газа) из недр. Продолжительность эксплуатации скважин различными способами, выбор схемы промыслового обустройства месторождения и характеристика технологических установок по подготовке нефти и газа также во многом зависят от режима залежи.


Знание природного режима позволяет решить один из центральных вопросов обоснования рациональной системы разработки нефтяных и газоконденсатных залежей: возможно ли применение системы с использованием природных энергетических ресурсов залежи или необходимо искусственное воздействие на залежь?

Режим залежи при ее эксплуатации хорошо характеризуется кривыми, отражающими в целом по залежи поведение пластового давления, динамику годовой добычи нефти (газа) и воды, промыслового газового фактора. Все эти кривые в совокупности с другими данными об изменении фонда скважин, среднего дебита на одну скважину и т.д. представляют собой график разработки залежи.

Ниже рассмотрим режимы с преобладанием одного из видов природной энергии.

1. Водонапорный режим

При водонапорном режиме основным видом энергии является напор краевой воды, которая внедряется в залежь и относительно быстро полностью компенсирует в объеме залежи отбираемое количество нефти и попутной воды. В процессе эксплуатации залежи в ее пределах происходит движение всей массы нефти. Объем залежи постепенно сокращается за счет подъема водонефтяного контакта (ВНК) (рисунок 8 а).

Рисунок 8 - Пример разработки нефтяной залежи при природном водонапорном режиме

а - изменение объема залежи в процессе; б - динамика основных показателей разработки

положение ВНК: ВНК нач - начальное, ВНК к - конечное; давление: Рпл - пластовое, Рнас - насыщение; годовые отборы: q к - нефти, q ж - жидкость; В - обводненность продукции; G - промысловый газовый фактор; k извл.н - коэффициент извлечения нефти

Одна из важнейших предпосылок действия водонапорного режима - значительная разница между начальным пластовым давлением и давлением насыщения нефти газом, обеспечивающая в сочетании с другими факторами превышение текущего пластового давления над давлением насыщения на протяжении всего периода разработки и сохранение газа в растворенном состоянии.

Водонапорный режим отличают следующие особенности динамики показателей разработки (рисунок 8 б):

Тесная связь поведения динамического пластового давления с величиной текущего отбора жидкости из пласта - относительно небольшое снижение его при увеличении отбора, неизменная величина при постоянном отборе, увеличение при уменьшении отбора, восстановление почти до начального пластового давления при полном прекращении отбора жидкости из залежи; область снижения давления обычно ограничивается площадью залежи;

Практически неизменные на протяжении всего периода разработки средние значения промыслового газового фактора;

Достигаемый высокий темп годовой добычи нефти в период высокой стабильной добычи нефти, называемый II стадией разработки, - до 8 – 10 % в год и более от начальных извлекаемых запасов (НИЗ); отбор за основной период разработки (за первые три стадии) около 85 – 90 % извлекаемых запасов нефти;

Извлечение вместе с нефтью в период падения добычи нефти попутной воды, в результате чего к концу разработки отношение накопленных отборов воды и нефти (водонефтяной фактор - ВНФ) может достигать 0.5 – 1.

При водонапорном режиме достигается наиболее высокий коэффициент извлечения нефти - до 0.6 – 0.7. Это обусловлено способностью воды, особенно пластовой минерализованной, хорошо отмывать нефть и вытеснять ее из пустот породы-коллектора, а также сочетанием исключительно благоприятных геолого-физических условий, в которых действует рассматриваемый режим.

Водонапорным режимом характеризуются отдельные залежи в терригенных отложениях Грозненского района, Самарской, Волгоградской и Саратовской областей и некоторых других районов.

2. Упруговодонапорный режим

Режим, при котором нефть вытесняется из пласта под действием напора краевой воды, но в отличие от водонапорного режима основным источником энергии при этом служит упругость пород-коллекторов и насыщающей их жидкости. При этом режиме отбор жидкости не полностью компенсируется внедряющейся в залежь водой. В результате, снижение давления в пласте постепенно распространяется за пределы залежи и захватывает большую область водоносной части пласта. В этой области происходит соответствующее расширение породы и пластовой воды. Коэффициенты упругости воды и породы незначительны, однако при больших размерах области сниженного давления, во много раз превышающих размеры залежи, упругие силы пласта служат источником значительной энергии.

Доля нефти, добываемой за счет упругости нефтеносной области пласта, обычно невелика в связи с небольшим объемом залежи относительно водоносной области.

Упруговодонапорный режим может проявляться в различных геологических условиях. Им могут обладать залежи инфильтрационных водонапорных систем, имеющие слабую гидродинамическую связь (или не имеющие ее) с областью питания вследствие:

Ø большой удаленности от нее;

Ø пониженной проницаемости;

Ø значительной неоднородности пласта;

Ø повышенной вязкости нефти;

Ø больших размеров залежи и соответственно значительных отборов жидкости, которые не могут полностью возмещаться внедряющейся в залежь пластовой водой.

Проявлению упруговодонапорного режима способствует залегание пласта-коллектора на большой площади за пределами залежи. Так же, как и при водонапорном режиме, обязательным условием является превышение начального пластового давления над давлением насыщения.

Процесс вытеснения нефти водой из пласта аналогичен водонапорному режиму, однако вследствие менее благоприятных геолого-физических условий доля не извлекаемых запасов по сравнению с водонапорным режимом несколько возрастает. Динамика показателей разработки при упруговодонапорном режиме (рисунок 9) имеет и сходства с динамикой водонапорного режима, и отличия от нее.

Рисунок 9 - Динамика основных показателей разработки нефтяной залежи при упруговодонапорном режиме

давление: Рпл - пластовое, Рнас - насыщение; годовые отборы: q к - нефти, q ж - жидкость; В - обводненность продукции; G - промысловый газовый фактор; k извл.н - коэффициент извлечения нефти

Основное сходство состоит в том, что на протяжении всего периода разработки промысловый газовый фактор остается постоянным вследствие превышения пластового давления над давлением насыщения. Отличия заключаются в следующем: при упруговодонапорном режиме на протяжении всего периода разработки происходит снижение пластового давления; по мере расширения области снижения давления вокруг залежи, темп падения давления постепенно замедляется, в результате отбор жидкости при падении давления на 1 МПа во времени постепенно возрастает. Интенсивность замедления падения давления при этом зависит от размеров законтурной области залежи.

Темп добычи нефти при упруговодонапорном режиме во II стадии разработки обычно не превышает 5 – 7 % в год от НИЗ (см. рисунок 9). К концу основного периода разработки обычно отбирается около 80 % извлекаемых запасов. Добыча нефти сопровождается более интенсивным обводнением продукции, чем при водонапорном режиме. Значение водонефтяного фактора к концу разработки может достигнуть 2 – 3. Значения конечного коэффициента извлечения нефти обычно не превышают 0.5 – 0.55. Природный упруговодонапорный режим, сохраняющийся до конца разработки, характерен для верхнемеловых залежей Грозненского района, Восточной Украины и других районов.

3. Газонапорный режим

Газонапорный режим - это режим нефтяной части газонефтяной залежи, при котором нефть вытесняется из пласта под действием напора газа, заключенного в газовой шапке. В результате снижения пластового давления в нефтяной части залежи происходит расширение газовой шапки и соответствующее перемещение вниз ГНК. Процесс расширения газовой шапки может несколько активизироваться в связи с поступлением в нее газа, выделяющегося из нефти. Поскольку в нефтегазовых залежах давление насыщения часто близко к начальному пластовому, то вскоре после начала разработки пластовое давление оказывается ниже давления насыщения, в результате начинается выделение из нефти растворенного газа; при высокой вертикальной проницаемости пласта газ частично пополняет шапку.

Режим в чистом виде может действовать в залежах, не имеющих гидродинамической связи с законтурной областью, или при весьма слабой активности краевых вод. Геологические условия, способствующие проявлению газонапорного режима:

ü наличие большой газовой шапки, обладающей достаточным запасом энергии для вытеснения нефти;

ü значительная высота нефтяной части залежи;

ü высокая проницаемость пласта по вертикали;

ü малая вязкость пластовой нефти (не более 2 – 3 МПа×с).

Объем нефтяной части залежи при ее разработке сокращается в связи с опусканием ГНК. Размер площади нефтеносности остается постоянным (рисунок 10 а).

Книга «Основы разработки нефтяных и газовых месторождений», выдержавшая двадцать переизданий, создана на основе курсов лекций, прочитанных автором в учебном центре компании Shell Internationale Petroleum Maatschappij B.V. (SIPM).
В издании освещен широкий круг вопросов, связанных с разработкой нефтяных и газовых месторождений. Характерной особенностью книги является ее практическая направленность. Физические основы разработки месторождений представлены с помощью простых и удобных для практического применения математических методов. Помимо теоретических материалов, почти в каждой главе приведены задания для развития практических навыков специалистов нефтегазовой отрасли. Для специалистов ценным дополнением будет приведенная в книге методика пересчета численных коэффициентов в формулах при переходе от одной системы единиц измерения к другим системам.
Рекомендуется для широкого круга специалистов нефтегазовой отрасли, преподавателям и студентам ВУЗов.

РАЗРАБОТКА ГАЗОВЫХ МЕСТОРОЖДЕНИЙ В УСЛОВИЯХ ГАЗОВОГО РЕЖИМА.
Разработка газовых месторождений в условиях газового режима рассматривается в начале книги из-за относительной простоты предмета. Ниже будет показано, как определяется коэффициент извлечения газа и рассчитывается продолжительность периода разработки.

Простота предмета объясняется тем, что газ - одна из немногих субстанций, состояние которых, определяемое давлением, объемом и температурой (PVT), может быть описано простой зависимостью, включающей в себя эти три параметра. Еще одной такой субстанцией является насыщенный пар. А, например, для нефти, содержащей растворенный газ, такой зависимости не существует. Как показано в главе 2, параметры PVT, определяющие состояние таких смесей, нужно получать эмпирическим путем.

СОДЕРЖАНИЕ
Предисловие
Выражение признательности В память о Лоренсе П. Дейке Номенклатура
1. Некоторые основные концепции, лежащие в основе разработки нефтяных и газовых месторождений
1.1. Введение
1.2. Подсчет начальных запасов углеводородов
1.3. Изменение давления в залежи по глубине
1.4. Нефтеотдача: коэффициент извлечения нефти
1.5. Разработка газовых месторождений в условиях газового режима
1.6. Применение уравнения состояния реального газа
1.7. Материальный баланс для газовой залежи: коэффициент извлечения газа
1.8. Фазовые состояния углеводородов Список литературы
2. Анализ PVT-свойств пластовых флюидов
2.1. Введение
2.2. Определение основных параметров
2.3. Отбор проб пластовых флюидов
2.4. Получение основных данных PVT в лаборатории и преобразование их для использования на месторождениях
2.5. Другой метод выражения результатов лабораторных исследований PVT
2.6. Полный комплекс исследований PVT Список литературы
3. Применение метода материального баланса при разработке нефтяных месторождений
3.1. Введение
3.2. Уравнение материального баланса для залежей нефти и газа в общем виде
3.3. Линейное уравнение материального баланса
3.4. Режимы работы залежи
3.5. Упругий режим, переходящий в режим растворенного газа
3.6. Газонапорный режим
3.7. Естественный водонапорный режим
3.8. Упруго-пластичный режим Список литературы
4. Закон Дарси и его применение
4.1. Введение
4.2. Закон Дарси. Потенциальная энергия флюидов
4.3. Присвоение знаков
4.4. Единицы измерения. Переход от одной системы единиц к другой
4.5. Потенциальная энергия реального газа
4.6. Приведенное давление
4.7. Установившаяся радиальная фильтрация. Интенсификация притока нефти в скважину
4.8. Двухфазный поток. Фазовая и относительная проницаемости
4.9. Методы повышения нефтеотдачи Список литературы
5. Основное дифференциальное уравнение радиальной фильтрации
5.1. Введение
5.2. Вывод основного дифференциального уравнения радиальной фильтрации
5.3. Начальные и граничные условия
5.4. Линеаризация основного дифференциального уравнения радиальной фильтрации флюидов с малой и постоянной сжимаемостью
Список литературы
6. Уравнения квазиустановившегося и установившегося притоков в скважину
6.1. Введение
6.2. Решение для квазиустановившегося потока
6.3. Решение для установившегося потока
6.4. Пример использования уравнений квазиустановившегося и установившегося притоков
6.5. Обобщенная форма уравнения квазиустановившегося притока
Список литературы
7. Решение уравнения пьезопроводности при постоянном дебите и использование его для исследования нефтяных скважин
7.1. Введение
7.2. Решение при постоянном дебите
7.3. Решение при постоянном дебите для условий неуста-новившейся и квазиустановившейся фильтрации
7.4. Безразмерные параметры 209
7.5. Принцип суперпозиции. Общая теория исследования скважин
7.6. Анализ результатов исследования скважин методом восстановления давления, предложенный Мэтьюзом, Бронсом и Хейзбреком
7.7. Практический анализ результатов исследования скважин методом восстановления давления_
7.8. Исследование методом многократного изменения режима работы скважины
7.9. Влияние несовершенства скважины по степени и характеру вскрытия
7.10. Некоторые практические аспекты исследования скважин
7.11. Учет притока в скважину после ее остановки Список литературы
8. Поток реального газа. Исследование газовых скважин
8.1. Введение
8.2. Линеаризация и решение основного дифференциального уравнения радиальной фильтрации реального газа
8.3. Метод Рассела, Гудрича и др.
8.4. Метод Аль-Хусейни, Рейми и Кроуфорда
8.5. Сравнение метода, использующего квадрат давления, и метода, использующего псевдодавление
8.6. Отклонение потока от закона Дарси
8.7. Определение коэффициента f, учитывающего отклонение от закона Дарси
8.8. Решение при постоянном дебите для случая фильтрации реального газа
8.9. Общая теория исследования газовых скважин
8.10. Исследование газовых скважин методом многократного изменения режима
8.11. Исследование газовых скважин методом восстановления давления
8.12. Анализ результатов исследования методом восстановления давления на нефтяных залежах, работающих на режиме растворенного газа
8.13. Краткий обзор методов анализа результатов
исследования скважин
Список литературы
9. Приток воды в залежь
9.1. Введение
9.2. Теория неустановившегося притока воды Херста и ван Эвердингена
9.3. Применение теории притока воды из водоносной области Херста и ван Эвердингена для воспроизведения истории разработки
9.4. Приближенная теория Фетковича притока воды в залежь для случая ограниченной водоносной области
9.5. Прогнозирование объема притока_
9.6. Применение методов расчета притока воды к _циклическим паротепловым обработкам
Список литературы
10. Несмешивающееся вытеснение
10.1. Введение
10.2. Физические допущения и их следствия
10.3. Уравнение для расчета доли флюида в потоке
10.4. Теория одномерного вытеснения Бакли-Леверетта
10.5. Расчет добычи нефти
10.6. Вытеснение в условиях гравитационной сегрегации
10.7. Учет влияния переходной зоны конечной высоты в расчетах вытеснения
10.8. Вытеснение из слоисто-неоднородных пластов
10.9. Вытеснение при полном отсутствии вертикального равновесия
10.10. Численное моделирование несмешивающегося вытеснения при фильтрации несжимаемых жидкостей
Список литературы
УПРАЖНЕНИЯ
1.1. Градиент гидростатического давления газа в залежи
1.2. Материальный баланс газовой залежи
2.1. Отобранный объем, приведенный к пластовым условиям
2.2. Преобразование данных дифференциального разгазиро-вания в промысловые PVT-параметры Bo, Rs и Bg
3.1. Упругий режим (недонасыщенная нефть)
3.2. Режим растворенного газа (давление ниже давления насыщения)
3.3. Закачка воды начинается после уменьшения пластового давления ниже давления насыщения
3.4. Газонапорный режим
4.1. Переход от одной системы единиц к другой
6.1. Учет изменения проницаемости призабойной зоны
7.1. Логарифмическая аппроксимация функции Ei(x)
7.2. Исследование скважины методом однократного изменения режима
7.3. Безразмерные параметры
7.4. Переход от неустановившейся фильтрации к квази-установившейся фильтрации
7.5. Получение зависимостей для безразмерного давления
7.6. Анализ результатов исследования методом восстановления давления. Бесконечный пласт
7.7. Анализ результатов исследования методом восстановления давления. Ограниченный дренируемый объем
7.8. Анализ результатов исследования методом многократного изменения режима работы скважины
7.9.Методы анализа дополнительного притока в скважину после ее остановки
8.1. Анализ результатов исследования газовой скважины методом многократного изменения режима с допущением о существовании условий квазиустановившейся фильтрации
8.2. Анализ результатов исследования газовой скважины методом многократного изменения режима с допущением о существовании условий неустановившейся фильтрации
8.3. Анализ результатов исследования методом восстановления давления
9.1. Применение решения при постоянном давлении
9.2. Подгонка модели законтурной водоносной области с использованием теории неустановившегося притока Херста и ван Эвердингена
9.3. Расчет притока воды в залежь по методу Фетковича
10.1. Расчет доли воды в притоке
10.2. Прогнозирование добычи при заводнении
10.3. Вытеснение в условиях гравитационной сегрегации
10.4. Построение кривых усредненных относительных фазовых проницаемостей для слоисто-неоднородного пласта (условия гравитационной сегрегации)
Предметный указатель.

Разработка нефтяных и газовых месторождений - интенсивно развивающаяся область науки. Дальнейшее ее развитие будет связано с применением новых технологий извлечения нефти из недр, новых методов распознавания характера протекания внутрипластовых процессов, использованием совершенных методов планирования разведки и разработки месторождений, применением автоматизированных систем управления процессами извлечения полезных ископаемых из недр, развитием методов детального учета строения пластов и характера протекающих в них процессов на основе детерминированных моделей, реализуемых на мощных компьютерах.

Разработка нефтяных месторождений - это самостоятельная комплексная область науки и инженерная дисциплина, имеющая свои специальные разделы, связанные с учением о системах и технологиях разработки месторождений, планированием и реализацией основного принципа разработки, проектированием и регулированием разработки месторождений.

Наукой о разработке нефтяных месторождений называют осуществление научно-обоснованного извлечения из недр содержащих в них углеводородов и сопутствующих им полезных ископаемых. Принципиальным отличием разработки нефтяных месторождений от других наук является то, что инженер-разработчик не имеет непосредственного доступа к нефтяным пластам. Вся информация идет через пробуренные скважины.

Нефтяные и нефтегазовые месторождения – это скопление углеводородов в земной коре, приуроченные к одной или нескольким локализированным геологическим структурам. Залежи углеводородов, входящие в месторождения, обычно залегают в пластах или массивах пористых и проницаемых горных пород, имеющих различное распространение под землей и различные геолого-физические свойства.

Нефть, залегая в пористых пластах, подвержена гидростатическому давлению и напору контурных вод. Пласты испытывают горное давление – вес вышележащих горных пород. Над залежью нефти может залегать газовая шапка, оказывающая давление на залежь. Внутри залежи действуют силы упругости нефти, газа, воды и породы пласта.

Нефть, вода, газ, насыщающие пласты обладают разной плотностью и распределены в залежах в соответствии с проявлением гравитационных сил. Несмешивающиеся жидкости – нефть и вода, находясь в контакте в мелких порах и капиллярах, подвержены действию поверхностно-молекулярных сил, а на контакте с твердой породой - натяжению смачивания. Когда начинается эксплуатация пласта, природное равновесие этих сил нарушается в связи со снижением давления в залежи и начинается сложнейшее их проявление в результате чего начинается движение жидкостей в пласте. В зависимости от того, какие силы, вызывающие это движение преобладают, различают различные режимы работы нефтяных пластов.

1. 2. Режимы работы нефтяных залежей

Режимом работы залежи называется проявление преобладающего вида пластовой энергии в процессе разработки.

Различают пять режимов работы нефтяных залежей: упругий; водонапорный; растворенного газа; газонапорный; гравитационный; смешанные. Такое деление на режимы в «чистом виде» весьма условно. При реальной разработке месторождений в основном отмечают смешанные режимы.

Упругий режим или замкнуто-упругий

При этом режиме нефть вытесняется из пористой среды за счет упругого расширения жидкостей (нефти и воды), а также уменьшения (сжатия) порового объема при снижении пластового давления. Суммарный объем жидкости. отбираемый из пласта за счет этих сил определяется упругой емкостью пород, насыщения этого объема жидкостью и величиной снижения пластового давления

Qж = (Рпл. нач – Ртек) Vп *

*= mп +ж где

* - упругая емкость

п- упругая емкость породы

ж- упругая емкость жидкости

m- пористость

Рпл нач и Р тек – начальное и текущее пластовое давление

Главное условие упругого режима - превышение пластового давления и забойного, над давлением насыщения, тогда нефть находится в однофазном состоянии.

Если залежь литологически или тектонически ограничена, запечатана, то проявляется замкнуто-упругий режим.

В объеме всего пласта упругий запас нефти составляет обычно малую долю (приблизительно 5- 10 %) по отношению к общему запасу, но он может выражать довольно большое количество нефти в массовых единицах.

Для данного режима характерно значительное снижение пластового давления в начальный период отбора нефти и уменьшения дебитов нефти

Упруговодонапорный или водонапорный режим

Если законтурная область нефтяного пласта имеет выход на дневную поверхность или водоносная область обширна и пласт в ней высокопроницаем. то режим такого пласта будет естественным упруговодонапорным. Нефть из пласта вытесняется напором контурной или подошвенной воды. Когда наступает равновесие (баланс) между отбором из залежи жидкости и поступлением в пласт краевых или подошвенных вод, проявляет себя водонапорный режим, который еще называют жестким водонапорным вследствие равенства количеств отобранной жидкости (нефти, воды} и вторгшейся в залежь воды.

Режим характеризуется несущественным снижением Рпл и постоянным сокращением контура нефтеносности.

Искусственно водонапорный режим

На современном этапе развития нефтяной промышленности преобладающее значение имеет разработка нефтяных залежей при заводнении, т. е. с помощью закачки воды. При искусственном водонапорном режиме основным источником пластовой энергии является энергия закачиваемой в пласт воды. При этом отбор жидкости из пласта должен быть равен объему закачанной воды, тогда устанавливается жесткий водонапорный режим, который характеризуется коэффициентом компенсации отбора закачкой.

Ккомп =

Компенсация отбора закачкой это отношение объема закачиваемой в пласт воды к объему отобранной в пластовых условиях жидкости из пласта.

Если Ккомп > или = 1, то в залежи устанавливается жесткий водонапорный режим.

Ккомп < 1. то упругий водонапорный режим.

Компенсация отбора закачкой бывает текущая (в данный момент времени) и накопленная (с начала разработки).

Режим растворенного газа

При низкой продуктивности пласта, ухудшенной связи с водонапорной зоной, пластовое давление, в конечном счете, снижается до давления насыщения и ниже. В результате из нефти начинает выделяться газ, который расширяется при снижении давления и вытесняет нефть из пласта, т.е. приток нефти происходит за счет энергии расширения растворенного в нефти газа. Пузырьки этого газа, расширяясь, продвигают нефть и сами перемещаются по пласту к забоям скважин.

В большинстве случаев газ выделившись из нефти всплывает под действием сил гравитации образуя газовую шапку (вторичную) и развивается режим газовой шапки.

Эффект процесса вытеснения нефти за счет энергии газа незначителен, т.к. запас энергии газа истощается намного раньше, чем успевают отобрать нефть.

Разработка залежей при этом режиме сопровождается:

быстрым снижением Р пластового и снижением дебитов скважин;

контур нефтеносности остается неизменным.

Газонапорный режим

проявляется в нефтяных залежах с большой газовой шапкой. Под газовой шапкой понимают скопление свободного газа над нефтяной залежью.

Нефть притекает к забою в основном за счет энергии расширения газа газовой шапки при Р пл меньше Р насыщения. Разработка залежей сопровождается перемещением газонефтяного контакта, прорывом газа в скважины и ростом газового фактора. Эффективность извлечения нефти из пласта изменяется в широких пределах в зависимости от коллекторских свойств пласта, наклона пласта, вязкости нефти и т.д. Жесткий газонапорный режим возможен только при непрерывной закачке в газовую шапку достаточного количества газа.

Гравитационный режим

Гравитационный режим развивается при полном истощении всех видов энергии. Нефть из пласта под действием гравитации (силы тяжести) падает на забой скважины, после чего ее извлекают.

Выделяют такие его разновидности:

1) гравитационный режим с перемещающимся контуром нефтеносности (напорно-гравитационный), при котором нефть под действием собственного веса перемещается вниз по падению крутозалегающего пласта и заполняет его пониженные части; дебиты скважин небольшие и постоянные;

2) гравитационный режим с неподвижным контуром нефтеносности (со свободной поверхностью), при котором уровень нефти находится ниже кровли горизонтально залегающего пласта. Дебиты скважин меньше дебитов при напорно-гравитационном режиме и со временем медленно уменьшаются.

Гравитационный режим и режим растворенного газа редко бывают основной движущей силой, однако сопутствуя процессу извлечения нефти, могут увеличивать нефтеотдачу до 0,2.

Смешанные режимы

В заключении необходимо отметить, что нефтяная залежь редко работает на каком-то одном режиме в течении всего периода эксплуатации.

Режим, при котором возможно одновременное проявление энергий растворенного газа, упругости и напора воды, газа называют смешанным. Природные условия залежи лишь способствуют развитию определенного режима работы. Конкретный режим можно установить, поддержать или заменить другими путем изменения темпов отбора и суммарного отбора жидкости, ввода дополнительной энергии в залежь и т. д.