Биполярные нейроны имеют два отростка какие. Нейроны и нервная ткань

Мультиполярный нейрон содержит:

1.один отросток аксон

4.один отросток дендрит

Биполярный нейрон содержит:

1.один отросток аксон

2.два отростка – аксон и дендрит

3.несколько отростков, один из которых аксон, остальные - дендриты

4.один отросток дендрит

5.один отросток, отходящий от тела, который затем Т-образно делится на два отростка

Псевдоуниполярный нейрон содержит:

1.один отросток аксон

2.два отростка – аксон и дендрит

3.несколько отростков, один из которых аксон, остальные - дендриты

4.один отросток дендрит

5.один отросток, отходящий от тела, который затем Т-образно делится на два отростка

Униполярный нейрон содержит:

1.один отросток аксон

2.два отростка – аксон и дендрит

3.несколько отростков, один из которых аксон, остальные - дендриты

4.один отросток дендрит

5.один отросток, отходящий от тела, который затем Т-образно делится на два отростка

Униполярную форму имеют нейроны:

1.нейроны органов чувств

2.нейробласты

4.нейроны органов чувств и спинальных ганглиев

Псевдоуниполярные нейроны встречаются в:

1.органах чувств

3.спинномозговых ганглиях

4.органах чувств и спинальных ганглиях

5.вегетативных ганглиях

Биполярные нейроны встречаются в:

1.органах чувств

2.спинномозговых и вегетативных ганглиях

3.органах чувств, спинномозговых и вегетативных ганглиях

4.органах чувств и вегетативных ганглиях

5.вегетативных ганглиях

К секреторным нейронам относят:

1.нейроны органов чувств

2.нейробласты

3.нейроны спинномозговых узлов

4.нейроны гипоталамуса

5.нейробласты и нейроны органов чувств

Большинство нейронов организма человека является:

1.псевдоуниполярными

2.униполярными

3.биполярными

4.секреторными

5.мультиполярными

Какие из перечисленных нейронов обладают способностью синтезировать нейрогормоны

1.нейроны органов чувств

2.нейроны вегетативных ганглиев

3.нейроны спинномозговых узлов

4.нейроны гипоталамуса

5.нейроны спинномозговых узлов и нейроны органов чувств

Локализация хроматофильного вещества нейрона:

1.перикарион

2.дендриты

4.перикарион и дендриты

5.аксон и дендриты

Хроматофильное вещество представляет собой скопления:

1.гранулярной и агранулярной ЭПС

2.свободных рибосом и агранулярной ЭПС



3.полисом и комплекса Гольджи

4.гранулярной ЭПС, свободных рибосом и полисом

5.комплекса Гольджи и ЭПС

Сколько аксонов можно определить у каждого из перечисленных нейронов:

1.у каждого нейрона – по одному аксону

2.у мультиполярного нейрона – несколько аксонов

3.у биполярного нейрона – два аксона

4.у псевдоуниполярного нейрона – один или два аксона

5.у каждого нейрона – по два аксона

Назовите основную функцию нейронов:

1.транспортная

2.участие в иммунных реакциях

3.генерация и проведение нервного импульса

4.гомеостатическая

5.защитная

Какие из перечисленных нейронов не входят в морфологическую классификацию:

1.псевдоуниполярные

2.униполярные

3.биполярные

4.рецепторные

5.мультиполярные

Назовите специфические морфологические особенности цитоплазмы нейронов:

1.отсутствие немембранных органелл

2.слабое развитие ЭПС

3.большое количество пигментных включений

4.наличие хроматофильного вещества и нейрофибрилл

5.хорошо развит аппарат Гольджи, много лизосом

Рецепторные нейроны выполняют функцию:

1.восприятия импульса

3.секреторную

Эффекторные нейроны выполняют функцию:

1.восприятия импульса

2.передачи импульса на ткани рабочих органов

3.секреторную

4.обеспечения существования и функционирования нервных клеток

5.осуществления связи между нейронами

Ассоциативные нейроны выполняют функцию:

1.восприятия импульса

2.передачи импульса на ткани рабочих органов

3.секреторную

4.обеспечения существования и функционирования нервных клеток

5.осуществления связи между нейронами

Макроглия развивается из:

1.нейробластов

2.мезенхимы

3.глиобластов нервной трубки

4.нервного гребня

5.кожной эктодермы

Микроглия развивается из:

1.нейробластов

2.мезенхимы

3.глиобластов нервной трубки

4.нервного гребня

5.кожной эктодермы

Какие клетки нейроглии обладают фагоцитарной активностью:

1.эпендимоциты

2.астроциты

3.олигодендроциты

4.все виды макроглии

5.микроглия

Функция эпендимоцитов:

1.опорная и разграничительная

Функция астроцитов:

1.опорная и разграничительная

2.секреция спинномозговой жидкости

3.трофическая, участие в обмене веществ нейронов, образование миелиновых оболочек

4.защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани

5.генерация и проведение нервного импульса

Функция олигодендроцитов:

1.опорная и разграничительная

2.секреция спинномозговой жидкости

3.трофическая, участие в обмене веществ нейронов, образование миелиновых оболочек

4.защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани

5.генерация и проведение нервного импульса

Функция клеток микроглии:

1.опорная и разграничительная

2.секреция спинномозговой жидкости

3.трофическая, участие в обмене веществ нейронов, образование миелиновых оболочек

4.защита от инфекции и повреждения, удаление продуктов разрушения нервной ткани

5.генерация и проведение нервного импульса

Нейроглия, выстилающая желудочки мозга и спинномозговой канал, представлена:

1.протоплазматическими астроцитами

2.эпендимоцитами

3.волокнистыми астроцитами

4.микроглиоцитами

5.олигодендроцитами

Какие из перечисленных нейронов не входят в функциональную классификацию?

1.рецепторные

2.биполярные

3.вставочные

4.моторные

5.рецепторные, вставочные

Цереброспинальную жидкость секретируют:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

Функцию изоляции нейронов от внешних влияний выполняют:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

Какие клетки нервной ткани являются глиальными макрофагами?

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и эпендимоциты

5.микроглиоциты

Глиоциты ганглия представлены клетками:

1.астроцитами

2.эпендимоцитами

3.олигодендроцитами

4.астроциты и микроглиоцитами

5.микроглиоцитами

Какие клетки нейроглии происходят от промоноцитов костного мозга?

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и эпендимоциты

5.микроглиоциты

В образовании оболочек нервных волокон участвуют:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

При раздражении клетки теряют отростчатую форму и округляются, образуя зернистые шары. Какие это клетки?

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.астроциты и микроглиоциты

5.микроглиоциты

В процессах дегенерации и регенерации нервных волокон основная роль принадлежит:

1.эпендимоцитам

2.волокнистым астроцитам

3.протоплазматическим астроцитам

4.нейролеммоцитам

5.микроглии

Определите тип синапса: терминальные ветви аксона одного нейрона оканчиваются на теле другого нейрона:

1.аксоаксональный

2.аксосоматический

3.аксодендритический

4.соматосоматический

5.дендродендрический

Определите тип синапса: терминальные ветви аксона одного нейрона контактируют с дендритом другого нейрона:

1.аксоаксональный

2.аксосоматический

3.аксодендритический

4.соматосоматический

5.дендродендрический

Определите тип синапса: терминальные ветви аксона одного нейрона оканчиваются на аксоне другого нейрона:

1.аксоаксональный

2.аксосоматический

3.аксодендритический

4.соматосоматический

5.дендродендрический

Мезенхимное происхождение имеют клетки нейроглии:

1.астроциты

2.эпендимоциты

3.олигодендроциты

4.все макроглиоциты

Организм человека представляет собой сложную систему, в работе которой принимает участие множество отдельных блоков и компонентов. Внешне устройство тела видится элементарным и даже примитивным. Однако если заглянуть глубже и попытаться выявить схемы, по которым происходит взаимодействие между разными органами, то на первый план выйдет нервная система. Нейрон, являющийся основной функциональной единицей этой структуры, выступает в качестве передатчика химических и электрических импульсов. Несмотря на внешнее сходство с другими клетками, он выполняет более сложные и ответственные задачи, поддержка которых важна для психофизической деятельности человека. Для понимания особенностей данного рецептора стоит разобраться с его устройством, принципами работы и задачами.

Что такое нейроны?

Нейрон является специализированной клеткой, которая способна принимать и обрабатывать информацию в процессе взаимодействия с другими структурно-функциональными единицами нервной системы. Количество данных рецепторов в мозге составляет 10 11 (сто миллиардов). При этом один нейрон может содержать более 10 тысяч синапсов - чувствительных окончаний, посредством которых и происходят С учетом того, что данные элементы могут рассматриваться в качестве блоков, способных хранить информацию, можно сделать вывод о содержать огромные объемы информации. Также нейроном называется структурная единица нервной системы, обеспечивающая работу органов чувств. То есть рассматривать данную клетку следует как многофункциональный элемент, предназначенный для решения различных задач.

Особенности нейронной клетки

Виды нейронов

Основная классификация предполагает разделение нейронов по структурному признаку. В частности, ученые выделяют безаксонные, псевдоуниполярные, униполярные, мультиполярные и биполярные нейроны. Надо сказать, что некоторые из этих видов пока мало изучены. Это относится к безаксонным клеткам, которые группируются в области спинного мозга. Также ведутся споры в отношении униполярных нейронов. Есть мнения, что подобные клетки и вовсе не присутствуют в теле человека. Если же говорить о том, какие нейроны преобладают в организме высших существ, то на первый план выйдут мультиполярные рецепторы. Это клетки, располагающие сетью дендритов и одним аксоном. Можно сказать, это классический нейрон, наиболее часто встречающийся в нервной системе.

Заключение

Нейронные клетки являются неотъемлемой составляющей человеческого организма. Именно благодаря этим рецепторам обеспечивается ежедневное функционирование сотен и тысяч химических передатчиков в теле человека. На современном этапе развития наука дает ответ на вопрос о том, что такое нейроны, но при этом оставляет и пространство для будущих открытий. К примеру, на сегодняшний день есть разные мнения относительно некоторых нюансов работы, роста и развития клеток этого типа. Но в любом случае изучение нейронов является одной из главнейших задач нейрофизиологии. Достаточно сказать, что новые открытия в этой области способны пролить свет на более эффективные способы лечения многих психических заболеваний. Кроме того, глубокое понимание принципов работы нейронов позволит разрабатывать средства, стимулирующие умственную деятельность и улучшающие память в новом поколении.

КЛАССИФИКАЦИЯ НЕЙРОНОВ

Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа (рис.8.6): униполярные, биполярные и мультиполярные.

Рис. 8.6. Морфологическая классификация нейронов. УН – униполярный нейрон, БН – биполярный нейрон, ПУН – псевдоуниполярный нейрон, МН – мультиполярный нейрон, ПК – перикарион, А – аксон, Д – дендрит.

1. Униполярные нейроны имеют один отросток. По мнению боль­шинства исследователей, в нервной системе человека и других млеко­питающих они не встречаются. Некоторые авторы к таким клеткам все же относят амакринные нейроны сетчатки глаза и межклубочковые нейроны обонятельной луковицы.

2. Биполярные нейроны имеют два отростка - аксон и дендрит обычно отходящие от противоположных полюсов клетки. В нервной системе человека встречаются редко. К ним относят биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев.

Псевдоуниполярные нейроны - разновидность биполярных, в них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится. Эти клетки встречаются в спинальных и краниальных ганглиях.

3. Мультиполярные нейроны имеют три или большее число отростков: аксон и несколько дендритов. Они наиболее распространены и нервной системе человека. Описано до 80 вариантов этих клеток: веретенообразные, звездчатые, грушевидные, пирамидные, корзинчатые и др. По длине аксона выделяют клетки Гольджи I типа (с длинным аксоном) и клетки Гольджи II типа (с коротким аксоном).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: чувствительные, двигательные и ассоциативные .

1. Чувствительные (афферентные) нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды.

2. Двигательные (эфферентные) нейроны передают сигналы на рабочие органы (скелетные мышцы, железы, кровеносные сосуды).

3. Ассоциативные (вставочные) нейроны (интернейроны) осуществляют связи между нейронами и количественно преобладают над нейронами других типов, составляя в нервной системе около 99.98% от общего числа этих клеток.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор – ацетилхолин), адренергические (медиатор – норадреналин), серотонинергические (медиатор – серотоиин), дофаминергические (медиатор – дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота, ГАМК), пуринергические (медиатор – АТФ и его производные), пептидергические (медиаторы - субстанция Р, энкефалины, эндорфины, вазоактивный интестинальный пептид, холецистокинин, нейротензин, бомбезин и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора.

Распределение нейронов, использующих различные медиаторы, в нервной системе неравномерно. Нарушение выработки некоторых медиаторов в отдельных структурах мозга связывают с патогенезом ряда нервно-психических заболеваний. Так, содержание дофамина снижено при паркинсонизме и повышено при шизофрении, снижение уровней норадреналина и серотонина типично для депрессивных состояний, а их повышение - для маниакальных.

НЕЙРОГЛИЯ

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая неспецифические функции: опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. Является вспомагательным компанентом нервной ткани.

Прочитайте:
  1. A – и b-адреномиметические средства. Классификация. Фармакологические эффекты. Применение. Побочные эффекты.
  2. II. Классификация клиники детской челюстно-лицевой хирургии Белорусского государственного медицинского университета.
  3. Аборты. Классификация. Диагностика. Лечение. Профилактика.
  4. АМЕНОРЕЯ. ЭТИОЛОГИЯ, КЛАССИФИКАЦИЯ, КЛИНИКА, ДИАГНОСТИКА, ЛЕЧЕНИЕ.
  5. Анатомо-физиологические сведения о прямой кишке. Классификация заболеваний. Методы обследования больных.
  6. Анатомо-физиологические сведения о щитовидной железе. Классификация заболеваний. Методы исследования щитовидной железы. Профилактика.
  7. Анемии. Определение. Классификация. Железодефицитная анемия. Этиология. Клиническая картина. Диагностика. Лечение. Профилактика. Особенности приема препаратов железа у детей.

По количеству цитоплазматических отростков принято различать униполярные, биполярные и мультиполярные нейроны. Униполярные нейроны имеют единственный, обычно сильно разветвлённый первичный отросток. Одна из его ветвей функционирует как аксон, а остальные – как дендриты. Такие клетки часто встречаются в нервной системе беспозвоночных, а у позвоночных они обнаруживаются лишь в некоторых ганглиях вегетативной нервной системы.

У биполярных клеток есть два отростка (Рис. 3.2): дендрит проводит сигналы от периферии к телу клетки, а аксон передаёт информацию от тела клетки к другим нейронам. Так выглядят, например, некоторые сенсорные нейроны, встречающиеся в сетчатке глаза, в обонятельном эпителии.

К этой же разновидности нейронов следует отнести и чувствительные клетки спинальных ганглиев, воспринимающих, например, прикосновение к коже или боль, хотя формально от их тела отходит лишь один отросток, который разделяется на центральную и периферическую ветви. Такие клетки называют псевдоуниполярными, они формировались первоначально как биполярные нейроны, но в процессе развития два их отростка соединились в один, у которого одна ветвь функционирует как аксон, а другая – как дендрит.

У мультиполярных клеток один аксон, а дендритов может быть очень много, они отходят от тела клетки, а затем многократно делятся, образуя на своих ветвях многочисленные синапсы с другими нейронами. Так, например, на дендритах только одного мотонейрона спинного мозга образуется около 8000 синапсов, а на дендритах находящихся в коре мозжечка клеток Пуркинье может быть до 150 000 синапсов. Нейроны Пуркинье являются и самыми крупными клетками человеческого мозга: диаметр их тела около 80 мкм. А рядом с ними обнаруживаются крохотные зернистые клетки, их диаметр всего лишь 6-8 мкм. Мультиполярные нейроны встречаются в нервной системе чаще всего и среди них выявляется множество внешне не похожих друг на друга клеток.

Нейроны принято классифицировать не только по форме, но и по выполняемой функции, по их месту в цепи взаимодействующих клеток. Некоторые из них имеют специальные чувствительные окончания – рецепторы, которые возбуждаются при действии на них каких-либо физических или химических факторов, таких как, например, свет, давление, присоединение определённых молекул. После возбуждения рецепторов чувствительные нейроны передают информацию в центральную нервную систему, т.е. проводят сигналы центростремительно или афферентно (лат. afferens – приносящий).

Другая разновидность клеток передаёт команды от центральной нервной системы к скелетным или к гладким мышцам, к сердечной мышце или к железам внешней секреции. Это либо двигательные, либо вегетативные нейроны, по которым сигналы распространяются центробежно, а сами такие нейроны называются эфферентными (лат. efferens – выносящий).

Все остальные нейроны относятся к категории вставочных или интернейронов, которые образуют основную массу нервной системы – 99,98% от общего количества клеток. Среди них встречаются, как уже говорилось в главе 2, локальные и проекционные нейроны. Другое название проекционных нейронов – релейные; у них, как правило, длинные аксоны, с помощью которых эти клетки могут передавать переработанную информацию отдалённым регионам мозга. У локальных интернейронов аксоны короткие, эти клетки перерабатывают информацию в ограниченных локальных цепях и взаимодействуют преимущественно с соседними нейронами.

Нейрон Пирамидный нейрон коры головного мозга мыши, экспрессивный зеленый флуоресцентный белок (GFP)

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях , не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге .

Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях .

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны - нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину нейрона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет около 150 мкм.

По количеству отростков выделяют следующие морфологические типы нейронов :

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии , микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза , о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Литература

  • Поляков Г. И., О принципах нейронной организации мозга, М: МГУ, 1965
  • Косицын Н. С. Микроструктура дендритов и аксодендритических связей в центральной нервной системе. М.: Наука, 1976, 197 с.
  • Немечек С. и др. Введение в нейробиологию, Avicennum: Прага, 1978, 400 c.
  • Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение
  • Мозг (сбоpник статей: Д. Хьюбел, Ч. Стивенс, Э. Кэндел и дp. - выпуск журнала Scientific American (сентябрь 1979)). М. :Миp, 1980
  • Савельева-Новосёлова Н. А., Савельев А. В. Устройство для моделирования нейрона. А. с. № 1436720, 1988
  • Савельев А. В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // журнал “Искусственный интеллект”, НАН Украины . - Донецк, Украина, 2006. - № 4. - С. 323-338.