Решить пример произведение многочлена и одночлена. Сложение и вычитание многочленов

Урок на тему:
"Сложение и вычитание многочленов. Правила и примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Развивающие и обучающие пособия в интернет-магазине "Интеграл"
Электронное учебное пособие по учебнику Ю.Н. Макарычева
Электронное учебное пособие к учебнику А.Г. Мордковича

Сложение многочленов

Ранее мы познакомились с понятием многочлена. Теперь научимся с многочленами работать. Это умение пригодится при решении сложных уравнений и других математических задач.

Вспомним определение: многочлен - это сумма одночленов!
Значит, чтобы сложить многочлены надо записать их как один многочлен, сохраняя знаки исходные членов.

Но, пока не наработан навык, будем складывать по определенному правилу:
1. Записываем многочлены в скобках и ставим между ними знаки "+".
2. Переписываем без скобок. Если в скобках у первого члена многочлена стоит знак минус, мы его пишем вместо плюса, который стоял перед скобкой. Остальные члены многочлена переписываем, сохраняя знаки.
3. Приводим получившийся многочлен к стандартному виду.

Примеры.
1) Сложить многочлены: a 3 + 2b + с и а 2 + 2b - 1.

Решение.

(а 3 + 2b + с) + (а 2 + 2b - 1).
2. Раскроим скобки: a 3 + 2b + с + а 2 + 2b - 1.

a 3 + 2b + с + а 2 + 2b - 1 = а 3 + 4b + с + а 2 - 1.
4. И запишем в красивом (стандартном) виде: a 3 + а 2 + 4b + с - 1.

2) Сложить многочлены: a 3 + 2b + с и -а 2 + 2b - 1.

Решение.
1. Запишем многочлены в скобках и поставим между скобками знак плюс:
(а 3 + 2b + с) + (-а 2 + 2b - 1).
2. Раскроим скобки: a 3 + 2b + с - а 2 + 2b - 1.
3. Сложим все, что складывается (привести подобные):
a 3 + 2b + с - а 2 + 2b - 1 = а 3 + 4b + с - а 2 - 1.
4. И запишем в красивом (стандартном) виде: a 3 - а 2 + 4b + с - 1.

Вычитание многочленов

Как при сложении, сначала записываем многочлены в скобках, но между скобками ставим знак "-". Просто убрать скобки, не получится. Нужно поменять знаки членов многочлена на противоположные. Это очень важно помнить, поскольку поможет избежать многих ошибок.

Попробуем решить пример 2 - (1 + 1). Сначала выполняем действия в скобках, потом - вычитание, получим ответ 0. Если просто убрать скобки, ответ будет 2. Если поменять знаки, ответ будет правильный 0.

Примеры.
1) Из многочлена а 3 b + 2ac - 5 вычесть многочлен 2a 3 b + ас + 5.

Решение.

(а 3 b + 2ac - 5) - (2a 3 b + ac + 5).
2. Раскроим скобки: а 3 b + 2ac - 5 - 2а 3 b - ac - 5.
3. Сложим все, что складывается (привести подобные):
а 3 b + 2ac - 5 - 2а 3 b - ac - 5 = -а 3 b + ac - 10.
4. И запишем в красивом (стандартном) виде: -а 3 b + ac - 10.

2) Из многочлена a 3 b + 2ac - 5 вычесть многочлен -2a 3 b + ас + 5.

Решение.
1. Запишем многочлены в скобках и поставим между скобками знак минус:
(а 3 b + 2ac - 5) - (-2a 3 b + ac + 5).
2. Раскроим скобки: а 3 b + 2ac - 5 + 2а 3 b - ac - 5.
Обратите внимание, первый минус в вычитаемом поменялся на плюс! (Всегда внимательно смотрим: где ставить плюс, где - минус? Знак перед скобкой накладывается на знак в скобке: плюс на плюс дает плюс, плюс на минус дает минус, минус на минус дает плюс.)
3. Сложим все, что складывается (привести подобные):
а 3 b + 2ac - 5 + 2a 3 b - ac - 5 = 3a 3 b + ac - 10.
4. И запишем в красивом (стандартном) виде: 3a 3 b + ac - 10.

Методы сложения и вычитания многочленов очень похожи, только при вычитании меняются знаки. Поэтому эти действия объединили в одно правило.

Чтобы найти алгебраическую сумму многочленов надо записать их в скобках и расставить знаки. Потом раскрыть скобки следующим образом: если перед скобкой стоит знак плюс, то знаки членов многочлена не меняются, если перед скобкой стоит знак минус, то знаки членов многочлена меняются на противоположные.

Пример.
Найдите алгебраическую сумму многочленов: А + В – С, где:
А = а 2 b + аb + 4;
В = -5a 2 b + 6ab - 5;
С = -4a 2 b + 3ab + 8.

Решение.
1. Запишем многочлены в скобках: (а 2 b + аb + 4) + (-5a 2 b + 6ab - 5) - (-4a 2 b + 3ab + 8).
2. Раскроим скобки: а 2 b + аb + 4 - 5a 2 b + 6ab - 5 + 4a 2 b - 3ab - 8.
3. Приведем подобные:
а 2 b + аb + 4 - 5a 2 b + 6ab - 5 + 4a 2 b - 3ab - 8 = 4ab – 9.
4. И запишем в стандартном виде: 4ab – 9.
Обратите внимание, что исчезли некоторые члены многочленов.
Действительно а 2 b - 5a 2 b + 4a 2 b = 0.
В таких случаях принято говорить, что a 2 b, 5a 2 b, 4a 2 b взаимно уничтожились.

Примеры для самостоятельного решения

Найти алгебраическую сумму многочленов А – В + С, где:
1) А = х 2 у + 2ху 2 - 3;
В = - 5х 2 у + 3ху + 6;
С = 2х 2 у - 3ху + 6.

2) А = – 4х 2 у + ху – 8;
В = 6х 2 у + 8ху + у;
С = – 3ху + х.

3) А = ху 2 – 7ху – х;
В = 9ху 2 + ху + 6;
С = 5ху 2 + 8ху + х.

Определение 3.3. Одночленом называют выражение, представляющее собой произведение чисел, переменных и степеней с натуральным показателем.

Например, каждое из выражений ,
,
является одночленом.

Говорят, что одночлен имеет стандартный вид , если он содержит только один числовой множитель, стоящий на первом месте, а каждое произведение одинаковых переменных в нем представлено степенью. Числовой множитель одночлена, записного в стандартном виде, называют коэффициентом одночлена . Степенью одночлена называют сумму показателей степеней всех его переменных.

Определение 3.4. Многочленом называют сумму одночленов. Одночлены, из которых составлен многочлен, называют членами многочлена .

Подобные слагаемые – одночлены в многочлене – называют подобными членами многочлена .

Определение 3.5. Многочленом стандартного вида называют многочлен, в котором все слагаемые записаны в стандартном виде и приведены подобные члены. Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.

Например, – многочлен стандартного вида четвертой степени.

Действия над одночленами и многочленами

Сумму и разность многочленов можно преобразовать в многочлен стандартного вида. При сложении двух многочленов записываются все их члены и приводятся подобные члены. При вычитании знаки всех членов вычитаемого многочлена меняются на противоположные.

Например:

Члены многочлена можно разбивать на группы и заключать в скобки. Поскольку это тождественное преобразование, обратное раскрытию скобок, то устанавливается следующее правило заключения в скобки : если перед скобками ставится знак «плюс», то все члены, заключаемые в скобки, записывают с их знаками; если перед скобками ставится знак «минус», то все члены, заключаемые в скобки, записывают с противоположными знаками.

Например,

Правило умножения многочлена на многочлен : чтобы умножить многочлен на многочлен, достаточно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Например,

Определение 3.6. Многочленом от одной переменной степени называют выражение вида

где
– любые числа, которые называют коэффициентами многочлена , причем
,– целое неотрицательное число.

Если
, то коэффициентназываютстаршим коэффициентом многочлена
, одночлен
– его старшим членом , коэффициент свободным членом .

Если вместо переменной в многочлен
подставить действительное число, то в результате получится действительное число
, которое называютзначением многочлена
при
.

Определение 3.7. Число называют корнем многочлена
, если
.

Рассмотрим деление многочлена на многочлен, где
и- натуральные числа. Деление возможно, если степень многочлена-делимого
не меньше степени многочлена-делителя
, то есть
.

Разделить многочлен
на многочлен
,
,– значит найти два таких многочлена
и
, чтобы

При этом многочлен
степени
называютмногочленом-частным ,
остатком ,
.

Замечание 3.2. Если делитель
не нуль-многочлен, то деление
на
,
, всегда выполнимо, а частное и остаток определяются однозначно.

Замечание 3.3. В случае, когда
при всех , то есть

говорят, что многочлен
нацело делится
(или делится ) на многочлен
.

Деление многочленов выполняется аналогично делению многозначных чисел: сначала старший член многочлена-делимого делят на старший член многочлена-делителя, затем частное от деления этих членов, которое будет старшим членом многочлена-частного, умножают на многочлен-делитель и полученное произведение вычитают из многочлена-делимого. В результате получают многочлен – первый остаток, который делят на многочлен-делитель аналогичным образом и находят второй член многочлена-частного. Этот процесс продолжают до тех пор, пока получится нулевой остаток или степень многочлена остатка будет меньше степени многочлена-делителя.

При делении многочлена на двучлен можно воспользоваться схемой Горнера.

Схема Горнера

Пусть требуется разделить многочлен

на двучлен
. Обозначим частное от деления как многочлен

а остаток – . Значение, коэффициенты многочленов
,
и остатокзапишем в следующей форме:

В этой схеме каждый из коэффициентов
,
,
, …,получается из предыдущего числа нижней строки умножением на числои прибавлением к полученному результату соответствующего числа верхней строки, стоящего над искомым коэффициентом. Если какая-либо степеньв многочлене отсутствует, то соответствующий коэффициент равен нулю. Определив коэффициенты по приведенной схеме, записываем частное

и результат деления, если
,

или ,

если
,

Теорема 3.1. Для того чтобы несократимая дробь (

,

) была корнем многочлена
с целыми коэффициентами, необходимо, чтобы числобыло делителем свободного члена, а число- делителем старшего коэффициента.

Теорема 3.2. (Теорема Безу ) Остаток от деления многочлена
на двучлен
равен значению многочлена
при
, то есть
.

При делении многочлена
на двучлен
имеем равенство

Оно справедливо, в частности, при
, то есть
.

Пример 3.2. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

Пример 3.3. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

,

Пример 3.4. Разделить на
.

Решение.

В итоге получаем

Пример 3.5. Разделить
на
.

Решение. Проведем деление многочленов столбиком:

Тогда получаем

.

Иногда бывает полезным представление многочлена в виде равного ему произведения двух или нескольких многочленов. Такое тождественное преобразование называют разложением многочлена на множители . Рассмотрим основные способы такого разложения.

Вынесение общего множителя за скобки. Для того чтобы разложить многочлен на множители способом вынесения общего множителя за скобки, необходимо:

1) найти общий множитель. Для этого, если все коэффициенты многочлена – целые числа, в качестве коэффициента общего множителя рассматривают наибольший по модулю общий делитель всех коэффициентов многочлена, а каждую переменную, входящую во все члены многочлена, берут с наибольшем показателем, который она имеет в данном многочлене;

2) найти частное от деления данного многочлена на общий множитель;

3) записать произведение общего множителя и полученного частного.

Группировка членов. При разложении многочлена на множители способом группировки его члены разбиваются на две или более групп с таким расчетом, чтобы каждую из них можно было преобразовать в произведение, и полученные произведения имели бы общий множитель. После этого применяется способ вынесения за скобки общего множителя вновь преобразованных членов.

Применение формул сокращенного умножения. В тех случаях, когда многочлен, подлежащий разложению на множители, имеет вид правой части какой-либо формулы сокращенного умножения, его разложение на множители достигается применением соответствующей формулы, записанной в другом порядке.

Пусть

, тогда справедливы следующиеформулы сокращенного умножения:

Для

:

Если нечетное (

):

Бином Ньютона:

где
– число сочетаний изпо.

Введение новых вспомогательных членов. Данный способ заключается в том, что многочлен заменяется другим многочленом, тождественно равным ему, но содержащим другое число членов, путем введения двух противоположных членов или замены какого-либо члена тождественно равной ему суммой подобных одночленов. Замена производится с таким расчетом, чтобы к полученному многочлену можно было применить способ группировки членов.

Пример 3.6. .

Решение. Все члены многочлена содержат общий множитель
. Следовательно,.

Ответ: .

Пример 3.7.

Решение. Группируем отдельно члены, содержащие коэффициент , и члены, содержащие. Вынося за скобки общие множители групп, получаем:

.

Ответ:
.

Пример 3.8. Разложить на множители многочлен
.

Решение. Используя соответствующую формулу сокращенного умножения, получаем:

Ответ: .

Пример 3.9. Разложить на множители многочлен
.

Решение. Используя способ группировки и соответствующую формулу сокращенного умножения, получаем:

.

Ответ: .

Пример 3.10. Разложить на множители многочлен
.

Решение. Заменим на
, сгруппируем члены, применим формулы сокращенного умножения:

.

Ответ:
.

Пример 3.11. Разложить на множители многочлен

Решение. Так как ,
,
, то

Презентация и раздаточный материал к уроку в 7 классе "Сложение и вычитание многочленов"

Цели и задачи учебного занятия:

  • Образовательные :
    • познакомить учащихся с правилами сложения и вычитания многочленов;
    • формировать умения и навыки сложения и вычитания многочленов, приведения подобных слагаемых и раскрытия скобок.
  • Развивающие :
    • формировать умения осуществлять мыслительные операции: выделять главное, систематизировать, анализировать;
    • развивать грамотность математического письма, память, умение слушать.
  • Воспитательная :
    • прививать трудолюбие, усидчивость, аккуратность, точность;
    • формировать положительное отношение к предмету и интерес к знаниям.

Оборудование: учебник, доска.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сложение, вычитание многочленов. МБОУ лицей №1, г.Волжский Волгоградской области. Учитель математики:Коротова И.В.

Схема урока. Теория Подготовка к УПД Практика Домашнее задание Изучение нового материала Индивидуальный опрос

Теория Одночлен. Одночлен стандартного вида. Подобные слагаемые. Приведение подобных слагаемых. Многочлен. Многочлен стандартного вида. Алгоритм приведения многочлена к стандартному виду. Раскрытие скобок перед которыми стоит знак плюс (знак минус)

Выберите одночлены: 2 х + у; 3ху; 27ab 2 ; gh + 4; 2m+5n; 1 ; 1 + k . Теория

Приведите подобные слагаемые: -11ак + 8ак + 5ак; 7x 3 y 2 - 12 + 4x 2 y - 2y 2 x 3 + 6 Теория

Представьте многочлен в стандартном виде: 6 ab – 2 b 2 – 6 ba + 5 a 2 + 0,6 b 2 - 4 a · b a + 2 a 2 b + 0,2 a 2 b 2 – 2 a 2 b 2 Теория

Раскрыть скобки. – (32 – 2a 2 b – 5b + 4a) + (-7 х+ 8 у – 5ху + 7) Взаимопроверка

Взаимопроверка. Выберите одночлены: Отметка 2 3 6 Приведите подобные слагаемые: 2ак 5х 3 у 2 + 4х 2 у - 6 Представьте многочлен в стандартном виде -1,4 b 2 +5a 2 -1 ,8 a 2 b 2 - 2a 2 b Раскрыть скобки: -32+2a 2 b + 5b – 4a -7x + 8y – 5xy + 7 Итоговая отметка: Схема урока

Индивидуальный опрос. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Индивидуальный опрос. Низкий уровень 1 2 3 4 Средний уровень 1 2 3 4 Высокий уровень 1 2 3 4 Работа класса Схема урока

1. Низкий уровень Представьте в стандартном виде многочлен: Индивидуальный опрос

2. Низкий уровень Представьте в стандартном виде многочлен: Индивидуальный опрос

3. Низкий уровень Представьте в стандартном виде многочлен: Индивидуальный опрос

4. Низкий уровень Представьте в стандартном виде многочлен: Индивидуальный опрос

1.Средний уровень Представьте в стандартном виде многочлен: 16а(-а 2 b) + 18а 3 b - 12аа b + 14а 2 b Индивидуальный опрос

2.Средний уровень Представьте в стандартном виде многочлен: 5 x (-4х 4) – 2 x 2 З x 3 + 27 x 5 - x 6 Индивидуальный опрос

3.Средний уровень Представьте в стандартном виде многочлен: 2у у 3 - Зу 2 4у 2 + 6у 4 - 8 у 4 - 11 Индивидуальный опрос

4.Средний уровень Представьте в стандартном виде многочлен: 23х 3 - 7 хх 2 у + 6х 2 x – 2 x 2 8у + 4 Индивидуальный опрос

1.Высокий уровень Представьте в стандартном виде многочлен: 3 a 2 b n+2 + 5 a · 0,2 a b n+2 – 4 a 2 b n · 0,5 b 2 + 2 a 2 b n bb Индивидуальный опрос

2.Высокий уровень Представьте в стандартном виде многочлен: 3,2x 2 x n x - 3,4 х n+1 2x 2 - 4,8x n+2 0,1x + x n+3 Индивидуальный опрос

3.Высокий уровень Представьте в стандартном виде многочлен: 0,3 у n+3 у 2 - 0,12y 2 y 0,1 у n+2 - 1,6 у n+2 yyy – 3 Индивидуальный опрос

4.Высокий уровень Представьте в стандартном виде многочлен: 3x n-2 x 5 -2x n 7x 2 x+4y n+1 4y 0,2y-12y n+1 0,1y 2 Индивидуальный опрос

Записать сумму многочленов – 2 a + 5 b и – 2 b – 5 a 5y 2 + 2y - 3 и 7y 2 - 3y + 7. Записать разность многочленов – 2а + 5b и – 2b – 5а 8y 2 + 5y + 3 и 5y 2 - 3y + 7 .

Записать разность многочленов – 2 а + 5 b и – 2 b – 5 а 8y 2 + 5y + 3 и 5y 2 - 3y + 7 .

Упростить выражение. (– 2 a + 5 b) + (– 2 b – 5 a) = Проверка

Упростить выражение. (5y 2 + 2y - 3) + (7y 2 - 3y + 7) = Проверка

Упростить выражение. (– 2 a + 5 b) + (– 2 b – 5 a) = – 2 a + 5 b – 2 b – 5 a = – 3 b – 7 a

Упростить выражение. (5y 2 + 2y - 3) + (7y 2 - 3y + 7) = 5y 2 + 2y - 3 + 7y 2 - 3y + 7 = 12y 2 - y + 4

Упростить выражение (– 2 a + 5 b) – (– 2 b – 5 a) = Проверка

Упростить выражение (8y 2 + 5y + 3) - (5y 2 - 3y + 7) = Проверка

Упростить выражение (– 2 a + 5 b) – (– 2 b – 5 a) = – 2 a + 5 b + 2 b + 5 a = 7 b + 3 a

Упростить выражение (8y 2 + 5y + 3) - (5y 2 - 3y + 7) = 8y 2 + 5y + 3 - 5y 2 + 3y - 7 = 3y 2 + 8y - 4 Схема урока

Сложение и вычитание многочленов.

Правило сложения (вычитания) многочленов. Пусть даны два многочлена. Чтобы их сложить, их записывают в скобках и ставят знак «плюс» между ними. При вычитании мы ставим между скобками знак «минус». Для того, чтобы найти алгебраическую сумму нескольких многочленов, нужно раскрыть скобки по соответствующему правилу и привести подобные члены. В результате сложения (вычитания) многочленов получается многочлен. Схема урока

Практические задания. № 587 (а,г) № 588 (б) Схема урока

Домашнее задание: П.26 № 589 (а,в) № 595 (а) № 612 (б)

a - b b a - x - y 2 x - y 3 y 3 a 0

2 a a - b b b - a a - b - b b + a 0 - x - y 2 x - y - x + 2 y 3 y 0 - 3 y x – 2 y - 2 x + y x + y

Низкий уровень Средний уровень 3 a 2 b 3 + 5 a · 0,2 a b 2 – 4 a 2 b 2 · 0,5 b + 2 a 2 b 2 Высокий уровень 5 x n +4 2у - 10х n у 4х 4 –14 x n у 2 +18х n уу Проверка

Низкий уровень -a b 2 Средний уровень a 2 b 3 + 3 a 2 b 2 Высокий уровень -30x n +4 у + 4 x n у 2 Схема урока

Предварительный просмотр:

1 . Взаимопроверка.

2 . Работа класса

Ответ:

Отметка

1 . Взаимопроверка.

2 . Работа класса

Ответ:

Отметка

3 . Запишите в клетки каждого квадрата такие выражения, чтобы их сумма в каждом столбце, каждой строке и каждой диагонали была равна выражению, записанному в треугольнике:

Предварительный просмотр:

Представьте в стандартном виде многочлен:

16а(-а 2 6) + 18а 3 6 - 12аа6 + 14а 2 6

5 x (-4х 4 ) – 2 x 2 З x 3 + 27 x 5 - x 6

2у у 3 - Зу 2 4у 2 + 6у 4 - 8 у 4 - 11

23х 3 - 7 хх 2 у + 6х 2 x – 2 x 2 8у + 4

3,2x 2 x n x - 3,4 х n +1 2x 2 - 4,8x n +2 0,1x + x n +3 .

0, 3 у n +3 у 2 - 0, 12 y 2 y 0,1 у n + 2 - 1,6 у n +2 yyy – 3

3x n-2 x 5 -2x n 7x 2 x+4y n+1 4y 0,2y-12y n+1 0,1y 2

Предварительный просмотр:

Взаимопроверка.

Выберите одночлены:

Пусть требуется сложить одночлены:

Полученное выражение является алгебраической суммой. Согласно введённому условию (§ 16) мы можем внак сложения везде опустить и написать короче:

В этом выражении имеется два подобных члена.

Приведём их и заодно расположим многочлен по убывающим степеням относительно х:

(Проверить подстановкой в данные одночлены и в полученную сумму значений:

Значит, мы можем вывести такое правило:

Чтобы сложить одночлены, достаточно записать их (в виде алгебраической суммы) один за другим с их знаками.

Если в полученном выражении окажутся подобные члены, то их надо привести.

2. Сложение многочленов.

Решим задачу. В одной корзине было х яблок, в другой на у яблок больше, чем в первой, а в третьей на 27 яблок меньше, чем во второй. Сколько яблок было во всех трёх корзинах?

1) В первой корзине было х яблок.

2) Во второй корзине было яблок.

3) В третьей корзине было яблок.

4) В трёх корзинах было яблок.

Полученный ответ представляет собой сумму одночлена и двух многочленов.

Упростим этот ответ. Мы знаем, что каждое из выражений является алгебраической суммой. Поэтому по правилу прибавления суммы можем записать:

После приведения подобных членов получим окончательно:

Определить, сколько было яблок в корзинах, если:

Значит, мы можем вывести такое правило для сложения многочленов:

Чтобы сложить многочлены, надо запасать последовательно (в виде алгебраической суммы) все их члены с их знаками.

Если в полученном выражении окажутся подобные члены, их надо привести.

3. Раскрытие скобок.

При решении предыдущей задачи пришлось раскрывать скобки, перед каждой из которых стоял знак плюо. Значит, можно сделать вывод:

Чтобы раскрыть скобки, перед которыми стоит знак плюс, надо записать без скобок все члены, стоящие в скобках, с их знаками.

Примечание. Если выражение начинается со скобки, перед которой нет никакого знака, то подразумевается знак плюс, например:

4. Заключение в скобки.

Иногда бывает нужно, наоборот, заключить многочлен или часть его в скобки. Так мы поступали, делая приведение подобных членов (см. пример предыдущего параграфа). Возьмём такой пример. Пусть надо вычислить выражение:

Очевидно, что здесь выгоднее сначала вычесть 238 из 258 и разность 20 прибавить к 136. Вычисления легко и быстро выполняются в уме. Чтобы показать это, заключим второй и третий члены в скобки:

Пусть вообще нужно заключить в скобки многочлен или часть его и перед скобкой поставить знак плюс. Будем руководствоваться следующим правилом:

Чтобы заключить многочлен в скобки со знаком плюс перед ними, надо записать в скобках все члены многочлена с их знаками:

Убедиться в верности этого равенства легко, раскрыв скобки по правилу, изложенному в п. 3.

5. Сложение расположенных многочленов.

Если многочлены расположены по степеням одной и той же буквы (оба по возрастающим или оба по убывающим), то их сложение удобнее производить следующим образом: подписывают один многочлен под другим так, чтобы подобные члены находились один под другим; после этого сразу делают приведение подобных членов и записывают окончательный результат.

Так же производится сложение расположенных многочленов и тогда, когда они содержат более одной буквы.