Числовые неравенства основные свойства числовых неравенств. Числовые неравенства и их свойства

Ваша цель: знать методы доказательства неравенств и уметь их применять.

Практическая часть

Понятие доказательства неравенства . Некоторые неравенства обращаются в верное числовое неравенство при всех допустимых значениях переменных или на некотором заданном множестве значений переменных. Например, неравенства а 2 ³0, (а b ) 2 ³ 0, a 2 + b 2 + c 2 " ³ 0 верны при любых действительных значениях переменных, а неравенство ³ 0 при любых действительных неотрицательных значениях а. Иногда возникает задача доказательства неравенства.

Доказать неравенство – значит показать, что данное неравенство обращается в верное числовое неравенство при всех допустимых значениях переменных или на заданном множестве значений этих переменных.

Методы доказательства неравенств. Заметим, что общего метода доказательства неравенств не существует. Однако некоторые из них можно указать.

1. Метод оценки знака разности между левой и правой частями неравенства. Составляется разность левой и правой частей неравенства и устанавливается, положительна или отрицательна эта разность при рассматриваемых значениях переменных (для нестрогих неравенств надо установить, неотрицательна или неположительна эта разность).

Пример 1. Для любых действительных чисел а и b имеет место неравенство

a 2 +b 2 ³ 2ab. (1)

Доказательство. Составим разность левой и правой частей неравенства:

a 2 +b 2 – 2ab = a 2 2ab + b 2 = (a – b ) 2 .

Так как квадрат любого действительного числа есть число неотрицательное, то (a – b ) 2 ³ 0, а, значит, a 2 +b 2 ³ 2ab для любых действительных чисел а и b. Равенство в (1) имеет место в том и только в том случае, когда а = b.

Пример 2. Доказать, что если а ³ 0 и b ³ 0, то ³ , т.е. среднее арифметическое неотрицательных действительных чисел а и b не меньше их среднего геометрического.

Доказательство. Если а ³ 0 и b ³ 0, то

³ 0. Значит, ³ .

2. Дедуктивный метод доказательства неравенств. Сущность этого метода заключается в следующем: с помощью ряда преобразований выводят требуемое неравенство из некоторых известных (опорных) неравенств. В качестве опорных могут использоваться, например, неравенства: а 2 ³ 0 при любом a Î R ; (a – b ) 2 ³ 0 при любых а и b Î R ; (а 2 + b 2) ³ 2ab при любых a, b Î R ; ³ при а ³ 0, b ³ 0.



Пример 3. Доказать, что для любых действительных чисел а и b имеет место неравенство

а 2 + b 2 + с 2 ³ ab + bc + ac.

Доказательство. Из верных неравенств (a – b ) 2 ³ 0, (b c ) 2 ³ 0 и (c a ) 2 ³ 0 следует, что а 2 + b 2 ³ 2ab , b 2 + c 2 ³ 2bc , c 2 + a 2 ³ 2ac. Сложив почленно все три неравенства и разделив обе части нового на 2, получим требуемое неравенство.

Исходное неравенство можно доказать и первым методом. В самом деле, а 2 + b 2 + с 2 – ab – bc – ac = 0,5(2а 2 + 2b 2 + 2с 2 – 2ab – 2bc – 2ac ) = = 0,5((a – b ) 2 + (a – c ) 2 + (b – c ) 2)³ 0.

Разность между а 2 + b 2 + с 2 и ab + bc + ac больше или равна нулю, а это значит, что а 2 + b 2 + с 2 ³ ab + bc + ac (равенство справедливо тогда и только тогда, когда а = b = с).

3. Метод оценок при доказательстве неравенств.

Пример 4. Доказать неравенство

+ + + … + >

Доказательство. Легко заметить, что левая часть неравенства содержит 100 слагаемых, каждое из которых не меньше. В таком случае говорят, что левую часть неравенства можно оценить снизу следующим образом:

+ + + … + > = 100 = .

4. Метод полной индукции. Сущность метода состоит в рассмотрении всех частных случаев, охватывающих условие задачи в целом.

Пример 5. Доказать, что если х > ïу ï, то х > у.

Доказательство. Возможны два случая:

а) у ³ 0; тогда ïу ï = у, а по условию х > ïу ï. Значит, х > у;

б) у < 0; тогда ïу ï > у и по условию х > ïу ï, значит, х > у.

Практическая часть

Задание 0. Возьмите чистый лист бумаги и на нем запишите ответы на все устные упражнения приведенные ниже. Затем свои ответы сверьте с ответами или краткими указания, помещенными в конце этого учебного элемента в рубрике «Ваш помощник».

Устные упражнения

1. Сравните сумму квадратов двух неравных чисел и с их удвоенным произведением.

2. Докажите неравенство:

а) ;

3. Известно, что . Докажите, что .

4. Известно, что . Докажите, что .

Задание 1. Что больше:

а) 2 + 11 или 9; г) + или;

б) или + ; д) – или;

в) + или 2; е) + 2 или + ?

Задание 2. Докажите, что при любом действительном x имеет место неравенство:

а) 3(x + 1) + x – 4(2 + x ) < 0; г) 4x 2 + 1 ³ 4x ;

б) (x + 2)(x + 4) > (x + 1)(x + 5); д) ³ 2x;

в) (x – 2) 2 > x (x – 4); е) l + 2x 4 > x 2 + 2x 3 .

Задание 3. Докажите, что:

а) x 3 + 1 ³ x 2 + x, если x ³ –1;

б) x 3 + 1 £ x 2 + x, если x £ –1.

Задание 4. Докажите, что если a ³ 0, b ³ 0, с ³ 0, d ³ 0, то

(a 2 + b 2)(c 2 + d 2) ³ (ac + bd ) 2 .

Задание 5. Докажите неравенство, выделив полный квадрат:

а) x 2 – 2xy + 9y 2 ³ 0;

б) x 2 + y 2 + 2³2(x + y );

в) 10x 2 + 10xy + 5y 2 + 1 > 0;

г) x 2 – xy + y 2 ³ 0;

д) x 2 + y 2 + z 2 + 3³ 2(х + у + z );

e) (x + l)(x – 2y + l) + y 2 ³ 0.

Задание 6. Докажите, что:

а) x 2 + 2y 2 + 2xy + 6y + l0 > 0;

б) x 2 + y 2 2xy + 2x – 2у + 1 > 0;

в) 3x 2 + y 2 + 8x + 4y – 2xy + 22 ³ 0;

г) x 2 + 2xy + 3y 2 + 2x + 6y + 3 > 0.

Задание 7. Докажите, что если n ³ k ³ 1, то k (n – k + 1) ³ n.

Задание 8. Докажите, что если 4а + 2b = 1, то a 2 + b 2 ³ .

Определите значения а и b, при которых имеет место равенство.

Задание 9. Докажите неравенство:

а) х 3 + у 3 ³ х 2 у + ху 2 при x ³ 0 и y ³ 0;

б) х 4 + у 4 ³ х 3 у + ху 3 при любых x и у ;

в) х 5 + у 5 ³ х 4 у + ху 4 при x ³ 0 и y ³ 0;

г) х n + у n ³ х n -1 у + ху n -1 при x ³ 0 и y ³ 0.

На семинаре координаторов олимпиады "Кенгуру" Вячеслав Андреевич Ясинский прочёл лекцию о том, как можно доказывать олимпиадные симметричные неравенства с помощью собственного метода разностей переменных.

Действительно, на математических олимпиадах часто встречаются задания на доказательство неравенств, как, например, такое, с Международной олимпиады по математике 2001 года: $\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\geq 1$ (для положительных a,b,c).

Обычно чтобы доказать олимпиадное неравенство, его нужно привести к одному из базовых: Коши, Коши-Буняковского, Йенсена, неравенству между средними и т.д. Причём часто приходится пробовать различные варианты базового неравенства до достижения успеха.

Однако часто у олимпиадных неравенств (как у приведённого выше) есть одна особенность. При перестановке переменных (например, замене a на b, b на c и c на a) они не изменятся.

Если функция нескольких переменных не меняется при любой их перестановке, то она называется симметрической. Для симметрической функции f от трёх переменных выполняется равенство:
f (x ,y ,z )= f (x ,z ,y )= f (y ,x ,z )= f (y ,z ,x )= f (z ,x ,y )= f (z ,y ,x )

Если же функция не меняется только при циклической перестановке переменных, она называется циклической.
f (x,y,z)= f (y,z,x)= f (z,x,y)

Для неравенств, которые строятся на основе симметрических функций, Вячеслав Андреевич разработал универсальный метод доказательства.
Метод состоит из следующих шагов.
1. Преобразовать неравенство так, чтобы слева оказался симметрический многочлен (обозначим его D), а справа 0.

2. Выразить симметрический многочлен D от переменных a, b, c через базовые симметрические многочлены.

Базовых симметрических многочленов от трёх переменных существует три. Это:
p = a+b+c - сумма;
q = ab+bc+ac - сумма попарных произведений;
r = abc - произведение.

Любой симметрический многочлен можно выразить через базовые.

3. Поскольку многочлен D симметрический, можно, не нарушая общности, считать, что переменные a, b, c упорядочены так: $a\geq b\geq c$

4. Вводим два неотрицательных числа х и у, таки, что x = a-b, y = b-c.

5. Снова преобразовываем многочлен D, выражая p, q и r через c и x, y. Учитываем, что
b = y+c
a = (x+y)+c

Тогда
p = a+b+c = (x+2y)+3c
q = ab+bc+ac = 3c 2 +2(x+2y)c+(x+y)y
r = abc = (x+y)yc + (x+2y)c 2 +c 3

Обратите внимание, что скобки в выражениях, содержащих x и y, мы не раскрываем.

6. Теперь рассматриваем многочлен D как многочен от с с коэффициентами, выражающимися через х и у. Учитывая неотрицательность коэффициентов оказывается несложно показать, что знак неравенства будет сохраняться для всех допустимых значений с.

Поясним этот метод на примерах.
Пример 1 . Доказать неравенство:
$(a+b+c)^2\geq 3(ab+bc+ac)$

Доказательство
Так как неравенство симметрическое (не меняется при любой перестановке переменных a, b, c), то представим его как
$(a+b+c)^2 - 3(ab+bc+ac)\geq 0$

Выразим многочлен в левой части через базовые симметрические:
$p^2 - 3q\geq 0$

Так как многочлен симметрический, можно считать, не ограничивая общности, что $a\geq b\geq c$ и $x = a-b\geq 0$, $y = b-c\geq 0$.


p 2 -3q = ((x+2y)+3c) 2 -3(3c 2 +2(x+2y)c+(x+y)y) = (x+2y) 2 +6(x+2y)c+9c 2 -9c 2 -6(x+2y)c-3(x+y)y

После приведения подобных получаем неравенство вообще не содержащее переменную с
$(x+2y)^2-3(x+y)y\geq 0$

Вот теперь можно раскрыть скобки
$x^2+4xy+4y^2-3xy-3y^2\geq 0$
$x^2+xy+y^2\geq 0$ - что является верным как для нотрицательных x, y, так и для любых.

Таким образом, неравенство доказано.

Пример 2 (с Британской математической олимпиады 1999 года)
Доказать, что $7(ab+bc+ac)\leq 2+9abc$ (для положительных чисел, если a+b+c = 1)

Доказательство
Прежде чем начать сводить всё в левую часть, обратим внимание, что степени частей неравенства у нас не сбалансированы. Если в примере 1 обе части неравенства были многосленами второй степени, то тут многочлен второй степени сравнивается с суммой многочленов нулевой и третьей. Использлуем то, что сумма a+b+c по условию равна 1 и домножим левую часть на единицу, а двойку из правой части - на единицу в кубе.

$7(ab+bc+ac)(a+b+c)\leq 2(a+b+c)^3+9abc$

Теперь перенесём всё влево и представим левую часть как симметричный многочkен от a, b, c:
$7(ab+bc+ac)(a+b+c)- 2(a+b+c)^3-9abc\leq 0$

Выразим левую чаcть через базовые симметрические многочлены:
$7qp- 2p^3-9r\leq 0$

Выразим левую часть через x, y и c, представив её как многочлен относительно с.
7qp- 2p 3 -9r = 7(3c 2 +2(x+2y)c+(x+y)y)((x+2y)+3c)-2((x+2y)+3c) 3 -9((x+y)yc + (x+2y)c 2 +c 3) = 7 (3(x+2y)c 2 +2(x+2y) 2 c+(x+2y)(x+y)y+9c 3 +6(x+2y)c 2 +3(x+y)yс) - 2 ((x+2y) 3 +9(x+2y) 2 c+27(x+2y)c 2 +27c 3) - 9((x+y)yc + (x+2y)c 2 +c 3) = 21(x+2y)c 2 +14(x+2y) 2 c +7(x+2y)(x+y)y+63c 3 +42(x+2y)c 2 +21(x+y)yс -2(x+2y) 3 -18(x+2y) 2 c -54(x+2y)c 2 -54c 3 -9(x+y)yc -9(x+2y)c 2 -9c 3

Главное - аккуратно и внимательно выполнять преобразования. Как сказал Вячеслав Андреевич, если он выполняет преобразования и его кто-то отвлекает, он выбрасывает листок с формулами и начинает заново.

Для удобства сведения подобных в заключительном многочлене они выделены разными цветами.

Все слагаемые с c 3 уничтожатся: 63c 3 -54c 3 -9c 3 = 0
Это же произойдёт и со второй степенью с: 21(x+2y)c 2 +42(x+2y)c 2 -54(x+2y)c 2 -9(x+2y)c 2 = 0

Преобразуем слагаемые с первой степенью с: 14(x+2y) 2 c+21(x+y)yс-18(x+2y) 2 c-9(x+y)yc = -4(x+2y) 2 c+12(x+y)yс = (12 (x+y)y - 4 (x+2y) 2 )c = (12xy+12y 2 - 4x 2 -16xy-16 y 2 )c = (- 4x 2 -4xy-4 y 2 )c = -4 (x 2 +xy+ y 2 )c - это выражение никогда не будет положительным.

И свободные члены: 7(x+2y)(x+y)y-2(x+2y) 3 = 7(x+2y)(xy+y 2) - 2(x+2y)(x 2 +4xy+4y 2) = (x+2y) (7xy+7y 2 -2x 2 -8xy-8y 2) = - (x+2y)(2x 2 +xy+y 2) - и это выражение тоже.

Таким образом, исходное неравенство будет выполняться всегда, а в равенство оно превратится только при условии равенства a=b=c.

На своей лекции Вячеслав Андреевич разобрал ещё много интересных примеров. Попробуйте и вы применить этот метод для доказательства олимпиадных неравенств. Возможно, он поможет добыть несокольо ценных баллов.


Неравенства в математике играют заметную роль. В школе в основном мы имеем дело с числовыми неравенствами , с определения которых мы начнем эту статью. А дальше перечислим и обоснуем свойства числовых неравенств , на которых базируются все принципы работы с неравенствами.

Сразу отметим, что многие свойства числовых неравенств аналогичны . Поэтому, излагать материал будем по такой же схеме: формулируем свойство, приводим его обоснование и примеры, после чего переходим к следующему свойству.

Навигация по странице.

Числовые неравенства: определение, примеры

Когда мы вводили понятие неравенства, то заметили, что неравенства часто определяют по виду их записи. Так неравенствами мы назвали имеющие смысл алгебраические выражения, содержащие знаки не равно ≠, меньше <, больше >, меньше или равно ≤ или больше или равно ≥. На основе приведенного определения удобно дать определение числового неравенства:

Встреча с числовыми неравенствами происходит на уроках математики в первом классе сразу после знакомства с первыми натуральными числами от 1 до 9 , и знакомства с операцией сравнения. Правда, там их называют просто неравенствами, опуская определение «числовые». Для наглядности не помешает привести пару примеров простейших числовых неравенств из того этапа их изучения: 1<2 , 5+2>3 .

А дальше от натуральных чисел знания распространяются на другие виды чисел (целые, рациональные, действительные числа), изучаются правила их сравнения, и это значительно расширяет видовое разнообразие числовых неравенств: −5>−72 , 3>−0,275·(7−5,6) , .

Свойства числовых неравенств

На практике работать с неравенствами позволяет ряд свойств числовых неравенств . Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел (его часто называют разностным определением неравенства):

Определение.

Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка:

Определение.

  • число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число;
  • число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число.

Данные определения мы будем использовать при доказательстве свойств числовых неравенств, к обзору которых мы и переходим.

Основные свойства

Обзор начнем с трех основных свойств неравенств. Почему они основные? Потому, что они являются отражением свойств неравенств в самом общем смысле, а не только по отношению к числовым неравенствам.

Числовым неравенствам, записанным с использованием знаков < и >, характерно:

Что касается числовых неравенств, записанных при помощи знаков нестрогих неравенства ≤ и ≥, то они обладают свойством рефлексивности (а не антирефлексивности), так как неравенства a≤a и a≥a включают в себя случай равенства a=a . Также им свойственны антисимметричность и транзитивность.

Итак, числовые неравенства, записанные при помощи знаков ≤ и ≥, обладают свойствами:

  • рефлексивности a≥a и a≤a – верные неравенства;
  • антисимметричности, если a≤b , то b≥a , и если a≥b , то b≤a .
  • транзитивности, если a≤b и b≤c , то a≤c , а также, если a≥b и b≥c , то a≥c .

Их доказательство очень похоже на уже приведенные, поэтому не будем на них останавливаться, а перейдем к другим важным свойствам числовых неравенств.

Другие важные свойства числовых неравенств

Дополним основные свойства числовых неравенств еще серией результатов, имеющих большое практическое значение. На них основаны методы оценки значений выражений, на них базируются принципы решения неравенств и т.п. Поэтому целесообразно хорошо разобраться с ними.

В этом пункте свойства неравенств будем формулировать только для одного знака строгого неравенства, но стоит иметь в виду, что аналогичные свойства будут справедливы и для противоположного ему знака, а также для знаков нестрогих неравенств. Поясним это на примере. Ниже мы сформулируем и докажем такое свойство неравенств: если a

  • если a>b , то a+c>b+c ;
  • если a≤b , то a+c≤b+c ;
  • если a≥b , то a+c≥b+c .

Для удобства представим свойства числовых неравенств в виде списка, при это будем давать соответствующее утверждение, записывать его формально с помощью букв, приводить доказательство, после чего показывать примеры использования. А в конце статьи сведем все свойства числовых неравенств в таблицу. Поехали!

    Прибавление (или вычитание) любого числа к обеим частям верного числового неравенства дает верное числовое неравенство. Другими словами, если числа a и b таковы, что a

    Для доказательства составим разность левой и правой частей последнего числового неравенства, и покажем, что она отрицательна при условии a(a+c)−(b+c)=a+c−b−c=a−b . Так как по условию a

    На доказательстве этого свойства числовых неравенств для вычитания числа c не останавливаемся, так как на множестве действительных чисел вычитание можно заменить прибавлением −c .

    Например, если к обеим частям верного числового неравенства 7>3 прибавить число 15 , то получится верное числовое неравенство 7+15>3+15 , что то же самое, 22>18 .

    Если обе части верного числового неравенства умножить (или разделить) на одно и то же положительное число c, то получится верное числовое неравенство. Если обе части неравенства умножить (или разделить) на отрицательное число c , и изменить знак неравенства на противоположный, то получится верное неравенство. В буквенном виде: если для чисел a и b выполняется неравенство ab·c.

    Доказательство. Начнем со случая, когда c>0 . Составим разность левой и правой частей доказываемого числового неравенства: a·c−b·c=(a−b)·c . Так как по условию a0 , то произведение (a−b)·c будет отрицательным числом как произведение отрицательного числа a−b на положительное число c (что следует из ). Следовательно, a·c−b·c<0 , откуда a·c

    На доказательстве рассмотренного свойства для деления обеих частей верного числового неравенства на одно и то же число c не останавливаемся, так как деление всегда можно заменить умножением на 1/c .

    Покажем пример применения разобранного свойства на конкретных числах. Например, можно обе части верного числового неравенства 4<6 умножить на положительное число 0,5 , что дает верное числовое неравенство −4·0,5<6·0,5 , откуда −2<3 . А если обе части верного числового неравенства −8≤12 разделить на отрицательное число −4 , и изменить знак неравенства ≤ на противоположный ≥, то получится верное числовое неравенство −8:(−4)≥12:(−4) , откуда 2≥−3 .

    Из только что разобранного свойства умножения обеих частей числового равенства на число следуют два практически ценных результата. Так их и сформулируем в виде следствий.

    Все разобранные выше в этом пункте свойства объединяет то, что сначала дано верное числовое неравенство, и из него посредствам некоторых манипуляций с частями неравенства и знаком получается другое верное числовое неравенство. Сейчас мы приведем блок свойств, в которых изначально дано не одно, а несколько верных числовых неравенств, а новый результат получается из их совместного использования после сложения или умножения их частей.

    Если для чисел a , b , c и d справедливы неравенства a

    Докажем, что (a+c)−(b+d) – отрицательное число, этим будет доказано, что a+c

    По индукции это свойство распространяется на почленное сложение трех, четырех, и, вообще, любого конечного числа числовых неравенств. Так, если для чисел a 1 , a 2 , …, a n и b 1 , b 2 , …, b n справедливы неравенства a 1 a 1 +a 2 +…+a n .

    Например, нам даны три верных числовых неравенства одного знака −5<−2 , −1<12 и 3<4 . Рассмотренное свойство числовых неравенств позволяет нам констатировать, что неравенство −5+(−1)+3<−2+12+4 – тоже верное.

    Можно почленно умножать числовые неравенства одного знака, обе части которых представлены положительными числами. В частности, для двух неравенств a

    Для доказательства можно умножить обе части неравенста a

    Указанное свойство справедливо и для умножения любого конечного числа верных числовых неравенств с положительными частями. То есть, если a 1 , a 2 , …, a n и b 1 , b 2 , …, b n – положительные числа, причем a 1 a 1 ·a 2 ·…·a n .

    Отдельно стоит заметить, что если в записи числовых неравенств содержатся неположительные числа, то их почленное умножение может приводить к неверным числовым неравенствам. Например, числовые неравенства 1<3 и −5<−4 – верные и одного знака, почленное умножение этих неравенств дает 1·(−5)<3·(−4) , что то же самое, −5<−12 , а это неверное неравенство.

    • Следствие. Почленное умножение одинаковых верных неравенств вида a

В заключение статьи, как и было обещано, соберем все изученные свойства в таблицу свойств числовых неравенств :

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

: Расширить свои знания в области доказательства неравенств. Познакомиться с неравенством Коши. Научиться применять изученные методы к доказательству неравенств.

Скачать:

Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №655

Приморского района Санкт-Петербурга

«Доказательство неравенств. Неравенство Коши»

2014г.

Ли Нина Юрьевна

8в класс

Аннотация…………………………………………………………………………………….3

Введение …………………………………………………………………………………….. 4

Историческая справка………………………………………………………………………..4

Неравенство Коши……………………………………………………………………………5

Доказательство неравенств…………………………………………………………………..7

Выводы исследования………………………………………………………………………..10

Список литературы……………………………………………………………………………11

Ли Нина

г. Санкт-Петербург, ГБОУ СОШ №655, 8 класс

«Доказательство неравенств. Неравенство Коши».

руководитель: Мороз Юлия Владимировна, учитель математики

Цель научной работы: Расширить свои знания в области доказательства неравенств. Познакомиться с неравенством Коши. Научиться применять изученные методы к доказательству неравенств.

ВВЕДЕНИЕ

«…основные результаты математики чаще выражаются не равенствами, а неравенствами».

Э. Беккенбах

Решением неравенств мы занимаемся на протяжении всего школьного курса. Неравенства можно решать графическим и аналитическим способом. Чтобы решить любое неравенство существует определенный алгоритм действий, поэтому данная задача является, скорее механическим действием, который не требует творческого подхода.

Напротив, доказательство неравенств требует неформального, вариативного подхода. Поэтому доказательство неравенств является наиболее интересным.

Однако, в школьном курсе математики доказательству неравенств уделяется очень мало внимания. Доказательство неравенств сводится к одному приему- оценке разности частей неравенства. Между тем, на математических олимпиадах часто встречаются задачи на доказательство неравенств с применением других способов и приемов (использование опорных неравенств, метод оценивания). На олимпиадах для школьников по математике также часто предлагаются неравенства, доказательство которых лучше выявляет способности и возможности учащихся, степень их интеллектуального развития. Кроме того, многие задачи повышенной сложности (из различных разделов математики) эффективно решаются с помощью неравенств.

Актуальность темы «Доказательство неравенств» бесспорна, так как неравенства играют фундаментальную роль в большинстве разделов современной математики, без них не может обойтись ни физика, ни астрономия, ни химия. Теория вероятности, математическая статистика, финансовая математика, экономика – все эти взаимосвязанные и обобщающие друг друга науки и в формулировках основных своих законов, и в методах их получения, и в приложениях, постоянно используют неравенства.

Доказательства неравенств помогают развить навык осмысления и применения приемов доказательства неравенств; умение применять их при выполнении различных задач; умение анализировать, обобщать и делать выводы; логически излагать мысли; творчески относится к делу.

Целью данной работа является расширение знаний в области методов и приемов доказательства неравенств.

Для достижения данной цели исследования мы поставили перед собой задачи:

  • сбор информации из различных источников о приемах и методах доказательства неравенств;
  • познакомится с неравенством Коши;
  • Научится применять опорные неравенства к доказательству более сложных неравенств.

ИСТОРИЧЕСКАЯ СПРАВКА

Понятия «больше» и «меньше» наряду с понятием «равенство» возникли в связи со счетом предметов и необходимостью сравнивать различные величины. Понятиями неравенства пользовались еще древние греки. Архимед (III в. до н. э.), занимаясь вычислением длины окружности, установил, что «периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых». Иначе говоря, Архимед указал границы числа π.

В 1557 г., когда Роберт Рекорд впервые ввел знак равенства, он мотивировал свое нововведение следующем образом: никакие два предмета не могут быть между собой более равными, чем два параллельных отрезка. Исходя из знака равенства Рекорда, другой английский ученый Гарриот ввел употребляемые и поныне знаки неравенства, обосновывая нововведение следующим образом: если две величины не равны, то отрезки, фигурирующие в знаке равенства, уже не параллельны, а пересекаются. Пересечение может иметь место справа (>) или слева (

Несмотря на то что знаки неравенства были предложены через 74 года после предложенного Рекордом знака равенства, они вошли в употребление намного раньше последнего. Одна из причин этого явления коренится в том, что типографии применяли в то время для знаков неравенства уже имевшуюся у них латинскую букву V, тогда как наборного знака равенства (=) у них не было, а изготовлять его тогда - было нелегко.

Знаки ≤ и ≥ ввел французский математик П. Буге.

НЕРАВЕНСТВО КОШИ

Применяемые для доказательства неравенств идеи почти столь же разнообразны, как и сами неравенства. В конкретных ситуациях общие методы часто приводят к некрасивым решениям. Но неочевидное комбинирование нескольких «базовых» неравенств удается лишь немногим. И, кроме того, ничто не мешает нам в каждом конкретном случае поискать более удобное, лучшее решение, нежели полученное общим методом. По этой причине доказательства неравенств нередко относят к области искусства. И как во всяком искусстве здесь есть свои технические приемы, набор которых весьма широк и овладеть всеми очень сложно.

Одним из таких «базовых» неравенств является неравенство Коши, указывающее на соотношение двух средних величин – среднего арифметического и среднего геометрического. Среднее арифметическое изучается в школьном курсе пятого класса и выглядит таким образом Среднее геометрическое впервые появляется в курсе геометрии восьмого класса - . В прямоугольном треугольнике таким свойством обладают три отрезка: два катета и перпендикуляр, опущенный из вершины прямого угла на гипотенузу.

Между этими двумя этими величинами существует удивительное соотношение, которое исследовали ученые. О. Коши, французский математик, пришел к выводу о том, что среднее арифметическое n неотрицательных чисел всегда не меньше среднего геометрического этих чисел.


Наряду с неравенством Коши полезно знать следствия из него:

Равенство достигается при a = b.

Неравенства верны, если выполняются условия a > 0, b > 0.

Алгебраическое доказательство этого не равенства довольно простое:

(а – в)² ≥ 0;

Применим формулу «квадрат разности»:

а² - 2ав + в² ≥0;

Прибавим к обеим частям неравенства 4ав :

а² + 2ав + в² ≥4ав;

Применим формулу «квадрат суммы»:

(а + в)² ≥4ав;

Разделим обе части неравенства на 4 :

Так как а и в – положительные по условию, то извлечём из обеих частей неравенства квадратный корень:

Получили искомое выражение.

Рассмотрим геометрическое доказательство:

Дано: ABCD – прямоугольный, AD = a, AB = b, AK – биссектриса угла ВАD.

Доказать:

Доказательство:

  1. АК – биссектриса, следовательно, ВАL = LAD. LAD и BLA – внутренние накрест лежащие углы при параллельных ВС и AD и секущей AL, то есть BLA = LAD.
  2. В = 90°, следовательно, BAL = LAD = 45°, но BLA = LAD, значит, ∆ АВL – равнобедренный, BL = AB = b.
  3. ∆AKD – равнобедренный, так как KD ┴ AD, DAL = 45°, значит AD = KD = a.

Очевидно, что , равенство достигается при

a = b , то есть ABCD – квадрат.

заменим в неравенстве а² на m , b² на n , получим

Или ,

то есть среднее геометрическое не больше среднего арифметического.

ДОКАЗАТЕЛЬСТВО НЕРАВЕНСТВ

Метод синтеза.

Это метод, основанный на получении (синтезировании) неравенства (которое требуется обосновать) из опорных (базисных) неравенств и методов их установления.

Решим задачу, используя метод синтеза

Задача 1. Докажите, что для любых неотрицательных a, b, c справедливо неравенство

Решение. Запишем три неравенства, устанавливающие зависимость между средним арифметическим и средним геометрическим двух неотрицательных чисел

Перемножим почленно полученные неравенства, так как их левая и правая части неотрицательны

Задача 2. Применим неравенство Коши к доказательству этого неравенства:

Метод использования тождеств .

Суть метода состоит в том, что данное неравенство путём равносильных преобразований приводится к очевидному тождеству.

Рассмотрим решение задачи этим методом.

Задача. Докажите, что для любых действительных чисел a и b справедливо неравенство .

Решение. Выделим в левой части неравенства полный квадрат

При любых действительных a и b это выражение неотрицательно, значит и данное неравенство выполнимо, то есть .

ЗАКЛЮЧЕНИЕ

Данная исследовательская работа была направлена на решение следующих задач:

  • сбор информации и изучение различных методов и приемов доказательства неравенств;
  • знакомство с замечательным неравенством Коши, его доказательство алгебраическим и геометрическим способом;
  • применение полученных знаний для доказательства неравенств;
  • знакомство с методом синтеза и использования тождеств в решении поставленных задач.

В процессе решения задач мы достигли поставленной цели нашей исследовательской работы –нахождение оптимально эффективного метода доказательства неравенств.

СПИСОК ЛИТЕРАТУРЫ

  1. Алгебра. 8 класс: учеб. для учащихся общеобр. учрежд./ Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, И.Е.Феоктистов.-13-е изд.- М.:Мнемозина,2013.-384с.
  1. Алгебра. 8 класс. Дидактические материалы. Методические рекомендации/ И.Е.Феоктистов.-3-е изд.,стер.-М.:Мнемозина,2013.-173 с.
  1. Мордкович А.Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А.Г. Мордкович. – 10-е изд., стер. – М.: Мнемозина,2008. – 215с., С 185-200.
  1. Берколайко С.Т. Использование неравенства Коши при решении задач.- М.: Квант, 1975.- №4.