Занесение под знак интеграла онлайн. Метод подведения под знак дифференциала (устная замена переменной)

Подведение числителя под знак дифференциала

Это заключительная часть урока, тем не менее, интегралы такого типа встречаются довольно часто! Если накопилась усталость, может, оно, лучше завтра почитать? ;)

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид: или (коэффициенты , и не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?

Пример 14

Пожалуйста, будьте внимательны, сейчас мы рассмотрим типовой алгоритм.

1) Когда дан интеграл вида или (коэффициенты , и не равны нулю), то первое, что мы делаем, это… берём черновик. Дело в том, что сейчас нам предстоит выполнить небольшой подбор.

2) Заключаем выражение, которое находится в знаменателе (неважно – под корнем или без корня) под знак дифференциала, в данном примере:

3) Раскрываем дифференциал:

Смотрим на числитель нашего интеграла:

Немного разные вещи получились…. А теперь нам нужно подобрать множитель для дифференциала , такой, чтобы при его раскрытии получилось, как минимум, . В данном случае подходящим множителем является:

4) Для самоконтроля снова раскрываем наш дифференциал:

Снова смотрим на числитель нашего интеграла: .
Уже ближе, но у нас не то слагаемое:

5) К нашему дифференциалу :
– приписываем слагаемое, которое у нас изначально было в подынтегральной функции:

– Вычитаем (в данном случае – вычитаем, иногда нужно, наоборот, прибавлять) наше «не то» слагаемое:
– Обе константы берем в скобки и приписываем справа значок дифференциала:

– Вычитаем (в некоторых примерах нужно сложить) константы:

6) Выполняем проверку:

У нас получился в точности числитель подынтегральной функции, значит, подбор выполнен успешно.

Чистовое оформление решения выглядит примерно так:

(1) Выполняем на черновике подбор числителя согласно вышерассмотренному алгоритму. Обязательно выполняем проверку, правильно ли выполнен подбор. При определенном опыте решения интегралов подбор нетрудно выполнить и в уме.

(2) Почленно делим числитель на знаменатель. В практическом решении задач данный шаг можно опускать

(3) Используя свойство линейности, разделяем интегралы. Все константы целесообразно вынести за знаки интегралов.

(4) Первый интеграл фактически является табличным, используем формулу (константу припишем позже, когда возьмем второй интеграл). Во втором интеграле выделяем полный квадрат (такой тип интегралов мы рассмотрели в предыдущем параграфе).

Остальное дело техники.

И, на закуску, пара примеров для самостоятельного решения – один проще, другой сложнее.

Пример 15

Найти неопределенный интеграл:

Пример 16

Найти неопределенный интеграл:

Для решения данных примеров будет полезен частный случай интегрирования степенной функции, которого нет в моей таблице:

Как видите, интегрирование дробей - дело кропотливое, часто приходится применять искусственные приемы и подборы. Но что делать…

Существуют и другие виды дробей, так называемые дробно-рациональные функции, они решаются методом неопределенных коэффициентов. Но это уже тема урока Интегрирование дробно рациональных функций .

Метод подведения под знак дифференциала редко приводится в литературе, поэтому вначале покажем, почему он выгоден.

Нередко в подынтегральной функции можно увидеть 2 фрагмента, один из которых похож на производную другого. Например,

а) в интеграле числительx похож на производную от :
;

б) интеграл
можно представить как
, где
;

в) функция
в интеграле
– это
.

Подобные интегралы часто предлагают находить, заменив новой переменной функцию, производная которой обнаружена. Так, для указанных интегралов

а) если
, то
, тогда
и
, откуда

б) поскольку
, то
, тогда
и
, поэтому

Более подробно метод замены изложен в § 4.

Однако вычисление 3-го интеграла при помощи замены уже связано с трудностями. Пусть, заметив, что
, мы заменили
.

Тогда
и
. Выразить
черезt можно так:

(
, поэтому
). Подставим:

В результате громоздких действий практически всё сократилось и получился простой табличный интеграл. Возникает вопрос, нельзя ли было прийти к нему быстрее, если почти ни одно выражение не понадобилось.

Действительно, есть более короткое решение:

тогда, заменив
, сразу получаем интеграл

Таким же образом можно было найти интегралы

Здесь действия показаны очень подробно, и половину из них можно пропустить. Особенно коротким сделает решение следующая

Таблица основных дифференциалов

;

;

;

;

;

;

;

;

;

;

.

Примеры подведения под знак дифференциала

3) ;

ПД1. Найдите интегралы

1) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

2) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

3) а)
; б)
; в)
; г)
; д)

е)
; ж)
; з)
; и)
; к)
;

4) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
;

5) а)
; б)
; в)
; г)
; д)
;

е)
; ж)
; з)
; и)
; к)
.

§ 3. Интегралы от функций, содержащих квадратичное выражение

При интегрировании функций, содержащих выражение
, поможет формула
. Например,

б)
;

Полученную скобку удобно обозначить новой буквой и перейти к интегралу по этой переменной (дифференциалы новой и старой переменных совпадут).

Коэффициент перед квадратом лучше выносить за скобку:

,

а затем, если возможно, и за знак интеграла. Так,

Цель замены – перейти к интегралу без линейного слагаемого
, поскольку интегралы, содержащие только
, находятся проще, и часто – по таблице. При этом важно помнить, что
,
, и т.п.

А именно (см. § 2),

где a – любое число, и число
. Кроме того, при

где
.

Замечание 1. После замены часто появляются интегралы
,
или
. Их можно найти так:

аналогично во 2-м и в 3-м случае.

Однако интегралы вида
достаточно сложны. Воспользуйтесь готовыми формулами

(проверьте дифференцированием, что это действительно так).

КИ1. Найдите при помощи равенства
и замены
:

Пример 1 (для краткости
обозначено как
.

При поиске
и
учли, что
и
соответственно, и применили основное правило табличного интегрирования.

КИ2. Найдите интегралы, разложив каждый на сумму интегралов, один из которых – табличный, а другой аналогичен найденным в задании КИ1:

Пример 2. Найдём интеграл
, разложив на сумму двух:

Ответ: (модуль не нужен, поскольку всегда
).

Пример 3. Возьмём таким же образом интеграл
:

Рациональнее всего найти интегралы так:

где учли, что
;

Тогда , где
.

Ответ: .

Замечание 2. В дальнейшем часто придётся разбивать интеграл на 2 или 3 интеграла, в каждом из которых появляется константа (
, и т.д.). Для краткости будем подразумевать (но не указывать) константы в каждом отдельном вспомогательном интеграле (или указывать, но не сопровождать номером), а записывать будем лишь общую константуC в ответе. При этом всегда C – некая линейная комбинация .

КИ3. Получив в знаменателе полный квадрат и сделав замену, найдите

Пример 4.
Заметив, что

заменяем
, тогда
и.

Подставим в интеграл:

Пример 5.

Поскольку , можно сделать замену
, при которой
и
. Подставим:

Пример 6.

Здесь , заменяем
, откуда
и
. Подставим:

где
. Разобьём интеграл на два:

.

Так же, как в предыдущих примерах,

а 2-й интеграл – табличный:
.

Итак, , где
. Тем самым

Пример 7.

Теперь , замена
, поэтому
и
.

Переходим к интегралу от новой переменной:

где
.

Найдём отдельно

в)
(табличный интеграл).

Умножим 2-й результат на 7, 3-й на 10, соберём подобные слагаемые и вернёмся к старой переменной:

КИ4. Найдите интегралы от иррациональных функций:

Пример 8. Найдём
. Похожий интеграл без корня уже найден выше (пример 6), и достаточно на соответствующем шаге добавить корень:


,

где
. Разбиваем

и находим

б)
.

Таким образом, , где
.

Ответ: .

Пример 9.
Полный квадрат удобно получить так:

где
. Тогда

.

Заменим
. При этом
и
:

Действуем так же, как в примере 8:

Ответ: .

Замечание 3. Нельзя из-под корня выносить знак «–» или любой отрицательный общий множитель:
;, и т.д. В примере 9 показан единственно возможный правильный способ действий.

Пример 10. Посмотрим, что изменится, если в примере 9 поставить квадрат: найдём
. Теперь после тех же замен окажется, что

Как обычно,

и 2-й и 3-й интегралы находятся так же, как в примере 9:

;

.

Согласно указаниям на стр. 19, 1-й интеграл можно преобразовать так:

где снова
, а

Новый интеграл находят или тригонометрической подстановкой
, или повторным интегрированием по частям, взяв
и
. Воспользуемся готовой формулой
(стр. 19):

Умножим все интегралы на соответствующие им коэффициенты и соберём вместе:

в ответе приведём подобные слагаемые.

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид: или

(коэффициенты a , b и f не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?

Пример 14

Найти неопределенный интеграл

Пожалуйста, будьте внимательны, сейчас мы рассмотрим типовой алгоритм.

1) Когда дан интеграл вида

Или

(где коэффициенты a , b и f не равны нулю), то первое, что мы делаем, это… берём черновик. Дело в том, что сейчас нам предстоит выполнить небольшой подбор.

2) Сформируем числитель подынтегрального выражения тождественными преобразованиями (выразим числитель через знаменатель). Для этого пока просто заключаем выражение, которое находится в данном примере в знаменателе (неважно – под корнем или без корня), под знак дифференциала: .

3) Раскрываем дифференциал:

Смотрим на числитель нашего интеграла:

Немного разные вещи получились…. А теперь нам нужно подобрать множитель для дифференциала , такой, чтобы при его раскрытии получилось, как минимум, 3x . В данном случае с подходящим множителем получится:

4) Для самоконтроля снова раскрываем наш дифференциал:

Снова смотрим на числитель нашего интеграла:

Уже ближе, но у нас получилось не «то» слагаемое (+2), а другое: (+3/2).

5) К нашему дифференциалу

приписываем слагаемое, которое у нас изначально было в подынтегральной функции:

– Вычитаем (в данном случае – вычитаем, иногда нужно, наоборот, прибавлять)

наше «не то» слагаемое:

– Обе константы берем в скобки и приписываем справа значок дифференциала:

– Вычитаем (в некоторых примерах нужно сложить) константы:

.

6) Выполняем проверку:

У нас получился в точности числитель подынтегральной функции, значит, подбор выполнен успешно.

Чистовое оформление решения выглядит примерно так:

(1) Выполняем на черновике подбор числителя согласно вышерассмотренному алгоритму. Обязательно выполняем проверку, правильно ли выполнен подбор. При определенном опыте решения интегралов подбор нетрудно выполнить и в уме.



(2) Почленно делим числитель на знаменатель. В практическом решении задач данный шаг можно опускать

(3) Используя свойство линейности, разделяем интегралы. Все константы целесообразно вынести за знаки интегралов.

(4) Первый интеграл фактически является табличным, используем формулу (константу C припишем позже, когда возьмем второй интеграл). Во втором интеграле выделяем полный квадрат (такой тип интегралов мы рассмотрели в предыдущем параграфе). Остальное дело техники.

И, на закуску, пара примеров для самостоятельного решения – один проще, другой сложнее.

Пример 15

Найти неопределенный интеграл

Пример 16

Найти неопределенный интеграл

Для решения Примеров 15 и 16 будет полезен частный случай интегрирования степенной функции, которого нет в нашей справочной таблице:

.

Пример 15: Решение:

Пример 16: Решение:

.

При решении некоторых типов интегралов выполняется преобразование, как говорят внесение под знак дифференциала . Это делается, чтобы получить интеграл табличного вида и легко его взять. Для этого применяется формула: $$ f"(x) dx = d(f(x)) $$

Хочется отметить такой важный нюанс, над которым задумываются студенты. Чем же отличается этот метод от способа замены переменной (подстановки)? Это то же самое, только в записях выглядит по-разному. И то и другое верно.

Формула

Если в подынтегральной функции прослеживается произведение двух функций, одна из которых является дифференциалом другой, тогда внесите под знак дифференциала нужную функцию. Выглядит это следующим образом:

$$ \int f(\varphi(x)) \varphi"(x) dx = \int f(\varphi(x)) d(\varphi(x))=\int f(u) du $$ $$ u=\varphi(x) $$

Подведение основных функций

Для того, чтобы успешно использовать такой способ решения, необходимо знать таблицы производных и интегрирования. Из них вытекают следующие формулы:

$ dx = d(x+c), c=const $ $ -\sin x dx=d(\cos x) $
$ dx=\frac{1}{a} d(ax) $ $ \cos x dx = d(\sin x) $
$ xdx=\frac{1}{2} d(x^2+a) $ $ \frac{dx}{x} = d(\ln x) $
$ -\frac{dx}{x^2}= d(\frac{1}{x}) $ $ \frac{dx}{\cos^2 x} = d(tg x) $
$$ \int f(kx+b)dx = \frac{1}{k} \int f(kx+b)d(kx+b) = \frac{1}{k} F(kx+b) + C $$

Примеры решений

Пример 1
Найти интеграл $$ \int \sin x \cos x dx $$
Решение

В данном примере можно занести под знак дифференциала любую из предложенных функций, хоть синус, хоть косинус. Для того, чтобы не путаться со сменой знаков удобнее занести $ \соs x $. Используя формулы имеем:

$$ \int \sin x \cos xdx = \int \sin x d(\sin x) = \frac{1}{2} \sin^2 x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \sin x \cos x dx = \frac{1}{2} \sin^2 x + C $$

Итак, в статье разобрали как решаются некоторые виды интегралов методом занесения под знак дифференциала. Вспомнили дифференциалы часто распространенных элементарных функций. Если не получается или не хватает времени решить задачи контрольных работ самостоятельно, то мы окажем Вам свою помощь в кратчайшие сроки. Достаточно заполнить форму заказа и мы свяжемся с Вами.

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом , где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала ;
– Собственно замена переменной .

По сути дела, это одно и то же, но оформление решения выглядит по-разному.

Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:

То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.

Пример 1

Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию под знак дифференциала:

Раскрывая дифференциал, легко проверить, что:

Фактически и – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?

Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ .

Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:

Теперь можно пользоваться табличной формулой :


Готово

Единственное отличие, у нас не буква «икс», а сложное выражение .

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила .

Пример 2

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .
Далее используем табличную формулу :

Проверка:


Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:

В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:

Строго говоря, решение должно выглядеть так:

Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Пример 5

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой .
В данном случае напрашивается:
Вторая по популярности буква для замены – это буква .
В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:
Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место.
Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

Так как , то

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко:
Теперь по правилам пропорции выражаем нужный нам :

В итоге:
Таким образом:

А это уже самый что ни на есть табличный интеграл (таблица интегралов , естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .


Готово.

Чистовое оформление рассмотренного примера должно выглядеть примерно так:


Проведем замену:


Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче .

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Пример 6

Найти неопределенный интеграл.

Проведем замену: (другую замену здесь трудно придумать)

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл .

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении .

Пример 7

Найти неопределенный интеграл. Выполнить проверку.

Пример 8

Найти неопределенный интеграл.

Замена:
Осталось выяснить, во что превратится

Хорошо, мы выразили, но что делать с оставшимся в числителе «иксом»?!
Время от времени в ходе решения интегралов встречается следующий трюк: мы выразим из той же замены !

Пример 9

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Ответ в конце урока.

Пример 10

Найти неопределенный интеграл.

Наверняка некоторые обратили внимание, что в моей справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная : (функции , могут быть и не в произведении)

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за знаменатель, то велики шансы, что числитель превратится во что-нибудь хорошее.