С какой точностью указано приближенное значение. Приближенного значения величин

Сахалинской области

«Профессиональное училище № 13»

Методические указания к самостоятельной работе обучающихся

Александровск-Сахалинский

Приближенные значения величин и погрешности приближений: Метод указ. / Сост.

ГБОУ НПО «Профессиональное училище №13», - Александровск-Сахалинский, 2012

Методические указания предназначены для обучающихся всех профессий, изучающих курс математики

Председатель МК

Приближенное значение величины и погрешности приближений.

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3/2 можно рассматривать как приближенное значение числа - 8/5 с точностью до 1/5 , поскольку

< а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3/2 есть приближенное значение числа - 8/5 c избытком, так как - 3/2 > - 8/5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.

Погрешности

Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется предельной абсолютной погрешностью приближенной величины a.

Отношение абсолютной погрешности к модулю приближенного значения называется относительной погрешностью приближенного значения. Относительную погрешность обычно выражают в процентах.

Пример. | 1 - 20 | < | 1 | + | -20|.

Действительно,

|1 - 20| = |-19| = 19,

|1| + | - 20| = 1 + 20 = 21,

Упражнения для самостоятельной работы.

1. С какой точностью можно измерять длины с помощью обыкновенной линейки?

2. С какой точностью показывают время часы?

3. Знаете ли вы, с какой точностью можно измерять веc тела на современных электрических весах?

4. а) В каких пределах заключено число а , если его приближенное значение с точностью до 0,01 равно 0,99?

б) В каких пределах заключено число а , если его приближенное значение с недостатком с точностью до 0,01 равно 0,99?

в) В каких пределах заключено число а , если его приближенное значение с избытком с точностью до 0,01 равно 0,99?

5 . Какое приближение числа π ≈ 3,1415 лучше: 3,1 или 3,2?

6. Можно ли приближенное значение некоторого числа с точностью до 0,01 считать приближенным значением того же числа с точностью до 0,1? А наоборот?

7 . На числовой прямой задано положение точки, соответствующей числу а . Указать на этой прямой:

а) положение всех точек, которые соответствуют приближенным значениям числа а с недостатком с точностью до 0,1;

б) положение всех точек, которые соответствуют приближенным значениям числа а с избытком с точностью до 0,1;

в) положение всех точек, которые соответствуют приближенным значениям числа а с точностью до 0,1.

8. В каком случае абсолютная величина суммы двух чисел:

а) меньше суммы абсолютных величин этих чисел;

б) равна сумме абсолютных величин этих чисел?

9. Доказать неравенства:

a) |a - b | < |a | + |b |; б)* |а - b | > ||а | - | b ||.

Когда в этих формулах имеет место знак равенства?

Литература:

1. Башмаков (базовый уровень) 10-11 кл. – М.,2012

2. Башмаков, 10 кл. Сборник задач. - М: Издательский центр «Академия», 2008

3. , Мордкович:Справочные материалы: Книга для учашихся.-2-е изд.-М.: Просвещение, 1990

4. Энциклопедический словарь юного математика/Сост. .-М.: Педагогика,1989

Для современных задач необходимо использовать сложный математический аппарат и развитые методы их решения. При этом часто приходится встречаться с задачами, для которых аналитическое решение, т.е. решение в виде аналитического выражения, связывающего исходные данные с требуемыми результатами, либо вообще невозможно, либо выражается такими громоздкими формулами, что использование их для практических целей нецелесообразно.

В этом случае применяются численные методы решения, которые позволяют достаточно просто получить численное решение поставленной задачи. Численные методы реализуются с помощью вычислительных алгоритмов.

Все многообразие численных методов подразделяют на две группы:

Точные – предполагают, что если вычисления ведутся точно, то с помощью конечного числа арифметических и логических операций могут быть получены точные значения искомых величин.

Приближенные– которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение задачи лишь с заданной точностью.

1. величина и число. Величиной называется то, что в определенных единицах может быть выражено числом.

Когда говорят о значении величины, то имеют в виду некоторое число, называемое числовым значением величины, и единицу ее измерения.

Таким образом, величиной называют характеристику свойства объекта или явления, которая является общей для множества объектов, но имеет индивидуальные значения для каждого из них.

Величины могут быть постоянными и переменными. Если при некоторых условиях величина принимает только одно значение и не может его изменять, то она называется постоянной, если же она может принимать различные значения, то – переменной. Так, ускорение свободного падения тела в данном месте земной поверхности есть величина постоянная, принимающая единственное числовое значение g=9,81… м/с2, в то время как путь s, проходимый материальной точкой при ее движении, – величина переменная.

2. приближенные значения чисел. Значение величины, в истинности которого мы не сомневаемся, называется точным. Часто, однако, отыскивая значение какой-либо величины, получают лишь ее приближенное значение. В практике вычислений чаще всего приходится иметь дело с приближенными значениями чисел. Так, p – число точное, но вследствие его иррациональности можно пользоваться лишь его приближенным значением.

Во многих задачах из-за сложности, а часто и невозможности получения точных решений применяются приближенные методы решения, к ним относятся: приближенное решение уравнений, интерполирование функций, приближенное вычисление интегралов и др.

Главным требованием к приближенным расчетам является соблюдение заданной точности промежуточных вычислений и конечного результата. При этом в одинаковой степени недопустимы как увеличение погрешностей (ошибок) путем неоправданного загрубления расчетов, так и удержание избыточных цифр, не соответствующих фактической точности.


Существуют два класса ошибок, получающихся при вычислениях и округлении чисел – абсолютные и относительные.

1. Абсолютная погрешность (ошибка).

Введем обозначения:

Пусть А – точное значение некоторой величины, Запись а » А будем читать "а приближенно равно А". Иногда будем писать А = а, имея в виду, что речь идет о приближенном равенстве.

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем: D а = ½а А ½<= D а пред . . и тогда

а – D а пред . ≤ А а + D а пред . . (4)

Значит, а – D а пред . будет приближенным значением А с недостатком, а а + D а пред приближенным значением А с избытком. Пользуются также краткой записью: А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбратьвозможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.

Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред.

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред.

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

Введение

Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

· Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с .

· Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488 (13)?10 ?23 Дж/К , что также можно записать значительно длиннее как 1,380 6488?10 ?23 ±0,000 0013?10 ?23 Дж/К .

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Приближённое значение

С избыточным и недостаточным? В процессе вычислений весьма часто приходится иметь дело с приближенными числами. Пусть А - точное значение некоторой величины, называемое в дальнейшем точным числом А. Под приближенным значением величины А, или приближенным числам, называется число а , заменяющее точное значение величины А. Если а < А, то а называется приближенным значением числа А по недостатку. Если а > А, - то по избытку. Например, 3,14 является приближенным значением числа р по недостатку, а 3,15 - по избытку. Для характеристики степени точности данного приближения пользуются понятием погрешности или ошибки.

Погрешностью Да приближенного числа а называется разность вида

Да = А - а,

где А - соответствующее точное число.

Из рисунка видно, что длина отрезка АВ заключена между 6 см и 7 см.

Значит, 6 - приближенное значение длины отрезка АВ (в сантиметрах) > с недостатком, а 7 - с избытком.

Обозначив длину отрезка буквой у, получим: 6 < у < 1. Если a < х < b, то а называют приближенным значением числа х с недостатком, a b - приближенным значением х с избытком. Длина отрезка АВ (см. рис. 149) ближе к 6 см, чем к 7 см. Она приближенно равна 6 см. Говорят, что число 6 получилось при округлении длины отрезка до целых.

Cтраница 2


Математические действия над приближенными значениями величин называются приближенными, вычислениями. К настоящему времени создана целая наука о приближенных вычислениях, с рядом положений которой мы познакомимся в дальнейшем.  

Результат измерения всегда дает приближенное значение величины. Это связано с неточностью самих измерений, неидеальной точностью измерительных приборов.  

Что называется относительной погрешностью приближенного значения величины.  

В табл. 25 приведены приближенное значения величин / Си / - д при различных амплитудах Um0 для [ диода 6X6, нагруженного сопротивлением R 0 5 мгом. Эта таблица составлена проф.  

В математических таблицах обычно даются приближенные значения величин. При этом считают, что абсолютная погрешность не превосходит половины единицы последнего разряда.  

При этом возникает необходимость находить приближенные значения величин при условии, что граница относительной погрешности не должна превышать наперед заданного значения. На данном занятии будут рассмотрены задачи такого типа.  

Если в данном точном или приближенном значении величины число цифр больше, чем это необходимо по практическим соображениям, то это число округляют. Операция округления чисел состоит в отбрасывании нескольких цифр младших разрядов и замене их нулями; при этом последнюю удерживаемую цифру оставляют без изменения, если первая отбрасываемая цифра меньше 5; если она равна или больше 5, то цифру последнего удерживаемого разряда увеличивают на единицу.  

Условимся считать, что в приближенном значении величины все цифры верные, если его абсолютная погрешность не превышает половины единицы последнего разряда.  

При таком округлении число, характеризующее приближенное значение величины, состоит из верных цифр, а цифра низшего разряда этого числа (последняя в записи) имеет точность 1 того же разряда. Например, запись т 3 68 кг означает т 3 68 0 01 кг, а запись т3 680 кг означает т3 680 0 001 кг.  

Из уравнения видно, что сумма приближенных значений величин А и сумма их погрешностей являются приближенным значением сумм величин X и их абсолютной ошибкой.  

N) в (1) обозначено приближенное значение величины y (xi, x0, г / о), получаемое рассматриваемым методом.  

Расчеты, как правило, производятся с приближенными значениями величин - приближенными числами. Разумная оценка погрешности при вычислениях позволяет указать оптимальное количество знаков, которые следует сохранять при расчетах, а также в окончательном результате.  

В результате счета можно получить или точное или приближенное значение величины. При этом достаточным признаком приг ближенности результата счета является наличие разных ответов при повторных подсчетах.  

В действительности, средняя арифметическая X даст ему лишь приближенное значение величины а xf, и если сама схема его опыта была неудовлетворительна или приборы плохо проверены (например, измерительная линейка вместо 1 м равна 0 999 мм), то, как бы точно наш наблюдатель ни нашел значение а, у него нет оснований считать, что X или а соответствуют истинному значению скорости звука, которая может быть наблюдаема в других самых разнообразных опытах. Основное допущение, которое должно было бы оправдать применение способа средней арифметической к физическим измерениям такого рода, состоит в предположении, что неизвестная величина а xf или, другими словами, что измерение (или вычисление) производится без систематической ошибки.  

На практике, измеряя площади, мы чаще всего пользуемся приближенными значениями величин.  

Тема “ ” изучается в 9 классе бегло. И у учащихся, как правило, не до конца формируются навыки ее вычисления.

А ведь с практическим применением относительной погрешности числа , в равно степени как и с абсолютной погрешностью, мы сталкиваемся на каждом шагу.

Во время ремонтных работ измерили (в сантиметрах) толщину m коврового покрытия и ширину n порожка. Получили следующие результаты:

m≈0,8 (с точностью до 0,1);

n≈100,0 (с точностью до 0,1).

Заметим, что абсолютная погрешность каждого из данных измерений не больше 0,1.

Однако 0,1 – это солидная часть числа 0,8 . Как для числа 100 она представляет незначительную ч асть. Это показывает, что качество второго измерения намного выше, чем первого.

Для оценки качества измерения используется относительная погрешность приближенного числа.

Определение.

Относительной погрешностью приближенного числа (значения) называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность договорились выражать в процентах.

Пример 1.

Рассмотрим дробь 14,7 и округлим ее до целых. Также найдем относительную погрешность приближенного числа:

14,7≈15.

Для вычисления относительной погрешности, кроме приближенного значения, как правило, нужно еще знать и абсолютную погрешность. Абсолютная погрешность не всегда бывает известна. Поэтому вычислить невозможно. И в таком случае достаточно бывает указать оценку относительной погрешности.

Вспомним пример, который был приведен в начале статьи. Там были указаны измерение толщины m ковролина и ширина n порожка.

По итогам измерений m ≈0,8 с точностью до 0,1. Можно сказать, что абсолютная погрешность измерения не больше 0,1. Значит, результат деления абсолютной погрешности на приближенное значение (а это и есть относительная погрешность) меньше или равно 0,1/0,8 = 0,125 = 12,5%.

Т. о., относительная погрешность приближения ≤ 12,5%.

Аналогичным образом вычислим относительную погрешность приближения ширины порожка; она не более 0,1/100 = 0,001 = 0,1%.

Говорят, что в первом случае измерение выполнено с относительной точность до 12,5%, а во втором – с относительной точностью до 0,1%.

Подведем итог.

Абсолютная погрешность приближенного числа - это разность между точным числом x и его приближенным значением a.

Если модуль разности | x a | меньше некоторого D a , то величину D a называют абсолютной погрешностью приближенного числа a .

Относительная погрешность приближенного числа - это отношение абсолютной погрешности D a к модулю числа a , то есть D a / |a | = d a .

Пример 2.

Рассмотрим известное приближенное значение числа π≈3,14.

Учитывая его значение с точностью до стотысячных долей, можно указать его погрешность 0,00159… (запомнить цифры числа π поможет )

Абсолютная погрешность числа π равна: | 3,14 3,14159 | = 0,00159 ≈0,0016.

Относительная погрешность числа π равна: 0.0016/3.14 = 0,00051 = 0,051%.

Пример 3.

Попробуйте самостоятельно вычислить относительную погрешность приближенного числа √2. есть несколько способов, чтобы запомнить цифры числа “квадратный корень из 2″.