Априорные и условные вероятности. Игнорирование априорной вероятности

2.7. Специальная неинвазивная диагностика

2.7.1. Оценка данных первично обследования и априорная вероятность ИБС

После первичных исследований врач строит план дальнейшего обследования и лечения больного, исходя из полученных первичных данных и априорной вероятности диагноза хронической ИБС (Таблица 4).

Таблица 4. «Априорная вероятность диагноза хронической ИБС в зависимости от характера боли в грудной клетке»

Типичная стенокардия Атипичная стенокардия Боль некоронарного характера
Возраст, лет мужчины женщины мужчины женщины мужчины женщины
30-39 59 28 29 10 18 5
40-49 69 37 38 14 25 8
50-59 77 47 49 20 34 12
60-69 84 58 59 28 44 17
70-79 89 68 69 37 54 24
>80 93 76 78 47 65 32
Примечание: указана вероятность в %

Если по результатам первичных исследований априорная вероятность хронической ИБС превышает 85% - дальнейшие исследования для уточнения диагноза можно не проводить, а приступать к стратификации риска осложнений и назначению лечения.

Если по результатам первичных исследований априорная вероятность хронической ИБС не превышает 15% - следует заподозрить функциональное заболевание сердца или некардиальные причины симптомов.

Пациентов с промежуточной априорной вероятностью ИБС (15-85%) направляют на дополнительные неинвазивные визуализирующие исследования (Таблица 5).

Таблица 5. «Диагностические пробы при ИБС»

Диагностика ИБС
Чувствительность (%) Специфичность (%)
Нагрузочная ЭКГ 45-50 85-90
Стресс-ЭхоКГ 80-85 80-88
Стресс-ОЭКТ 73-92 63-87
Стресс-ЭхоКГ с добутамином 79-83 82-86
Стресс-МРТ 79-88 81-91
Стресс-ЭхоКГ с вазодилататором 72-79 92-95
Стресс-ОЭКТ с вазодилататором 90-91 75-84
Стресс-МРТ с вазодилататором 67-94 61-85
МСКТ-ангиография КА 95-99 64-83
Стресс-ПЭТ с вазодилататором 81-97 74-91
Примечания: КА – коронарные артерии; МРТ – магнитно-резонансная томография; МСКТ – мультиспиральная рентгенкомпьютерная томография; ОЭКТ – однофотонная эмиссионная компьютерная томография; ЭхоКГ - эхокардиография

2.7.2. Нагрузочные ЭКГ-пробы

Нагрузочные пробы показаны всем пациентам с подозрением на стенокардию напряжения и априорной вероятностью ИБС 15-85%. Показания к проведению нагрузочных проб лицам с ранее установленным диагнозом ИБС: первоначальная и повторная стратификации риска осложнений, оценка эффективности медикаментозного и хирургического лечения.

Обычно проводят велоэргометрическую пробу (ВЭМ-проба) или тредмил-тест. Проба с ходьбой (тредмил-тест) более физиологична и чаще используется для верификации функционального класса пациентов с ИБС. Велоэргометрия информативнее при выявлении ИБС в неясных случаях, но при этом требует от пациента, как минимум, начальных навыков езды на велосипеде, труднее выполняется пожилыми пациентами и при сопутствующем ожирении.

Распространенность чреспищеводной стимуляции (ЧПЭС) предсердий в повседневной диагностике ИБС ниже, хотя этот метод сравним по информативности с ВЭМ-пробой и тредмил-тестом. Метод ЧПЭС является средством выбора при невозможности выполнения пациентом других нагрузочных проб из-за некардиальных факторов (заболевания опорно-двигательного аппарата, перемежающаяся хромота, склонность к выраженному повышению АД при динамической физической нагрузке, детренированность, дыхательная недостаточность).

Для определения суммарного риска по результатам нагрузочных проб используется тредмил-индекс - показатель, комбинирующий информацию, полученную при нагрузочном тестировании.

Таблица 6. «Расчет тредмил-индекса»

Тредмил-индекс в равной степени информативен у стационарных и амбулаторных больных, а также у мужчин и женщин, однако у пожилых пациентов его прогностическая ценность изучена недостаточно

Результаты тредмил-теста выражаются в метаболических единицах (оксигенация тканей в единицу времени), а велоэргометрии - в ваттах или двойном произведении (характеристики мышечной работы). Для пересчета этих единиц измерения и стандартизации результатов нагрузочных проб используют Таблицу 7 .

Таблица 7. «Характеристика функционального класса стенокардии по результатам проб с физической нагрузкой»

Примечания: МЕ – метаболические единицы; САД - систолическое артериальное давление на максимуме нагрузки; ЧСС – частота сердечных сокращений;

2.7.3. Фармакологические пробы

В основе метода - провокация приступа ишемии миокарда с помощью лекарственных средств с одновременной записью ЭКГ. В зависимости от вводимого препарата, различают пробы: с вазодилататором (дипиридамолом) или с инотропным средством (добутамином).

Указанные препараты вводят в условиях палаты интенсивной терапии внутривенно под строгим контролем АД и ЧСС, под непрерывным мониторированием ЭКГ.

Фармакологические пробы показаны для диагностики ИБС только при невозможности выполнения или неинформативности проб с физической нагрузкой. Для оценки эффективности лечения ИБС фармакологические пробы не используются.

Сочетание нагрузочной пробы с визуализирующими методами (ЭхоКГ, томография, радиоизотопная сцинтиграфия) существенно повышает ценность полученных результатов.

2.7.4. Стресс-эхокардиография

Один из самых востребованных и высокоинформативных методов неинвазивной диагностики ИБС. В основе метода лежит визуальное выявление локальной дисфункции левого желудочка во время физической нагрузки или фармакологической пробы. Стресс-ЭхоКГ превосходит обычную нагрузочную ЭКГ по диагностической ценности, обладает большей чувствительностью (80- 85%) и специфичностью (84-86%) в диагностике ИБС. Метод позволяет не только доказательно верифицировать ишемию, но и предварительно определить симптом-связанную коронарную артерию по локализации преходящей дисфункции левого желудочка. При технической возможности метод показан всем больным с доказанной ИБС для верификации симптом-связанной коронарной артерии, а также при сомнительных результатах обычной нагрузочной пробы в ходе первоначальной диагностики.

2.7.5. Радиоизотопные исследования

Перфузионная сцинтиграфия миокарда - чувствительный и высокоспецифичный метод исследования с высокой прогностической значимостью. Сочетание сцинтиграфии с физической нагрузкой или фармакологическими пробами (дозированное в/в введение добутамина, дипиридамола) намного повышает ценность полученных результатов.

Отсутствие существенных нарушений перфузии миокарда по данным нагрузочной сцинтиграфии говорит о хорошем прогнозе даже при доказанной ИБС.

Выявление существенных нарушений перфузии в ходе сцинтиграфических исследований у больных с ИБС говорит о неблагоприятном прогнозе и служат веским основанием для проведения КАГ с последующим решением вопроса о хирургической реваскуляризации миокарда.

Исследование перфузии миокарда показано всем пациентам с доказанной хронической ИБС для стратификации риска сердечно-сосудистых осложнений.

2.7.6. Томографические исследования

Мультиспиральная рентгенкомпьютерная томография коронарных артерий

После внутривенного введения рентгенконтрастного вещества можно визуализировать коронарные артерии и шунты к ним, довольно точно выявить атеросклеротические бляшки и определить степень внутрисосудистого стенозирования.

При диагностике ИБС в неясных случаях метод является альтернативой обычной инвазивной КАГ и может проводиться по тем же показаниям. Преимуществом метода является малоинвазивность. У пожилых пациентов с множественными кальцинированными внутрисосудистыми бляшками этот метод нередко приводит к гипердиагностике стенозирования коронарных артерий. При доказанной ИБС и выборе способа хирургической реваскуляризации - предпочтительнее проводить КАГ.

Электронно-лучевая томография коронарных артерий

Метод используется в диагностике атеросклероза коронарных артерий, - особенно при верификации многососудистого поражения и поражении ствола левой коронарной артерии. Однако для повсеместного применения этот метод пока малодоступен, дорог и имеет ряд ограничений. Целесообразность повсеместного проведения этого исследования при ИБС пока не доказана.

Другие методы томографической визуализации

Магнитно-резонансная томография сердца, однофотонная эмиссионная компьютерная томография, позитронно-эмиссионная томография сердца, - в покое и в комбинации со стрессовыми воздействиями, - доказали в эксперименте высокую чувствительность и специфичность при хронической ИБС, однако повсеместно они не проводятся.

2.8. Итоговая стратификация риска осложнений

Конечной целью неинвазивных диагностических исследований является распределение больных с доказанной ИБС в группы: с высоким, умеренным или низким риском тяжелых осложнений и фатальных исходов (Таблица 8).

Стратификация пациентов на группы риска имеет важное практическое значение, поскольку позволяет избежать ненужных дальнейших диагностических исследований и сократить медицинские расходы у одних пациентов, и активно направлять на КАГ и реваскуляризацию миокарда других больных.

  • В группе с низким риском осложнений (предполагаемая ежегодная смертность <1%) проведение дополнительных визуализирующих исследований с диагностической целью не оправданно. Также нет необходимости в рутинном направлении таких больных на КАГ.
  • Больных с высоким риском осложнений (предполагаемая ежегодная смертность >3%) следует направлять на КАГ без дальнейших неинвазивных исследований.
  • У больных, отнесенных к группе умеренного риска (предполагаемая ежегодная смертность 1-3%) показания к КАГ определяют по дополнительным исследованиям (визуализирующие стресс-тесты, наличие левожелудочковой дисфункции).

Таблица 8. «Распределение больных с ИБС по степени риска на основании неинвазивных диагностических исследований»

Низкий риск Умеренный риск Высокий риск
(ежегодная смертность <1%) (ежегодная смертность 1-3%) (ежегодная смертность >3%)
Высокий тредмил-индекс (>5) Незначительная/умеренная дисфункция ЛЖ в покое (ОФВ 35-49%) Тяжелая дисфункция ЛЖ в покое (ОФВ<35%)
Незначительный дефект перфузии или его отсутствие в покое и при нагрузке* Пограничный тредмил-индекс (-11/+5) Низкий тредмил-индекс (<-11)
Нормальная сократимость миокарда по данным нагрузочной эхокардиографии. Либо имеющиеся участки локального гипокинеза не увеличиваются при нагрузке* При нагрузке индуцируется дефект перфузии миокарда умеренной величины без сопутствующей дилатации ЛЖ и без увеличения поглощения индикатора легкими Тяжелая дисфункция ЛЖ при нагрузке (ОФВ<35%)
При фармакологической стресс-эхокардиографии нарушение локальной сократимости вызывается только большими дозами препарата и распространяется не более, чем на 2 сегмента Крупный дефект перфузии при нагрузке (особенно в передней стенке ЛЖ)
Множественные умеренные дефекты перфузии миокарда при нагрузке
Крупный необратимый дефект перфузии миокарда в сочетании с постстрессовой дилатацией ЛЖ или увеличением поглощения индикатора легочной тканью
При стресс-эхокардиографии - нарушение локальной сократимости в >2 сегментах на фоне введения низких доз фамакологического препарата или при низкой ЧСС (<120/мин)
Распространенный гипокинез по данным стресс-эхокардиографии с использованием иных методов нагрузки
Примечание: * - сочетание этого признака с низким тредмил-индексом и/или выраженной дисфункцией ЛЖ в покое (ОФВ <35%) переводят его из группы низкого риска в группу высокого риска

2.9. ИНВАЗИВНЫЕ ИССЛЕДОВАНИЯ

2.9.1 Коронароангиография

Является «золотым стандартом» при выявлении и оценке степени поражения коронарных артерий. Показания к проведению КАГ при хронической ИБС:

  • Верификация диагноза ИБС в неясных случаях;
  • Определение тактики реваскуляризации миокарда при доказанной ИБС:
    • при неэффективности медикаментозного лечения ИБС;
    • при высоком риске сердечно-сосудистых осложнений по клиническим данным и результатам неинвазивных исследований.

Для обоснованного проведения КАГ необходимо учитывать весь комплекс данных, полученных в ходе расспроса, осмотра и неинвазивных инструментальных исследований. Наиболее оправдано проведение КАГ пациентам с априорно высоким риском смерти и тяжелых сердечно-сосудистых осложнений, - поскольку в ходе исследования у таких пациентов обычно принимается решение о способе реваскуляризации миокарда с целью снижения этого риска. При низком риске сердечно-сосудистых осложнений проведение КАГ нецелесообразно, поскольку ее результаты обычно не оказывают влияния на ход лечения и, соответственно, не изменяют прогноз. При необходимости КАГ дополняют проведением внутрикоронарного ультразвукового исследования (ВкУЗИ).

Данные КАГ являются одним из важнейших критериев доказанности диагноза ИБС, прогнозирования частоты осложнений и выживаемости при этом заболевании.

В практике используют классификацию атеросклероза коронарных артерий по количеству пораженных сосудов (однососудистое, двухсосудистое, трехсосудистое). Доказано, что неблагоприятная прогностическая роль стенозов в проксимальных отделах коронарных артерий выше, чем роль стенозов в дистальных участках. Отдельно выделяют группы больных со стенозированием ствола левой коронарной артерии и проксимальной части передней нисходящей артерии.

В основе предложенного прогностического индекса ИБС лежит распространенность атеросклероза коронарных артерий (Таблица 9). Прогностический вес признаков тяжести поражения варьирует от 0 (интактные КА) до 100 (стенозирование ствола ЛКА).

Таблица 9. «Прогностический индекс ИБС по данным коронароангиографии (при медикаментозном лечении)»

Распространенность атеросклероза и степень стенозирования КА (% стенозирования) Прогностический вес показателя (0-100) 5-летняя выживаемость (%)
Поражение 1 КА (75%) 23 93
Поражение >1 КА (50-74%) 23 93
Поражение 1 КА (>95%) 32 91
Поражение 2 КА 37 88
Поражение 2 КА (оба стеноза >95%) 42 86
Поражение 1 КА, стеноз в проксимальном отделе ПНА >95% 48 83
Поражение 2 КА, стеноз ПНА >95% 48 83
Поражение 2 КА, стеноз в проксимальном отделе ПНА >95% 56 79
Поражение 3 КА 56 79
Поражение 3 КА, один из стенозов >95% 63 73
Поражение 3 КА, стеноз в проксимальном отделе ПНА 75% 67 67
Поражение 3 КА, стеноз в проксимальном отделе ПНА >95% 74 59
Примечания: КА - коронарная артерия; ПНА - передняя нисходящая ветвь левой коронарной артерии;

2.9.2. Вентрикулография

Иногда коронароангиографию дополняют вентрикулографическим исследованием. Главное показание к проведению вентрикулографии - детальная оценка общей и локальной левожелудочковой сократимости. Значение выявленной при вентрикулографии левожелудочковой дисфункции очень важно для прогнозирования выживаемости больных со всеми формами ИБС. Вентрикулографию проводят при неинформативности эхокардиографического исследования.

2.9.3. Внутрикоронарное ультразвуковое исследование

Сравнительно новый метод диагностического исследования, дополняющий КАГ. Он свободен от некоторых недостатков КАГ, поскольку позволяет изучить поверхность и внутреннюю структуру атеросклеротических бляшек, выявить тромбоз коронарных артерий, исследовать состояние сосудистой стенки вокруг бляшек. Кроме того, с помощью ВкУЗИ удается точнее верифицировать бляшки сложной конфигурации, плохо поддающиеся количественной оценке при КАГ в обычных проекциях. Наибольшее значение метод имеет при выявлении нормальных или малоизмененных КА во время обычной КАГ. Исследование не показано к повсеместному применению при хронической ИБС.

Вопрос № 38. Полная группа событий. Формула полной вероятности. Формулы Байеса.

Двух событий. Независимость в совокупности. Формулировка теоремы умножения в этом случае.

Вопрос № 37. Условная вероятность. Теорема умножения. Определение независимости

Условная вероятность - вероятность одного события при условии, что другое событие уже произошло.

P(А│В)= р(АВ)/ р(В)

Условная вероятность отражает влияние одного события на вероятность другого.

Теорема умножения.

Вероятность произведения событий определяется формулой Р(А 1 ,А 2 ,….А n)= Р(А 1)Р(А 2/ А 1) …Р(А n / А 1 А 2… А n -1)

Для произведения двух событий отсюда следует, что

Р(АВ)=Р(А/В)Р{B)=Р(В/А)Р{А)

Если одно событие не зависит от другого, если появление одного из них не влияет на вероятность появления другого, то последнее также не зависит от первого. Это дает полное основания называть такие события независимыми. Математически независимость означает, что условная вероятность некоторого события совпадает с его вероятностью (безусловной вероятностью).

1.Говорят что событие А не зависит от события В если

P(А│В)=Р(А)

Если событие А не зависит от события В то и событие В не зависит от события А.

2.Если события А и В независимы то Р(АВ)=Р(А)Р(В)-это равенство используется для определения независимых событий.

Следует различать попарную независимость событий и независимость в совокупности.

События А1,А2,….Аn называются независимыми в совокупности если они попарно независимы и каждое из них не зависит от произведения любого набора из остальных событий.

Если события А1,А2,….Аn независимы в совокупности то

Р(А 1 ,А 2 ,….А n)=Р(А 1)Р(А 2)…Р(А n).

В каждой группе какое-либо событие в результате испытания обязательно произойдет, причем появление одного из них исключает появление всех остальных. Такие события называются полной группой событий.

Определение: Если группа событий такова, что в результате испытания обязательно должно произойти хотя бы одно из них, и любые два из них несовместны, то эта группа событий называется полной группой.

Каждое событие из полной группы называется элементарным событием. Каждое элементарное событие - равновозможное, т.к. нет оснований считать, что какое-либо из них более возможное, чем любое другое событие полной группы.

Два противоположных события составляют полную группу.

Относительной частотой события А называется отношение числа опытов, в результате которых произошло событие А к общему числу опытов.

Отличие относительной частоты от вероятности заключается в том, что вероятность вычисляется без непосредственного произведения опытов, а относительная частота – после опыта.



Формула полной вероятности

(где А – некоторое событие, Н1, Н2 … Hi – попарно несовместимы, образубт полную группу, причем А может произойти вместе с H1, H2 Hi)

P(A)=P(A|H 1) P(H 1)+P(A|H 2)P(H 2)+P(A|H 3)P(H 3)+…+P(A|H n)P(H n)

Формула Байеса

Р(Нi |A)=

Замечание. События Нi называют гипотезами вероятности, р(Нi) – априорными вероятностями гипотез Нi, а вероятности Р(Нi/А) – апостериорными вероятностями гипотез Нi

Пусть известен результат опыта, а именно то, что произошло событие А. Этот факт может изменить априорные (то есть известные до опыта) вероятности гипотез. Для переоценки вероятностей гипотез при известном результате опыта используется формула Байеса:

Пример. После двух выстрелов двух стрелков, вероятности попаданий которых равны 0,6 и 0,7, в мишени оказалась одна пробоина. Найти вероятность того, что попал первый стрелок.

Решение. Пусть событие А – одно попадание при двух выстрелах,

а гипотезы: Н1 – первый попал, а второй промахнулся,

Н2 – первый промахнулся, а второй попал,

Н3 – оба попали,

Н4 – оба промахнулись.

Вероятности гипотез:

р(Н1) = 0,6·0,3 = 0,18,

р(Н2) = 0,4·0,7 = 0,28,

р(Н3) = 0,6·0,7 = 0,42,

р(Н4) = 0,4·0,3 = 0,12.

Тогда р(А/Н1) = р(А/Н2) = 1,

р(А/Н3) = р(А/Н4) = 0.

Следовательно, полная вероятность р(А) = 0,18·1 + 0,28·1 + 0,42·0 + 0,12·0 = 0,46.

Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.

Определение 3.1. Пусть событие А может произойти только совместно с одним из событий Н1, Н2,…, Нп, образующих полную группу несовместных событий. Тогда события Н1, Н2,…, Нп называются гипотезами.

Теорема 3.1. Вероятность события А, наступающего совместно с гипотезами Н1, Н2,…, Нп, равна:

где p(Hi) – вероятность i- й гипотезы, а p(A/Hi) – вероятность события А при условии реализации этой гипотезы. Формула (P(A)= ) носит название формулы полной вероятности

Вопрос № 39. Схема Бернулли. Вероятность m успехов в серии из n испытаний

I.Условные вероятности. Априорная и апостериорная вероятность. 3

II.Независимые события. 5

III.Проверка статистических гипотез. Статистическая достоверность. 7

IV.Использование критерия «хи-квадрат» 19

1.Определение достоверности отличия набора частот от набора вероятностей. 19

2.Определение достоверности отличия нескольких наборов частот. 26

VСАМОСТОЯТЕЛЬНОЕ ЗАДАНИЕ 33

Занятие №2

  1. Условные вероятности. Априорная и апостериорная вероятность.

Случайная величина задается тремя объектами: множеством элементарных событий, множеством событий и вероятностью событий. Те значения,которые может принимать случайная величина, называютсяэлементарными событиями. Наборы элементарных событий называютсясобытиями . Для числовых и других не очень сложных случайных величин любой конкретно заданный набор элементарных событий есть событие.

Приведем пример: бросание игральной кости.

Всего имеется 6 элементарных событий: «очко», «2 очка», «3 очка»… «6 очков». Событие – любой набор элементарных событий, например «чет» -сумма элементарных событий «2 очка», «4 очка» и «6 очков».

Вероятность любого элементарного события P(A) равна 1/6:

вероятность события – количеству входящих в него элементарных событий, деленному на 6.

Достаточно часто в добавление к известной вероятности события имеется некоторая дополнительная информация, которая меняет эту вероятность. Например, летальность больных. поступивших в больницу с острой кровоточащей язвой желудка, составляет около 10%. Однако, если больному больше 80 лет, эта летальность составляет 30%.

Для описания таких ситуаций были введены так называемые условные вероятности . Они обозначаются, какP(A/B) и читаются «вероятность события А при условии события В». Для вычисления условной вероятности используется формула:

Вернемся к предыдущему примеру:

Пусть среди больных, поступивших в больницу с острой кровоточащей язвой желудка 20% - больные старше 80 лет. Причем, среди всех больных доля умерших больных старше 80 лет – 6%(напомним, что доля всех умерших составляет 10%). В этом случае

При определении условных вероятностей часто пользуются терминами априорной (буквально – до опыта) иапостериорной (буквально – после опыта) вероятности.

Пользуясь условными вероятностями, можно по одним вероятностям вычислить другие, например, менять местами событие и условие.

Рассмотрим эту технику на примере анализа связи риска заболевания ревматизма (ревматической лихорадкой) и одного из антигенов, являющихся для него фактором риска.

Частота заболевания ревматизмом – около 1%. Обозначим наличие ревматизма как R + , тогда какP(R +)=0,01.

Наличие антигена будем обозначать, как А + . Его находят у 95% больных ревматизмом и у 6% лиц, ревматизмом не болеющих. В наших обозначениях это: условные вероятности Р(А + /R +)=0,95 и Р(А + /R -)=0,06.

На основании этих трех вероятностей будем последовательно определять другие вероятности.

Прежде всего, если заболеваемость ревматизмом P(R +)=0,01, то вероятность не заболетьP(R -)=1-P(R +)=0,99.

Из формулы для условной вероятности находим, что

Р(А + иR +)= Р(А + /R +) * Р(R +) = 0,95*0,01 = 0,0095, или 0,95% популяции одновременно и болеют ревматизмом и имеют антиген.

Аналогично

Р(А + иR -)= Р(А + /R -) * Р(R -) = 0,06*0,99 = 0,0594, или 5,94% популяции носят антиген, но ревматизмом не болеют.

Так как все имеющие антиген или болеют ревматизмом или и не болеют (но не одновременно и то и другое), то сумма двух последних вероятностей дает частоту носительства антигена в популяции в целом:

Р(А +)= Р(А + иR +) + Р(А + иR -) = 0,0095 + 0,0594 = 0,0689

Соответственно, доля людей, не имеющих антиген равна

Р(А -)=1- Р(А +) = 0,9311

Так как заболеваемость ревматизмом равна 1%, а доля лиц, имеющих антиген и болеющих ревматизмом, равна 0,95%, то доля лиц, болеющих ревматизмом и не имеющих антигена равна:

Р(А - иR +) = Р(R +) - Р(А + иR +) = 0,01 – 0,0095 = 0,0005

Теперь будем двигаться в обратную сторону, переходя от вероятностей событий и их комбинаций к условным вероятностям. По исходной формуле условной вероятности Р(А + /R +)= Р(R + иA +)/ Р(А +) = 0,0095/0,06890,1379 , или примерно 13,8% лиц, носящих антиген, заболеют ревматизмом. Так как заболеваемость популяции в целом лишь 1%, то факт выявления антигена повышает вероятность заболевания ревматизмом в 14 раз.

Аналогичным образом Р(R + /А -)=Р(R + иA -)/ Р(А -) = 0,0005/0,93110,000054, то есть тот факт, что при проверке антигена не обнаружено, снижает вероятность заболевания ревматизмом в 19 раз.

Оформим эту задачу в электронной таблице Excel:

Наличие ревматизма R+

Наличие антигена у болеющих А+

Наличие антигена у неболеющих А+

Вероятность не заболеть

P(R -)=1- P(R +)

Одновременно и болеют ревматизмом и имеют антиген

Р(А + и R +)= Р(А + /R +) * Р(R +)

Носят антиген, но ревматизмом не болеют

Р(А + и R -)= Р(А + /R -) * Р(R -)

Частота носительства антигена в популяции в целом

Р(А +)= Р(А + и R +) + Р(А + и R -)

Доля людей не имеющих антиген

Р(А -)=1- Р(А +)

Доля людей, болеющих ревматизмом и не имеющих антигена

Р(А - и R +) = Р(R +) - Р(А + и R +)

Лица, носящие антиген, заболеют ревматизмом

Р(А + /R +)= Р(R + и A +)/ Р(А +)

Лица,не носящие антиген, не заболеют ревматизмом

Р(R + /А -)=Р(R + и A -)/ Р(А -)

Можно посмотреть процесс построения таблицы картинки2\p2-1.gif

prior probability distribution , или просто prior ) неопределённой величины p {\displaystyle p} - распределение вероятностей , которое выражает предположения о p {\displaystyle p} до учёта экспериментальных данных. Например, если p {\displaystyle p} - доля избирателей, готовых голосовать за определённого кандидата, то априорным распределением будет предположение о p {\displaystyle p} до учёта результатов опросов или выборов. Противопоставляется апостериорной вероятности .

[ | ]

Информативное априорное распределение выражает конкретную информацию о переменной. Например, подходящим априорным распределением для температуры воздуха завтра в полдень будет нормальное распределение со средним значением , равным температуре сегодня в полдень, и дисперсией , равной ежедневной дисперсии температуры.

В качестве примера естественного априори, следуя Джейнсу (2003), рассмотрим ситуацию, когда известно, что мяч спрятан под одной из трех чашек A, B или C, но нет никакой другой информации. В этом случае равномерное распределение p (A) = p (B) = p (C) = 1 3 {\displaystyle p(A)=p(B)=p(C)={\frac {1}{3}}} интуитивно кажется единственно обоснованным. Более формально, проблема не изменится, если поменять местами названия чашек. Поэтому стоит выбрать такое априорное распределение, чтобы перестановка названий его не изменяла. И равномерное распределение является единственным подходящим.

Некорректное априорное распределение [ | ]

Если теорема Байеса записана в виде:

P (A i | B) = P (B | A i) P (A i) ∑ j P (B | A j) P (A j) , {\displaystyle P(A_{i}|B)={\frac {P(B|A_{i})P(A_{i})}{\sum _{j}P(B|A_{j})P(A_{j})}}\,}

то очевидно, что она останется верной, если все априорные вероятности P (A i ) и P (A j ) будут умножены на одну и ту же константу; то же верно для непрерывных случайных величин . Апостериорные вероятности останутся нормированными на сумму (или интеграл) 1, даже если априорные не были нормированными. Таким образом, априорное распределение должно задавать только верные пропорции вероятностей.

См. также [ | ]

Случайное событие оценивают числом, определяющим интенсивность проявления этого события. Это число называют вероятностью события P() . Вероятность элементарного события – . Вероятность события есть численная мера степени объективности, возможности этого события. Чем больше вероятность, тем более возможно событие.

Любое событие, совпадающее со всем пространством исходов S , называетсядостоверным событием , т.е. таким событием, которое в результате эксперимента обязательно должно произойти (например, выпадение любого числа очков от 1 до 6 на игральной кости). Если событие не принадлежит множествуS , то оно считаетсяневозможным (например, выпадение числа очков, большего 6, на игральной кости). Вероятность невозможного события равна 0, вероятность достоверного события равна 1. Все остальные события имеют вероятность от 0 до 1.

События Е иназываютсяпротивоположными , еслиЕ наступает тогда, когда не наступает. Например, событиеЕ – «выпадение четного числа очков», тогда событие– «выпадение нечетного числа очков». Два событияЕ 1 иЕ 2 называютсянесовместными , если не существует никакого исхода, общего для обоих событий.

Для определения вероятностей случайных событий используют непосредственные или косвенные способы. При непосредственном подсчете вероятности различают априорную и апостериорную схемы подсчетов, когда проводят наблюдения (опыты) или априорно подсчитывают число опытовm , в которых событие проявилось, и общее число произведенных опытовn . Косвенные способы основываются на аксиоматической теории. Поскольку события определяются как множества, то над ними можно совершать все теоретико-множественные операции. Теория множеств, функциональный анализ были предложены академиком А.Н. Колмогоровым и составили основу аксиоматической теории вероятности. Приведем аксиомы вероятностей.

Аксиома I . Поле событий F (S ) является алгеброй множеств .

Эта аксиома указывает на аналогию теории множеств и теории вероятности.

Аксиома II . Каждому множеству из F (S ) поставлено в соответствие действительное число P(), называемое вероятностью события :

при условии S 1 S 2 = (для несовместных событийS 1 иS 2 ), или для множества несовместных событий

где N – количество элементарных событий (возможных исходов).

Вероятность случайного события

,

где– вероятности элементарных событий, входящих в подмножество.

Пример 1.1. Определить вероятность выпадения каждого числа при бросании игральной кости, выпадения четного числа, числа4 .

Решение . Вероятность выпадения каждого числа из множества

S = {1, 2, 3, 4, 5, 6}
1/6.

Вероятность выпадения четного числа, т.е.
={2,
4, 6}, исходя из (1.6) будетP(
) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2
.

Вероятность выпадения числа 4 , т.е.
= {4, 5, 6 } ,

P(
) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2.

Задания для самостоятельной работы

1. В корзине 20 белых, 30 черных и 50 красных шаров. Определите вероятность того, что первый вынутый из корзинки шар будет белым; черным; красным.

2. В студенческой группе 12 юношей и 10 девушек. Какова вероятность того, что на семинаре по теории вероятности будут отсутствовать: 1) юноша; 2) девушка; 3) два юноши?

3. В течение года 51 день отличался тем, что в эти дни шел дождь (или снег). Какова вероятность того, что вы рискуете попасть под дождь (или снег): 1) отправляясь на работу; 2) отправляясь в поход на 5 дней?

4. Составьте задачу на тему данного задания и решите ее.

1.1.3. Определение апостериорной вероятности (статистической вероятности или частоты

случайного события)

При априорном определении вероятности предполагалось, что равновероятны. Это далеко не всегда соответствует действительности, чаще бывает, что
при
. Допущение
приводит к ошибке в априорном определенииP() по установленной схеме. Для определения, а в общем случаеP() проводят целенаправленные испытания. В ходе проведения таких испытаний (например, результаты испытаний в примерах 1.2, 1.3) при различном состоянии разнообразных условий, воздействий, причинных факторов, т.е. в различныхслучаях, могут возникнуть различныеисходы (различные проявления сведений исследуемого объекта).Каждый исход испытаний соответствует одному элементу или одному подмножеству множества S .Если определять m как число благоприятных событию А исходов, полученных в результате n испытаний, то апостериорная вероятность (статистическая вероятность или частота случайного события А )

На основании закона больших чисел для A

, n ,

т.е. при увеличении числа испытаний частота случайного события (апостериорная, или статистическая, вероятность) стремится к вероятности этого события.

Пример 1.2. Определенная по схеме случаев вероятность выпадения решки при подбрасывании монеты равна 0,5. Требуется подбросить монету 10, 20, 30 ... раз и определить частоту случайного события решка после каждой серии испытаний.

Решение . К. Пуассон подбрасывал монету 24000 раз, при этом решка выпадала 11998 раз. Тогда по формуле (1.7) вероятность выпадения решки

.

Задания для самостоятельной работы

    На основании большого статистического материала (n ) были получены значения вероятностей появления отдельных букв русского алфавита и пробела () в текстах, которые приведены в табл.1.1.

Таблица 1.1. Вероятность появления букв алфавита в тексте

Возьмите страницу любого текста и определите частоту появления различных букв на этой странице. Увеличьте объем испытаний до двух страниц. Полученные результаты сравните с данными таблицы. Сделайте вывод.

    При стрельбе по мишеням был получен следующий результат (см. табл.1.2).

Таблица 1.2. Результат стрельбы по мишеням

Какова вероятность того, что цель была бы поражена с первого выстрела, если бы по своим размерам она была меньше «десятки», «девятки» и т.д.?

3. Спланируйте и проведите аналогичные испытания для других событий. Представьте их результаты.