Свойство статистической устойчивости относительной частоты события. Относительная частота

Относительная частота. Устойчивость относительной частоты

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведённых испытаний. Таким образом, относительная частота события А определяется формулой

где m – число появлений события, n – общее число испытаний.

Сопоставляя определения вероятности и относитель­ной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действитель­ности; определение же относительной частоты предпола­гает, что испытания были произведены фактически. Дру­гими словами, вероятность вычисляют до опыта, а относительную частоту-после опыта.

Пример 1 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей

Пример 2. По цели произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели

Длительные наблюдения показали, что если в одина­ковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свой­ство состоит в том, что в различных опытах относитель­ная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа . Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена от­носительная частота, то полученное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной часто­той и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 3. По данным шведской статистики, относительная час­тота рождения девочек за 1935 г. по месяцам характеризуется следующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473.

Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождении девочек.

Заметим, что статистические данные различных стран дают при­мерно то же значение относительной частоты.

Пример 4 . Многократно проводились опыты бросания монеты, которых подсчитывали число появления «герба». Результаты не­скольких опытов приведены в табл. 1.

Здесь относительные частоты незначительно отклоняются от чис­ла 0,5, причем тек меньше, чем больше число испытаний. Напри­мер, при 4040 испытаниях отклонение равно 0, 0069, а при 24 000 испытаний - лишь 0, 0005. Приняв во внимание, что вероятность появления «герба» при бросании монеты равна 0,5, мы вновь убеж­даемся, что относительная частота колеблется около вероятности.

Известно, что случайное событие вследствие испытания может произойти или не произойти. Но при этом для разных событий в одном и том же испытании существуют разные возможности. Давайте разберём пример. Если в урне сто тщательно перемешанных одинаковых шариков, причем среди них лишь десять черных, а остальные - белые, то при извлечении наугад одного шарика больше возможностей, что появится имеет именно белый. Возможность появления того или иного события в данном испытании имеет численную меру, которая называется вероятностью этого события и согласно теории вероятностей, можно посчитать, каков же шанс увидеть чёрный или белый шар.

Классическое определение вероятности

Предположим, что при проведении определенного испытания возможно появление $n$ элементарных равновозможных событий. Из этого количества число $m$ - это количество тех элементарных событий, которые благоприятствуют появлению определенного события $A$. Тогда вероятностью события $A$ называется отношение $P\left(A\right)=\frac{m}{n} $.

Пример № 1.

В урне 3 белых и 5 черных шариков, которые отличаются лишь цветом. Испытание заключается в том, что из урны наугад вынимают один шарик. Событием $A$ считаем "появление белого шарика". Вычислить вероятность события $A$.

При испытании можно извлечь любой из восьми шариков. Все эти события являются элементарными, поскольку они несовместны и образуют полную группу. Понятно также, что все эти события - равновозможны. Итак, для вычисления вероятности $P\left(A\right)$ можно применить классическое ее определение. Как решение имеем: $n=8$, $m=3$, а вероятность извлечь из шаров именно белый будет равна $P\left(A\right)=\frac{3}{8} $.

Из классического определения вероятности вытекают следующие ее свойства:

  • вероятность достоверного события $V$ всегда равна единице, то есть $P\left(V\right)=1$; это объясняется тем, что достоверному событию благоприятствуют все элементарные события, то есть $m=n$;
  • вероятность невозможного события $H$ всегда равна нулю, то есть $P\left(H\right)=0$; это объясняется тем, что невозможному событию не благоприятствует ни одно из элементарных, то есть $m=0$;
  • вероятность любого случайного события $A$ всегда удовлетворяет условию $0

Таким образом, в общем случае вероятность любого события удовлетворяет неравенству $0\le P\left(A\right)\le 1$.

Относительная частота и её устойчивость

Определение 1

Предположим, что выполняется довольно большое количество испытаний, в каждом из которых может произойти или не произойти определенное событие $A$. Такие испытания называют серией испытаний.

Предположим, что проведена серия из $n$ испытаний, в которых событие $A$ состоялось $m$ раз. Здесь число $m$ называют абсолютной частотой события $A$, а отношение $\frac{m}{n} $ называют относительной частотой события $A$. Например, из $n=20$ использованных во время пожара огнетушителей не сработали (событие $A$) $m=3$ огнетушителя. Здесь $m=3$ - абсолютная частота события $A$, а $\frac{m}{n} =\frac{3}{20} $ - относительная.

Практический опыт и здравый смысл подсказывают, что при малых $n$ значения относительной частоты не могут быть устойчивыми, но если количество испытаний увеличивать, то значения относительной частоты должны стабилизироваться.

Пример № 2.

Для участия в команде тренер отбирает пять мальчиков из десяти. Сколькими способами он может сформировать команду, если два определенных мальчика, образующих костяк команды, должны войти в команду?

В соответствии с условием задачи, двое мальчиков войдут в команду сразу. Следовательно, остается отобрать трех мальчиков из восьми. При этом важен только состав, так роли всех членов команды не различаются. Это значит, что мы имеем дело с сочетаниями.

Сочетаниями из $n$ элементов по $m$ называются комбинации, состоящие из $m$ элементов и отличающиеся друг от друга хотя бы одним элементом, но не порядком расположения элементов.

Количество сочетаний вычисляется по формуле $C_{n}^{m} =\frac{n!}{m!\cdot \left(n-m\right)!} $.

Таким образом, количество различных способов формирования команды в количестве трех мальчиков, выбирая их из восьми мальчиков - это число сочетаний из 8 элементов по 3:

$C_{8}^{3} =\frac{8!}{3!\cdot \left(8-3\right)!} =\frac{8!}{3!\cdot 5!} =\frac{6\cdot 7\cdot 8}{1\cdot 2\cdot 3} =56$

Пример № 3.

На полке в кабинете в случайном порядке расставлено 15 книг, причем 5 из них по алгебре. Преподаватель берет наудачу три книги. Найти вероятность того, что хотя бы одна из взятых книг окажется по алгебре.

Событие $A$ (хотя бы одна из взятых трех книг - книга по алгебре) и $\bar{A}$ (ни одна из взятых трех книг не является книгой по алгебре) - противоположные, поэтому Р(А) + Р($\bar{A}$) = 1. Отсюда Р(А) = 1-Р($\bar{A}$). Таким образом, искомая вероятность Р(А) = 1 - $C_{10}^{3} \, /C_{15}^{3} \, $= 1 - 24/91 = 67/91.

Пример № 4.

Из двадцати акционерных обществ четыре являются иностранными. Гражданин приобрел по одной акции шести акционерных обществ. Какова вероятность того, что среди купленных акций две окажутся акциями иностранных акционерных обществ?

Общее число комбинаций выбора акционерных обществ равно числу сочетаний из 20 по 6, то есть ${\rm C}_{{\rm 20}}^{{\rm 6}} $. Число благоприятствующих исходов определяется как произведение ${\rm C}_{{\rm 4}}^{{\rm 2}} \cdot {\rm C}_{{\rm 16}}^{{\rm 4}} $, где первый сомножитель указывает число комбинаций выбора иностранных акционерных обществ из четырех. Но с каждой такой комбинацией могут встретиться акционерные общества, не являющиеся иностранными. Число комбинаций таких акционерных обществ будет ${\rm C}_{{\rm 16}}^{{\rm 4}} $. Поэтому искомая вероятность запишется в виде ${\rm P}=\frac{{\rm C}_{{\rm 4}}^{{\rm 2}} \cdot {\rm C}_{{\rm 16}}^{{\rm 4}} }{{\rm C}_{{\rm 20}}^{{\rm 6}} } =0,28$.

Пример № 5.

В партии из 18 деталей находятся 4 нестандартных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся нестандартными.

Число всех равновозможных несовместных исходов $n$ равно числу сочетаний из 18 по 5, т.е. $n=C_{18}^{5} =8568$.

Подсчитаем число исходов $m$, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 стандартных и 2 нестандартных. Число способов выборки двух нестандартных деталей из 4 имеющихся нестандартных равно числу сочетаний из 4 по 2: $C_{4}^{2} =6$.

Число способов выборки трех стандартных деталей из 14 имеющихся стандартных равно $C_{14}^{3} =364$.

Любая группа стандартных деталей может комбинироваться с любой группой нестандартных деталей, поэтому общее число комбинаций $m$ составляет $m=C_{4}^{2} \cdot C_{14}^{3} =6\cdot 364=2184$.

Искомая вероятность события А равна отношению числа исходов $m$, благоприятствующих событию, к числу $n$ всех равновозможных и несовместных событий $P(A)=\frac{2184}{8568} =0,255.$

Пример № 6.

В урне содержится 5 чёрных и 6 белых шаров. Случайным образом вынимают 4 шара. Найти вероятность того, что среди них имеется хотя бы один белый шар.

Пусть событие $ $ - среди вынутых шаров хотя бы один белый.

Рассмотрим противоположное событие $\bar{}$ - среди вынутых шаров нет ни одного белого. Значит все вынутые 4 шара чёрные.

Используем формулы комбинаторики.

Количество способов вынуть четыре шара из одиннадцати:

$n=!_{11}^{4} =\frac{11!}{4!\cdot (11-4)!} =330$

Количество способов вынуть четыре черных шара из одиннадцати:

$m=!_{5}^{4} =\frac{5!}{4!\cdot (5-4)!} =5$

Получаем: $\; (\bar{})=\frac{m}{n} =\frac{5}{330} =\frac{1}{66} $; $P(A)=1-\; (\bar{A})=1-\frac{1}{66} =\frac{65}{66} $.

Ответ: вероятность того, что среди четырёх вынутых шаров нет ни одного белого равна $\frac{65}{66} $.

Существует несколько определений понятия вероятности. Приведем классическое определение. Оно связано с понятием благоприятствующего исхода. Те элементарные исходы (э.и.), в кот. интересующее нас событие наступает назовем благоприятствующими этому событию. Опр. : Вер.ю события А назыв. отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных э. и., образующих полную группу. P(A) = m/n, где m – число э. и., благоприятствующих событию А; n – число всех возможных э. и. испытания. Из определения вероятности вытекают ее св-ва :1)вер.(в) достоверного события всегда равна 1. Т.к. событие достоверно, то все э. и. испытания благоприятствуют этому событию, т.е. m=n. P(A)=n/n = 1; 2) В. невозможного соб. равна 0. Т.к. событие невозможно, то нет ни одного э. и., благоприятствующего этому событию, значит m=0. P(A) = 0/n = 0; 3) В. случайного события есть неотрицательная вел-на, заключенная между 0 и 1, т.е. 0

4. Относительная частота. Устойчивость относительной частоты.

Относительной частотой (ОЧ) события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. (НЕ омега!!!). W(A) = m/n, где m – число появления события А, n – общее число испытаний. Определение вероятности не требует, чтобы испытания проводились в действительности. Определение ОЧ предполагает, что испытания были произведены фактически, т.е. вер. вычисляют до опыта, а ОЧ после опыта. Если в одинаковых условиях производят опыты, в каждом из кот. число испытаний достаточно велико, то ОЧ обнаруживает св-во устойчивости. Это св-во состоит в том, что в различных опытах ОЧ изменяется мало, тем меньше, чем больше произведено испытаний, колеблаясь около некоторого постоянного числа. Это число есть вер. появления события. Т.о. опытным путем установлено, что ОЧ можно принять за приближенное значение вероятности.

5.Статистическая вероятность.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике часто встречаются испытания, число возможных исходов кот. бесконечно. В таких случаях классическое определение неприменимо. Наряду с классич. опр. используют статистическое. Опр.: стат. вер. (ст.в.) события – относительная частота (ОЧ) или число близкое к ней. Св-ва вероятности, вытекающие из классич. определения, сохраняются и при статистическом. Если событие достоверно, то его ОЧ =1, т.е. ст.в. также =1. Если событие невозможно, то ОЧ = 0, т.е. ст.в. тоже = 0. Для любого события 0W(A) 1, сл-но. ст.в. заключена между 0 и 1. Для существования ст.в. требуется: 1) возможность хотя бы принципиально проводить неограничен. число испытаний, в каждом из кот. событие наступает или не наступает; 2) устойчивость ОЧ появления события в различных сериях достаточно большого числа испытаний. Недостатком статистич. определения является неоднозначность ст.в. Например, если в рез-те достаточно большого числа испытаний оказалось, что ОЧ весьма близка к 0,6, то это число можно принять за ст.в. Но в кач-ве вероятности события можно принять не только 0,6, но и 0,59 и 0,61.


называется относительной частотой (или частостью) события А в рассматриваемой серии опытов.

Относительная частота события обладает следующими свойствами :

1. Частость любого события заключена между нулем и единицей, т.е.

2. Частость невозможного события равна нулю, т.е.

3. Частость достоверного события равна 1, т.е.

4. Частость суммы двух несовместных событий равна сумме частоты
этих событий, т.е. если , то

Частость обладает еще одним фундаментальным свойством, называемым свойством статистической устойчивости : с увеличением числа опытов (т.е. n ) она принимает значения, близкие к некоторому постоянному числу (говорят: частость стабилизируется, приближаясь к некоторому числу, частость колеблется около некоторого числа, или ее значения группируются около некоторого числа).

Так, например, в опыте (К. Пирсон) бросание монеты – относительная частота появления герба при 12000 и 24000 бросаниях оказалась равной 0,5015 и 0,5005 соответственно, т.е. частость приближается к числу . Частость рождения мальчика, как показывают наблюдения, колеблется около числа 0,515.

Отметим, что теория вероятностей изучает только те массовые случайные явления с неопределенным исходом, для которых предполагается наличие устойчивости относительной частоты.

Статистическое определение вероятности

Для математического изучения случайного события необходимо ввести какую-либо количественную оценку события. Понятно, что одни события имеют больше шансов («более вероятны») наступить, чем другие. Такой оценкой является вероятность события , т.е. число, выражающее степень возможности его появления в рассматриваемом опыте. Математических определений вероятности существует несколько, все они дополняют и обобщают друг друга.

Рассмотрим опыт, который можно повторять любое число раз (говорят: «проводятся повторные испытания»), в котором наблюдается некоторое событие А .



Статистической вероятностью события А называется число, около которого колеблется относительная частота события Апри достаточно большом числе испытаний (опытов).

Вероятность события А обозначается символом Р (А ). Согласно данному определению:

. (1.2)

Математическим обоснованием близости относительной частоты и вероятности Р (А ) некоторого события А служит теорема Я. Бернулли.

Вероятности Р (А ) приписываются свойства 1-4 относительной частоты:

1. Статистическая вероятность любого события заключена между нулем и единицей, т.е.

2. Статистическая вероятность невозможного события равна нулю, т.е.

3. Статистическая вероятность достоверного события равна 1, т.е.

4. Статистическая вероятность суммы двух несовместных событий равна сумме частоты этих событий, т.е. если , то

Статистический способ определения вероятности, опирающийся на реальный опыт, достаточно полно выявляет содержание этого понятия. Недостатком статистического определения является неоднозначность статистической вероятности; так в примере с бросанием монеты в качестве вероятности можно принять не только число 0,5, но и 0,49 или 0,51 и т.д. Для надежного определения вероятности нужно проделать большое число испытаний, что не всегда просто или дешево.

Классическое определение вероятности

Существует простой способ определения вероятности события, основанный на равновозможности любого из конечного числа исходов опыта. Пусть проводится опыт с n исходами, которые можно представить в виде полной группы несовместных равновозможных событий. Такие исходы называются случаями, шансами, элементарными событиями , опыт - классическим . Про такой опыт говорят, что он сводится к схеме случаев или схеме урн (т.к. вероятностную задачу для такого опыта можно заменить эквивалентной ей задачей с урнами, содержащими шары разных цветов).

Случай w, который приводит к наступлению события А , называется благоприятным (или благоприятствующим) ему, т.е. случай w влечет событие A : .

Вероятностью события А называется отношение числа m случаев, благоприятствующих этому событию, к общему числу n случаев, т.е.

. (1.3)

Наряду с обозначением Р (А ) для вероятности события А используется обозначение р , т.е. р=Р (А ).

Из классического определения вероятности вытекают следующие свойства :

1. Вероятность любого события заключена между нулем и единицей, т.е.

2. Вероятность невозможного события равна нулю, т.е.

3. Вероятность достоверного события равна 1, т.е.

4. Вероятность суммы несовместных событий равна сумме частоты этих событий, т.е. если , то

Пример 1.3. В урне находятся 12 белых и 8 черных шаров. Какова вероятность того, что наудачу вынутый шар будет белым?

Решение :

Пусть А – событие, состоящее в том, что вынут белый шар. Ясно, что – число всех равновозможных случаев. Число случаев, благоприятствующих событию А , равно 12, т.е. . Следовательно, по формуле (1.3) имеем: , т.е. .

Геометрическое определение вероятностей

Геометрическое определение вероятности применяется в случае, когда исходы опыта равновозможны, а ПЭС есть бесконечное несчетное множество. Рассмотрим на плоскости некоторую область Ω, имеющую площадь , и внутри области Ω, область D с площадью S D (см. рис. 6).

В области Ω случайно выбирается точка X . Этот выбор можно интерпретировать как бросание точки X в область Ω. При этом попадание точки в область Ω - достоверное событие, в D - случайное. Предполагается, что все точки области Ω равноправны (все элементарные события равновозможны), т.е. что брошенная точка может попасть в любую точку области Ω и вероятность попасть в область D пропорциональна площади этой области и не зависит от ее расположения и формы. Пусть событие , т.е. брошенная точка попадет в область D .

Относительная частота. Устойчивость относительной частоты

Относительной частотой события называют отноше­ние числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, относительная частота события А опре­деляется формулой

где m - число появлений события, n-общее число испы­таний.

Определœение вероятности не требует, чтобы испытания производились в действитель­ности; определœение же относительной частоты предпола­гает, что испытания были произведены фактически. Дру­гими словами, вероятность вычисляют до опыта͵ а относительную частоту - после опыта.

Длительные наблюдения показали, что если в одина­ковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свой­ство состоит в том, что в различных опытах относитель­ная частота изменяется мало {тем меньше, чем больше произведено испытаний), колеблясь около некоторого по­стоянного числа. Оказалось, что это постоянное число есть вероятность появления события.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в случае если опытным путем установлена от­носительная частота͵ то полученное число можно принять за приближенное значение вероятности.

Пример 1. Многократно проводились опыты бросания монеты, в которых подсчитывали число появления ʼʼгербаʼʼ. Результаты не­скольких опытов приведены в табл.

Относит.частоты незначит. Отклоняются от числа 0,5, причём чем меньше, чем больше число испытаний.

В случае если учесть, что вер-ть появления ʼʼГʼʼ при бросании монеты=0,5, то вновь убеждаемся, что относит. Частота колеблется около вер-ти.

Наиболее слабая сторона классич. Опр-я вер-ти состоит в том, что оч.часто невозможно представить результат испытания в виде сов-ти элементарных событий. Ещё труднее указать основания, позволяющие считать элемент.соб-я равновозможными. По этой причине наряду с классич. Определœением вер-ти используют и др.
Размещено на реф.рф
опр-я вер-ти В частности, статистическое: В качестве статистической вер-ти события принимают относит. частоту или число близкое к ней.

При этом и опр-е статистич.вер-ти имеет свои ʼʼ-ʼʼ. К примеру, неоднозначность статистич.вер-ти. Так в рассмотренном примере в кач-ве вер-ти события можно принять не только 0,5, но и 0,5069, и 0,5016 и т.д.

Понятие ʼʼгеометрическая вер-ть ʼʼ сост. в след:

Путь в область G бросается наудачу точка. Выражение ʼʼбросается наудачуʼʼ принято понимать в том смысле, что брошенная точка может попасть в любую точку области G. Вер-ть попасть в какую-л. часть области G пропорциональна мере этой части (длина, площадь, объём) и не зависит от ее расположения и формы.

Т.о. если g – часть области G, то вер-ть попадания в обл-ть g по определœению= Р(g)= мера g/мераG. Заметим, что здесь пр-во Ω всœех элементарных исходов представляет собой сов-ть всœех точек области G и значит состоит из бесконечного множества элементарных событий=>понятие ʼʼгеом. Вер-тьʼʼ можно рассматривать как обобщение понятия ʼʼклассич. Вер-тьʼʼ на случай опытов с бесконечным числом исходов.

Задача о встрече . Реш-е: Обозначим через х и у моменты прихода лиц А и В. Встреча состоится, в случае если |х-у|≤10.

В случае если изображать х и у как декартовы координаты на пл-ти, то всœе возможные исходы изобразятся точкой квадрата со сторонами 60.

10≤у-х≤10

Задача Бюффона . Реш-е: введём обозначения: х – расстояние от середины иглы до ближайшей параллели;

φ – угол, составляющий этой параллелью с иглой.

Положение иглы полностью опр-ся заданными определœенными значениями х и φ. Причем х Є(0;а), φЄ(0;π). Другими словами, середина иглы может попасть в любую из точек прямоугольника со сторонами а и π.

Т.о. данный прямоугольник можно рассмотреть как фигуру G, точки к-рой представляют из себявсœе возможные положения середины иглы. Очевидно, эта площадь фигуры = πа.

Найдём фигуру g, каждая точка к-рой благоприятствует интересующему нас событию, ᴛ.ᴇ. каждая точка фигуры может служить серединой иглы, к-рая пересекает параллель.

Игла пересечет ближайшую к ней параллель при условии: х≤l·sinφ

Т.е. если середина иглы попадает в любую из точек фигуры, заштрихованной на рис(2). Т.о. заштрихованную фигуру можно рассматривать как g. Найдём её площадь:

Ответ: 2l/аπ

Относительная частота. Устойчивость относительной частоты - понятие и виды. Классификация и особенности категории "Относительная частота. Устойчивость относительной частоты" 2017, 2018.