На каком явлении основано действие электромагнита. Применение явления электромагнитной индукции

Тема : Использование электромагнитной индукции

Цели урока :

Образовательная:

  1. Продолжить работу над формированием понятия об электромагнитном поле как виде материи и доказательства его реального существования.
  2. Совершенствовать навыки решения качественных и расчетных задач.

Развивающая: Продолжить работу с учащимися над...

  1. формированием представлений о современной физической картине мира,
  2. умением раскрывать взаимосвязь между изученным материалом и явлениями жизни,
  3. расширением кругозора учащихся

Воспитательная: Научиться видеть проявления изученных закономерностей в окружающей жизни

Демонстрации

1. Трансформатор
2. Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий»

1)«Выработка электроэнергии»
2)«Запись и считывание информации на магнитной ленте»

3. Презентации

1) «Электромагнитная индукция – тесты» (I и II части)
2) «Трансформатор»

Ход урока

1. Актуализация:

Перед тем, как рассматривать новый материал, ответьте, пожалуйста, на следующие вопросы:

2. Решение задач по карточкам, см. презентацию (Приложение 1) (ответы: 1 Б, 2 Б, 3 В, 4 А, 5 В) – 5 мин

3. Новый материал .

Использование электромагнитной индукции

1) В прошлом учебном году при изучении по информатике темы «Носители информации» мы говорили о дисках, дискетах и т.д. Оказывается запись, и считывание информации с помощью магнитной ленты основано на применении явления электромагнитной индукции.
Запись и воспроизведение информации с помощью магнитной ленты (Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Запись и считывание информации на магнитной ленте» – 3 мин) (Приложение 2)

2) Рассмотрим устройство и принципиальное действие такого прибора, как ТРАНСФОРМАТОР. (см. презентацию Приложение 3)
Действие трансформатора основано на явлении электромагнитной индукции.

ТРАНСФОРМАТОР – аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения при неизменной частоте.

3) В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной.

а) повышающий трансформатор

б) понижающий трансформатор

При передаче энергии на большое расстояние – использование понижающих и повышающих трансформаторов.

4) Работа трансформатора (проведение опыта).

Загорание лампочки во вторичной катушке (объяснение данного опыта );
- принцип работы сварочного аппарата (Почему витки во вторичной катушке понижающего трансформатора толще? );
- принцип работы печи (Мощность в обеих катушках одинакова, а сила тока? )

5) Практическое применение электромагнитной индукции

Примеры технического использования электромагнитной индукции: трансформатор, генератор электрического тока – основной источник электричества.
Благодаря открытию электромагнитной индукции стала возможной выработка дешевой электрической энергии. Основой работы современных электростанций (в том числе и атомных) является индукционный генератор .
Генератор переменного тока (фрагмент диска Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Выработка электроэнергии» - 2 мин) (Приложение 4)

Индукционный генератор состоит из двух частей: подвижного ротора и неподвижного статора. Чаще всего статор представляет собой магнит (постоянный или электрический), создающий исходное магнитное поле (его называют индуктором). Ротор состоит из одной или нескольких обмоток, в которых под действием изменяющегося магнитного поля создается индукционный ток. (Другое название такого ротора - якорь).

- обнаружение металлических предметов – специальные детекторы;
- поезд на магнитных подушках (см. стр. 129 учебника В. А. Касьянов «Физика – 11»)
токи Фуко (вихревые токи;)
замкнутые индукционные токи, возникающие в массивных проводящих телах .

Появляются либо вследствие изменения магнитного поля, в котором находится проводящее тело, либо в результате такого движения тела, когда изменяется магнитный поток, пронизывающий это тело (или какую-либо его часть).
Как и любые другие токи, вихревые токи оказывают на проводник тепловое действие: тела, в которых возникают такие токи, нагреваются.

Пример: устройство электропечей для плавки металлов и СВЧ – печей .

4. Выводы, оценки.

1) Электромагнитная индукция, приведите примеры практического применения электромагнитной индукции.
2) Электромагнитные волны – самый распространенный вид материи, а электромагнитная индукция – частный случай проявления электромагнитных волн.

5. Решение задач по карточкам, см. презентацию (Приложение 5) (ответы - 1В, 2А, 3А, 4Б).

6. Дом задание: П.35,36 (Учебник физики под ред. В.А.Касьянова 11 класс)

Словом «индукция» в русском языке обозначает процессы возбуждения, наведения, создания чего-либо. В электротехнике этот термин применяется уже более двух столетий.

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.

Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным - индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.

Производство электроэнергии

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.

Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.

Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.

Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.

Трансформация электроэнергии

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.

Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.

У них для улучшения прохождения магнитного потока изолированные обмотки надеты на общий сердечник, обладающий минимальным магнитным сопротивлением. Его изготавливают из специальных сортов стали и формируют наборными тонкими листами в виде секций определенной формы, называют магнитопроводом.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника - величину пропускаемой мощности, рабочий ток.

Работа индуктивностей

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .

При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются .

Конструктивная особенность магнитопровода у дросселя - разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Индукционные печи

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.

Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

В 1821 году М.Фарадей сделал запись в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Итак, Майкл Фарадей (1791-1867) - английский физик и химик.

Один из основателей количественной электрохимии. Впервые получил (1823) в жидком состоянии хлор, затем сероводород, диоксид углерода, аммиак и диоксид азота. Открыл (1825) бензол, изучил его физические и некоторые химические свойства. Ввел понятие диэлектрической проницаемости. Имя Фарадея вошло в систему электрических единиц в качестве единицы электрической емкости.

Многие из этих работ могли сами - по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции. Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

Когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле.

Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки. Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества.

На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой - с чувствительным гальванометром. Когда был пропущен ток через первую проволоку, Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом. Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

электромагнитная индукция электрический ток поле

Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе.

Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), - индукция, и новый вид этой энергии - индукционное электричество.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ (лат. inductio - наведение) - явление порождения вихревого электрического поля переменным магнитным полем. Если внести в переменное магнитное поле замкнутый проводник, то в нем появится электрический ток. Появление этого тока называют индукцией тока, а сам ток - индукционным.

Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле. На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты. Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток. Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции, вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше генераторами тока преобразовывают механическую энергию в электрическую на электростанциях. Механическая энергия это энергия угля, дизельного топлива, ветра, воды и так далее. Электричество поступает по проводам к потребителям и там обратным образом преобразовывается в механическую в электродвигателях.

Электродвигатели пылесосов, фенов, миксеров, кулеров, электромясорубок и прочих многочисленных приборов, используемых нами ежедневно, основаны на использовании электромагнитной индукции и магнитных сил. Об использовании в промышленности этих же явлений и говорить не приходится, понятно, что оно повсеместно.

Радиовещание


Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Магнитотерапия


В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

Синхрофазотроны



В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

Расходомеры - счётчики



Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

Генератор постоянного тока


В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.





Трансформаторы


Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение.