Суть гипотезы пуанкаре. Формы пространства

Анри Пуанкаре - один из самых известных французских ученых всех времен. За свою жизнь он успел достичь многого. Кроме того, что он совершил множество открытий в самых различных областях знаний, он также в течение многих лет преподавал в Сорбонне и являлся членом Французской академии наук, а с 1906 и до самой смерти в 1912 был ее президентом.

В современном мире самым известным его достижением считается теорема Пуанкаре, которая была доказана Григорием Перельманом.

Попытки доказательства

Множество ученых долгие годы занималось изучением теоремы, но успеха добились только несколько человек. Один из главных прорывов совершил американский ученый Тёрстон. Суть его работы состоит в том, что он смог зрительно проиллюстрировать многообразие элементов трехмерной плоскости. Работа Тёрстона получила название гипотезы геометризации, а за нее он был удостоен Филдсовской премии.

Несколько китайских ученых также были заинтересованы в том, чтобы теорема Пуанкаре была доказана. Среди них особо выделяется Шин Тун Яу, который даже делал заявления о том, что ему и его ученикам удалось это сделать.

Работа Перельмана

Григорий Перельман доказал теорему Пуанкаре после многих лет упорной работы над ней. Он начал свои исследования, находясь в Америке, где в течение долгого времени читал лекции в разных университетах. После своего знакомства с американским ученым Гамильтоном, который помог ему прояснить некоторые моменты он задумался о доказательстве теоремы. Через какое-то время он решил вернуться в родной Санкт-Петербург, где усердно принялся за работу.

В 2002 году Перельман опубликовал первую часть своей работы и отправил ее копию Шин Тун Яу, чтобы тот смог дать ей объективную оценку. Уже тогда ученому миру стало известно, что теорема Пуанкаре доказана. В течение нескольких месяцев Перельман опубликовал еще две части статьи, в которых была представлена его работа в очень сжатом виде.

В ученом мире принято так, что перед тем, как делается официальное заявление об открытии, его должны подтвердить несколько разных ученых, а только потом работа может быть официально опубликована. Прежде чем доказательство было опубликовано, теорема Пуанкаре-Перельмана была много раз подвергнута проверкам, а эта работа еще усложнялась тем фактом, что в ней использовалось значительное количество сокращений и было мало объяснений как для такого серьезного труда.

Тем не менее спустя некоторое время было признано, что Перельману удалось решить задачу, над которой бились многие поколения ученых.

Филдсовская премия

Эта премия вручается только раз в четыре года не более чем четырем ученым, которые внесли серьезный вклад в изучение математики. Ее удостоился и Перельман в 2006 году за доказательство но, как ни странно, он отказался от такой почетной награды и не присутствовал на вручении. По словам самого ученого, для него не важны почетные звания, ему принес удовольствие уже тот факт, что гипотеза доказана.

Теорема Пуанкаре являлась загадкой для множества ученых, но именно эксцентричный российский математик смог добиться ее решения и найти ответы на вопросы, которые продолжительное время волновали весь ученый мир.

Три независимых группы математиков утверждают, что полностью доказали гипотезу Пуанкаре — одну из самых сложных задач XX века. Окончательный вердикт, возможно, будет вскоре объявлен на Международном конгрессе математиков.

Процесс доказательства гипотезы Пуанкаре сейчас, по-видимому, вступает в заключительную стадию. Три группы математиков окончательно разобрались в идеях Григория Перельмана и за последние пару месяцев представили свои версии полного доказательства этой гипотезы.

За доказательство гипотезы Пуанкаре присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения».

Теорема Пуанкаре – математическая формула «Вселенной». Григорий Перельман. Часть 1 (из серии «Настоящий Человек в науке»)

Анри Пуанкаре (1854-1912), один из величайших математиков, в 1904 г. сформулировал знаменитую идею о деформированной трёхмерной сфере и в виде маленькой заметки на полях, помещённой в конце 65 страничной статьи, посвящённой совершенно другому вопросу, нацарапал несколько строчек довольно странной гипотезы со словами: «Ну этот вопрос может слишком далеко нас завести»…

Маркус Дю Сотой из Оксфордского университета считает, что теорема Пуанкаре - «это центральная проблема математики и физики , попытка понять какой формы может быть Вселенная , к ней очень трудно подобраться».

Раз в неделю Григорий Перельман ездил в Принстон, чтобы принять участие в семинаре «Института углублённых исследований». На семинаре один из математиков Гарвардского университета отвечает на вопрос Перельмана: «Теория Уильяма Тёрстона (1946-2012 гг., математик, труды в области «Трехмерной геометрии и топологии»), получившая название гипотезы геометризации описывает все возможные трёхмерные поверхности и является шагом вперёд по сравнению с гипотезой Пуанкаре. Если Вы докажете предположение Уильяма Тёрстона, то и гипотеза Пуанкаре распахнёт перед Вами все свои двери и более того её решение изменит весь топологический ландшафт современной науки ».

Шесть ведущих американских университетов в марте 2003 г. приглашают Перельмана прочесть цикл лекций, разъясняющих его работу. В апреле 2003 г. Перельман совершает научное турне. Его лекции становятся выдающимся научным событием. В Принстоне послушать его приезжают Джон Болл (председатель международного математического союза), Эндрю Уайлз (математик, работы в области арифметики эллиптических кривых, доказал теорему Ферма в 1994 г.), Джон Нэш (математик, работающий в области теории игр и дифференциальной геометрии).

Григорию Перельману удалось решить одну из семи задач тысячелетия и математически описать так называемою формулу Вселенной , доказать гипотезу Пуанкаре. Над этой гипотезой наиболее светлые умы бились более 100 лет, и за доказательство которой мировым математическим сообществом (математическим институтом имени Клэя) был обещан $1 млн. Её вручение прошло 8 июня 2010 г. Григорий Перельман не появился на ней, и у мирового математического сообщества «поотпадали челюсти».

В 2006 году за решение гипотезы Пуанкаре математику была присуждена высшая математическая награда - Филдсовская премия (медаль Филдса). Джон Болл лично посетил Санкт-Петербург с тем, чтобы уговорить принять премию. Её он принять отказался со словами: «Общество вряд ли способно всерьёз оценить мою работу».

«Филдсовская премия (и медаль) вручается один раз в 4 года на каждом международном математическом конгрессе молодым учёным (моложе 40 лет), внёсшим заметный вклад в развитие математики. Помимо медали награждённым вручается 15 тыс. канадских долларов ($13 000)»

В исходной формулировке гипотеза Пуанкаре звучит следующим образом: «Всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере». В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений , а Перельман спустя 100 лет математически это доказал .


Выражение Григория Перельмана теоремы Пуанкаре о преобразовании материи в другое состояние, форму имеет сходство со знаниями, изложенными в книге Анастасии Новых «Сэнсэй IV»: «По факту, вся эта бесконечная для нас Вселенная занимает место в миллиарды раз меньше, чем кончик самой тонкой медицинской иглы» . А также возможностью управления материальной Вселенной путём преобразований, вносимых Наблюдателем из контролирующих измерений выше шестого (с 7 по 72 включительно) (доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » тема «Эзоосмическая решётка»).

Григория Перельмана отличали аскетичность жизни, суровость предъявляемых как себе, так и к другим этических требований. Глядя на него складывается ощущение, что он только телесно проживает в общем со всеми остальными современниками пространстве , а Духовно в каком-то ином , где даже за $1 млн. не идут на самые «невинные» компромиссы с Совестью . И что это за пространство такое, и можно ли хоть краешком глаза посмотреть на него?..

Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания . Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.

Перельман, отвергая медали и премии спрашивает: «А зачем они мне? Они мне совершенно ни к чему. Каждому понятно, если доказательство правильное, то никакого другого признания уже не требуется. Пока во мне не развилась подозрительность, у меня был выбор, либо сказать вслух о дезинтеграции математического сообщества в целом, в связи с его низким моральным уровнем, либо ничего не сказать и позволить обращаться с собой, как с быдлом. Теперь же, когда я стал более чем подозрительным, я не могу оставаться быдлом и продолжать молчать, поэтому мне остаётся только уйти».

Для того чтобы заниматься современной математикой нужно иметь тотально чистый ум, без малейшей примеси, которая дезинтегрирует его, дезориентирует, подменяет ценности, и принять эту премию означает продемонстрировать слабость. Идеальный учёный занимается только наукой, не заботится больше ни о чём (власть и капитал), у него должен быть чистый ум, а для Перельмана нет большей важности, чем жить в соответствии с этим идеалом. Полезно ли для математики вся эта затея с миллионами, и нужен ли настоящему учёному такой стимул? И это желание капитала купить и подчинить себе всё в этом мире разве не оскорбительно? Или можно продать свою чистоту за миллион? Деньги, сколько бы там их ни было, эквивалентны истине Души ? Ведь мы имеем дело с априорной оценкой проблем, к которым деньги просто не должны иметь отношения, разве не так?! Делать же из всего этого что-то вроде лото-миллион, или тотализатор, значит потакать дезинтеграции научного, да и человеческого сообщества в целом (см. доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » и в книге «АллатРа » последние 50 страниц о пути построения созидательного общества). И денежные средства (энергия), которые бизнесмены готовы отдавать на науку, если и надо использовать, то корректно, что ли, не унижая Дух подлинного служения , как ни верти, неоценимого денежным эквивалентом: «Что такое миллион, по сравнению , с чистотой, или Величием тех сфер (об измерениях глобальной Вселенной и о Духовном мире см. книгу «АллатРа » и доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА » ), в которые не способно проникнуть даже человеческое воображение (ум) ?! Что такое миллион звёздного неба для времени?!».

Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы :

Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.

Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.

Трёхмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.

Полното́рие (полното́рий) - геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие - бублик, тогда как тор - только его поверхность (пустотелая камера колеса).

Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.

Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.

Продолжение следует...

Ильназ Башаров

Литература:

– Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. http://allatra-science.org/pub... ;

– Новых. А. «АллатРа», К.: АллатРа, 2013 г. http://schambala.com.ua/book/a... .

– Новых. А., «Сэнсэй-IV», К.: ЛОТОС, 2013 г., 632 c. http://schambala.com.ua/book/s...

– Сергей Дужин, докт.физ.-мат. наук,старший научный сотрудник Санкт- Петербургского отделения Математического института РАН

«Проблема, которую решил Перельман , состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854-1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: «Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой - открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер» (БСЭ, изд. 3-е, т. 2). Гипотеза Пуанкаре как раз и имеет качественный характер - как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.

На современном языке гипотеза Пуанкаре звучит так: всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

В следующих абзацах мы постараемся хотя бы частично и очень приблизительно разъяснить смысл этой устрашающей словесной формулы. Для начала заметим, что обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар - тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой.

В этом состоит значение результата Перельмана для физики и астрономии. Термин «односвязное компактное трёхмерное многообразие без края» содержит указания на предполагаемые свойства нашей Вселенной. Термин «гомеоморфно» означает некую высокую степень сходства, в известном смысле неотличимость. Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она - в том же самом «известном смысле» - и есть трёхмерная сфера.

Понятие односвязности - довольно простое понятие. Представим себе канцелярскую резинку (то есть резиновую нить со склеенными концами) столь упругую, что она, если её не удерживать, стянется в точку. От нашей резинки мы потребуем ещё, чтобы при стягивании в точку она не выходила за пределы той поверхности, на которой мы её расположили. Если мы растянем такую резинку на плоскости и отпустим, она немедленно стянется в точку. То же произойдёт, если мы расположим резинку на поверхности глобуса, то есть на сфере. Для поверхности спасательного круга ситуация окажется совершенно иной: любезный читатель легко найдёт такие расположения резинки на этой поверхности, при которой стянуть резинку в точку, не выходя за пределы рассматриваемой поверхности, невозможно. Геометрическая фигура называется односвязной, если любой замкнутый контур, расположенный в пределах этой фигуры, можно стянуть в точку, не выходя за названные пределы. Мы только что убедились, что плоскость и сфера односвязны, а поверхность спасательного круга не односвязна. Не односвязна и плоскость с вырезанной в ней дырой. Понятие односвязности применимо и к трёхмерным фигурам. Так, куб и шар односвязны: всякий находящийся в их толще замкнутый контур можно стянуть в точку, причём в процессе стягивания контур будет всё время оставаться в этой толще. А вот баранка не односвязна: в ней можно найти такой контур, который нельзя стянуть в точку так, чтобы в процессе стягивания контур всё время находился в тесте баранки. Не односвязен и крендель. Можно доказать, что трёхмерная сфера односвязна.

Надеемся, что читатель не забыл, ещё разницу между отрезком и интервалом, которой обучают в школе. Отрезок имеет два конца, он состоит из этих концов и всех точек, расположенных между ними. Интервал же состоит только из всех точек, расположенных между его концами, сами же концы в состав интервала не входят: можно сказать, что интервал - это отрезок с удалёнными из него концами, а отрезок - это интервал с добавленными к нему концами. Интервал и отрезок являются простейшими примерами одномерных многообразий, причём интервал есть многообразие без края, а отрезок - многообразие с краем; край в случае отрезка состоит из двух концов. Главное свойство многообразий, лежащее в основе их определения, состоит в том, что в многообразии окрестности всех точек, за исключением точек края (которого может и не быть), устроены совершенно одинаково.

При этом окрестностью какой-либо точки А называется совокупность всех точек, расположенных вблизи от этой точки А. Микроскопическое существо, живущее в многообразии без края и способное видеть только ближайшие к себе точки этого многообразия, не в состоянии определить, в какой именно точке оно, существо, находится: вокруг себя оно всегда видит одно и то же. Ещё примеры одномерных многообразий без края: вся прямая линия целиком, окружность. Примером одномерной фигуры, не являющейся многообразием, может служить линия в форме буквы Т: здесь есть особая точка, окрестность которой не похожа на окрестности других точек - это точка, где сходятся три отрезка. Другой пример одномерного многообразия - линия в форме восьмёрки; в особой точке здесь сходятся четыре линии. Плоскость, сфера, поверхность спасательного круга служат примерами двумерных многообразии без края. Плоскость с вырезанной в ней дырой также будет многообразием - а вот с краем или без края, зависит от того, куда мы относим контур дыры. Если мы относим его к дыре, получаем многообразие без края; если оставляем контур на плоскости, получаем многообразие с краем, каковым и будет служить этот контур. Разумеется, мы имели здесь в виду идеальное математическое вырезание, а при реальном физическом вырезании ножницами вопрос, куда относится контур, не имеет никакого смысла.

Несколько слов о трёхмерных многообразиях. Шар вместе со сферой, служащей его поверхностью, представляет собою многообразие с краем; указанная сфера как раз и является этим краем. Если мы удалим этот шар из окружающего пространства, получим многообразие без края. Если мы сдерём с шара его поверхность, получится то, что на математическом жаргоне называется «ошкуренный шар», а в более научном языке - открытый шар. Если удалить открытый шар из окружающего пространства, получится многообразие с краем, и краем будет служить та самая сфера, которую мы содрали с шара. Баранка вместе со своей корочкой есть трёхмерное многообразие с краем, а если отодрать корочку (которую мы трактуем как бесконечно тонкую, то есть как поверхность), получим многообразие без края в виде «ошкуренной баранки». Всё пространство в целом, если понимать его так, как оно понимается в средней школе, есть трёхмерное многообразие без края.

Математическое понятие компактность отчасти отражает тот смысл, какой слово «компактный» имеет в повседневном русском языке: «тесный», «сжатый». Геометрическая фигура называется компактной, если при любом расположении бесконечного числа её точек они накапливаются к одной из точек или ко многим точкам этой же фигуры. Отрезок компактен: для любого бесконечного множества его точек в отрезке найдётся хотя бы одна так называемая предельная точка, любая окрестность которой содержит бесконечно много элементов рассматриваемого множества. Интервал не компактен: можно указать такое множество его точек, которое накапливается к его концу, и только к нему, - но ведь конец не принадлежит интервалу!

За недостатком места мы ограничимся этим комментарием. Скажем лишь, что из рассмотренных нами примеров компактными являются отрезок, окружность, сфера, поверхности баранки и кренделя, шар (вместе со своей сферой), баранка и крендель (вместе со своими корочками). Напротив, интервал, плоскость, ошкуренные шар, баранка и крендель не являются компактными. Среди трёхмерных компактных геометрических фигур без края простейшей является трёхмерная сфера, но в нашем привычном «школьном» пространстве такие фигуры не умещаются. Самое, пожалуй, глубокое из тех понятий, которые связывает между собой гипотеза Пуанкаре , - это понятие гомеоморфии. Гомеоморфия - это наиболее высокая ступень геометрической одинаковости . Сейчас мы попытаемся дать приблизительное разъяснение этому понятию путём постепенного к нему приближения.

Уже в школьной геометрии мы встречаемся с двумя видами одинаковости - с конгруэнтностью фигур и с их подобием. Напомним, что фигуры называются конгруэнтными, если они совпадают друг с другом при наложении. В школе конгруэнтные фигуры как бы не различают, и потому конгруэнтность называют равенством. Конгруэнтные фигуры имеют одинаковые размеры во всех своих деталях. Подобие же, не требуя одинаковости размеров, означает одинаковость пропорций этих размеров; поэтому подобие отражает более сущностное сходство фигур, нежели конгруэнтность. Геометрия в целом - более высокая ступень абстракции, нежели физика, а физика - чем материаловедение.

Возьмём, к примеру, шарик подшипника, биллиардный шар, крокетный шар и мяч. Физика не вникает в такие детали, как материал, из которого они сделаны, а интересуется лишь такими свойствами, как объём, вес, электропроводность и т. п. Для математики - все они шары, различающиеся только размерами. Если шары имеют разные размеры, то они различаются для метрической геометрии, но все они одинаковы для геометрии подобия. С точки зрения геометрии подобия одинаковы и все шары, и все кубы, а вот шар и куб - не одинаковы.

А теперь посмотрим на тор. Top - эта та геометрическая фигура, форму которой имеют баранка и спасательный круг. Энциклопедия определяет тор как фигуру, полученную вращением круга вокруг оси, расположенной вне этого круга. Призываем благосклонного читателя осознать, что шар и куб «более одинаковы» между собой, чем каждый из них с тором. Наполнить это интуитивное осознание точным смыслом позволяет следующий мысленный эксперимент. Представим себе шар сделанным из материала столь податливого, что его можно изгибать, растягивать, сжимать и, вообще, деформировать как угодно, - нельзя только ни разрывать, ни склеивать. Очевидно, что шар тогда можно превратить в куб, но вот в тор превратить невозможно. Толковый словарь Ушакова определяет крендель как выпечку (буквально: как сдобную витую булку) в форме буквы В. При всём уважении к этому замечательному словарю, слова «в форме цифры 8» кажутся мне более точными; впрочем, с той точки зрения, которая выражена в понятии гомеоморфии, и выпечка в форме цифры 8, и выпечка в форме буквы В, и выпечка в форме фиты имеют одну и ту же форму. Даже если предположить, что хлебопёки сумели получить тесто, обладающее вышеуказанными свойствами податливости, колобок невозможно - без разрывов и склеиваний! - превратить ни в баранку, ни в крендель, как и последние две выпечки друг в друга. А вот превратить шарообразный колобок в куб или в пирамиду - можно. Любезный читатель, несомненно, сумеет найти и такую возможную форму выпечки, в которую нельзя превратить ни колобок, ни крендель, ни баранку.

Не назвав этого понятия, мы уже познакомились с гомеоморфией. Две фигуры называются гомеоморфными, если одну можно превратить в другую путём непрерывной (т. е. без разрывов и склеивании) деформации; сами такие деформации называются гомеоморфизмами. Мы только что выяснили, что шар гомеоморфен кубу и пирамиде, но не гомеоморфен ни тору, ни кренделю, а последние два тела не гомеоморфны между собой. Просим читателя понимать, что мы привели лишь приблизительное описание понятия гомеоморфии, данное в терминах механического преобразования.

Коснёмся философского аспекта понятия гомеоморфии. Представим себе мыслящее существо, живущее внутри какой-либо геометрической фигуры и не обладающее возможностью посмотреть на эту фигуру извне, «со стороны». Для него фигура, в которой оно живёт, образует Вселенную. Представим себе также, что когда объемлющая фигура подвергается непрерывной деформации, существо деформируется вместе с нею. Если фигура, о которой идёт речь, является шаром, то существо никаким способом не может различить, пребывает ли оно в шаре, в кубе или в пирамиде. Однако для него не исключена возможность убедиться, что его Вселенная не имеет формы тора или кренделя. Вообще, существо может установить форму окружающего его пространства лишь с точностью до гомеоморфии, то есть оно не в состоянии отличить одну форму от другой, коль скоро эти формы гомеоморфны.

Для математики значение гипотезы Пуанкаре , превратившейся теперь из гипотезы в теорему Пуанкаре - Перельмана, огромно (не зря ведь за решение проблемы был предложен миллион долларов), равно как огромно и значение найденного Перельманом способа её доказательства, но объяснить это значение здесь - вне нашего умения. Что же касается космологической стороны дела, то, возможно, значимость этого аспекта была несколько преувеличена журналистами.

Впрочем, некоторые авторитетные специалисты заявляют, что осуществлённый Перельманом научный прорыв может помочь в исследовании процессов формирования чёрных дыр. Чёрные дыры, кстати, служат прямым опровержением положения о познаваемости мира - одного из центральных положений того самого передового, единственно верного и всесильного учения, которое 70 лет насильственно вдалбливалось в наши бедные головы. Ведь, как учит физика, никакие сигналы из этих дыр не могут к нам поступать в принципе, так что узнать, что там происходит, невозможно. О том, как устроена наша Вселенная в целом, мы вообще знаем очень мало, и сомнительно, что когда-нибудь узнаем. Да и сам смысл вопроса о её устройстве не вполне ясен. Не исключено, что этот вопрос относится к числу тех, на которые, согласно учению Будды , не существует ответа. Физика предлагает лишь модели устройства, более или менее согласующиеся с известными фактами. При этом физика, как правило, пользуется уже разработанными заготовками, предоставляемыми ей математикой.

Математика не претендует, разумеется, на то, чтобы установить какие бы то ни было геометрические свойства Вселенной. Но она позволяет осмыслить те свойства, которые открыты другими науками. Более того. Она позволяет сделать более понятными некоторые такие свойства, которые трудно себе вообразить, она объясняет, как такое может быть. К числу таких возможных (подчеркнём: всего лишь возможных!) свойств относятся конечность Вселенной и её неориентируемость.

Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, то есть то пространство, которое известно всем и каждому из средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием. Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности. В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают «скорее всего. Вселенная бесконечна», другие же - «скорее всего, Вселенная конечна».

Успенский В.А. , Апология математики, или о математике как части духовной культуры, журнал «Новый мир», 2007 г., N 12, с. 141-145.

  • Tutorial

Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.

Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.

Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.

Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.

Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.

Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).

Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.

Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.

Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.

С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.

Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие - нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:

Из 26 букв у нас получается всего 8 классов.

На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.

Формальная постановка вопроса

Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.

Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.

Гипотеза Пуанкаре для поверхностей

Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.

Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.

Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.

Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).

Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:

Рассмотрим примеры простейших склеек:

В первом случае у нас получится сфера:

Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):

В третьем случае получится так называемая бутылка Клейна:

Если склеивать не все стороны многоугольника, то получится поверхность с краем:

Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.

Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.

Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:

Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.

Теперь подробнее остановимся на понятии петли. Петял - это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:

Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:

На плоскости можно стянуть любую петлю:

А вот какие петли бывают на торе:

Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум - это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем - это будет несколько сложнее.

Эйлерова характеристика

Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.

Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г - число многоугольников, Р - это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B - это число вершин, которое получается после склейки после склейки.

Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.

Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г - это и есть эйлерова характеристика поверхности.

Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.

Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности - о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ

Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.

Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.