Фигуры планиметрии и стереометрии. Другие свойства и определения

Лекция по теме «Предмет стереометрии»

Предмет стереометрии

Геометрия – это наука, которая изучает свойства геометрических фигур.

Школьный курс геометрии подразделяется на два раздела: планиметрию и стереометрию.

Планиметрия – раздел геометрии, который изучает свойства геометрических фигур на плоскости.

Планиметрию мы изучали в 7-9 классах.

В этом году мы начинаем изучать второй раздел геометрии - стереометрию

Стереометрия – это раздел геометрии, в котором изучаются свойства геометрических фигур в пространстве.

Слово "стереометрия" происходит от греческих слов "стереос" объемный, пространственный и "метрио" измерять.

В стереометрии рассматриваются математические модели тех материальных объектов, с которыми имеют дело архитекторы, конструкторы, строители и другие специалисты.

Кроме того, школьный курс стереометрии служит основой для черчения и начертательной геометрии – важнейших дисциплин любого технического вуза.

Основные фигуры стереометрии

Итак, стереометрия изучает свойства геометрических фигур в пространстве.

Геометрических фигур в пространстве.

называют телами.

В стереометрии мы будем изучать свойства геометрических тел, вычислять их площади и объемы.

При изучении пространственных фигур используются их изображение на чертеже.

Изображением пространственной фигуры служит ее проекция на ту или иную плоскость. Одна и та же фигура допускает различные изображения.

Обычно выбирают то из них, которое наиболее удобно для исследования ее свойств.

На экране вы видите многогранники – куб, параллелепипед и пирамида, тела вращения – шар, конус и цилиндр.

При изображении пространственных фигур невидимые части этих фигур изображены штриховыми линиями.

С чего начинается стереометрия?

Также как планиметрия.

Планиметрию мы начинали изучать с основных понятий, фигур и аксиом.

Основные понятия стереометрии

Во-первых, это точка и прямая, как в планиметрии. И еще добавляется плоскость.

Итак, основными понятиями стереометрии являются: тоска, прямая, плоскость. Они принимаются без определений.

Новым для нас понятием является плоскость.

Плоскость, как и прямая в планиметрии, бесконечна. Она простирается во все стороны на неограниченное расстояние.

Геометрическими моделями части плоскости являются, например, поверхность стола, доски и т. д.

Изображают плоскости в виде параллелограмма, либо в виде произвольной области.

Обозначение, которые мы будем применять.

Точки. Как и ранее, точки будем обозначать прописными латинскими буквами A , B , C ….

На экране изображены 4 точки. Они обозначены буквами A , B , C и D

Прямые. Прямые обозначают строчными латинскими буквами a , b , c …, или двумя прописными латинскими буквами AB , CD , …

Во втором случае используются обозначения

двух точек, через которые прямая проходит.

На экране вы видите прямую a . На ней лежат точки M и N .

Прямая a может быть также обозначена как MN .

Плоскости. Плоскости обычно обозначают строчными греческими буквами (альфа, бета, гамма, дельта, …)

Плоскости также можно называть по трем точкам, через которые плоскости проходят.

Например, на экране плоскость синего цвета обозначена как α, она же может называться ABC .

Плоскость бежевого цвета обозначена β, она же может быть обозначена как KLN или KLM . Берутся любые три точки, через которые плоскость проходит.

Так же, как и в планиметрии, в стереометрии мы будем применять для точек знак: (принадлежит плоскости), а для прямых знак: (лежит в плоскости).

Перечеркнутые знаки означают отрицание – не принадлежит плоскости, не лежит в плоскости.

На рисунке вы видите, что две точки A и B принадлежат плоскости α (плоскость проходит через эти точки), а точки M, N, K не принадлежат этой плоскости (плоскость не проходит через эти точки).

Коротко это записывается так:

Точка А принадлежит плоскости α, точка B принадлежит плоскости α.

Точка M N не принадлежит плоскости α, точка K не принадлежит плоскости α.

На этом уроке мы познакомились с новым разделом геометрии – стереометрией.

Узнали, что основными понятиями стереометрии являются точка, прямая, плоскость. Вспомнили, как изображаются точки и прямые. Узнали как изображается и обозначается плоскость.

Переходим к решению задач.

Задача 1.

Дано:

Точки A , B , C и D не лежащие в одной плоскости.

Указать плоскости, которым принадлежит:

а) прямая AB ;

б) точка F ;

в) точка C .

Решение.

а) Прямая AB лежит в двух плоскостях: ABC и ABD ;

б) Точка F принадлежит плоскостям: ABC и BCD ;

в) Точка C принадлежит трем плоскостям: ABC , BCD , ACD .

Стереометрия – раздел геометрии, в котором изучаются свойства пространственных фигур, то есть фигур, не принадлежащих одной плоскости. В стереометрии рассматриваются различные случаи взаимного расположения прямых и плоскостей в пространстве, такие пространственные фигуры, как призма, пирамида, тела вращения, правильные многогранники и др. При изучении стереометрии обобщаются некоторые планиметрические понятия: вектор, геометрическое преобразование, прямоугольная система координат и др. Важными вопросами в стереометрии являются вопросы измерения площадей и объёмов рассматриваемых пространственных фигур.

Большинство пространственных фигур представляют собой абстракцию различных предметов. Изучение стереометрии включает не только усвоение некоторых фактов и понятий, но владение математическими методами, которые применяются для обоснования этих фактов. Обратим внимание на структуру стереометрии, как учебного курса. Стереометрия строится следующим образом:

  • перечисляются исходные понятия, которые принимаются без определения;
  • приводится список аксиом;
  • при помощи исходных понятий даются определения другим геометрическим понятиям;
  • на основании аксиом и определений доказываются теоремы.

Исходными понятиями стереометрии являются следующих три понятия: «точка», «расстояние между точками», «плоскость». С их помощью определяются и другие понятия стереометрии. Определить понятие (дать ему определение) – это значит указать его существенные, характерные особенности, указать признаки. Некоторые из этих признаков являются признаками сходства и устанавливают связь данного понятия с другими, уже известными понятиями; иные – признаки различия, указывающие на особенные свойства данных понятий.

Исходным геометрическим понятием непосредственно определение не даётся. Их нельзя свести и каким-либо другим понятиям в принятой системе изложения. Но это не значит, что они остаются совершенно неопределёнными. Они обозначаются косвенно, через перечисление некоторых признаков и свойств в аксиомах. С помощью аксиом логическим путём выводятся другие свойства геометрических понятий. Утверждения такого рода называются теоремами, а рассуждения, в ходе которых они устанавливаются – доказательствами.

Приведём некоторые обозначения, применяемые в стереометрии:

α, β, γ, … – обозначения плоскостейα, β, γ…;

А, В, С,… – точки;

а, b, с,… – прямые;

А = В, а = b, α = β – точки А и В совпадают, прямые а и b совпадают, плоскости α и β совпадают;

А ≠ В, а ≠ b, α ≠ β – точки А и В не совпадают, прямые а и b не совпадают, плоскости α и β не совпадают;

А Є а, А Є α – точка А принадлежит прямой а, точка А принадлежит плоскости α;

А Ȼ а, А Ȼ α – точка А не принадлежит прямой а, точка А не принадлежит плоскости α.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Стереометрия - раздел геометрии, в котором изучаются свойства фигур в пространстве (пространственных фигур). Слово «стереометрия» состоит из греческих слов «стереос» - телесный, пространственный и «метрео» - измеряю.

Не нужно путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (т.е. свойства плоских фигур), а в стереометрии – свойства фигур в пространстве (т.е. свойства пространственных фигур).

Для лучшего понимания напомним некоторые сведения о многогранниках и дадим каждому многограннику наглядное описание.

Многогранник представляет собой тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 1–10). Эти многоугольники называются гранями многогранника, а стороны и вершины многоугольников называются соответственно ребрами и вершинами многогранника. Многогранники могут быть выпуклыми (рис. 1) и невыпуклыми (рис. 2). Выпуклый многогранник расположен по одну сторону относительно плоскости, проходящей через любую его грань. (Мы будем изучать только выпуклые многогранники.)

Приведем примеры отдельных многогранников.

Куб представляет собой многогранник, у которого шесть граней, и все они - равные квадраты. У куба 12 равных ребер и 8 вершин (рис. 3).

Параллелепипед представляет собой многогранник, у которого шесть граней, и каждая из них - параллелограмм. Параллелепипед может быть прямым (рис. 4) или наклонным (рис. 5).

Параллелепипед, все грани которого прямоугольники, называют прямоугольным. Прямоугольный параллелепипед изображается также, как и прямой. Из сказанного следует, что куб - это прямоугольный параллелепипед с равными ребрами.

n-угольная пирамида представляет собой многогранник, одна грань которого, называемая основанием пирамиды, - некоторый выпуклый n-угольник, а остальные n граней - треугольники с общей вершиной (рис. 6). Эта общая вершина называется вершиной пирамиды, а треугольники - боковыми гранями пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами ее основания, называются боковыми ребрами пирамиды. Пирамида, в основании которой лежит правильный n-угольник, а боковые ребра равны между собой, называется правильной пирамидой (рис. 7). Пирамида, в основании которой лежит треугольник, называется треугольной пирамидой или тетраэдром. Таким образом, тетраэдр - это четырехгранник. Все его четыре грани - треугольники. Тетраэдр, все четыре грани которого - равные правильные треугольники, называется правильным тетраэдром (рис. 8). Правильный тетраэдр - это частный случай правильной треугольной пирамиды.

n-угольная призма представляет собой многогранник, две грани которого, называемые основаниями призмы, - равные n-угольники, а все остальные n граней - параллелограммы. Они называются боковыми гранями призмы. Призма может быть прямой (рис. 9) или наклонной (рис. 10). У прямой призмы все боковые грани - прямоугольники, у наклонной призмы хотя бы одна грань - параллелограмм, не являющийся прямоугольником.

Параллелепипед - это призма, в основании которой лежит параллелограмм.

Сферой называется множество всех точек пространства, удаленных от данной точки, называемой центром сферы, на одно и то же расстояние (рис. 11). Отрезок, соединяющий любую точку сферы с ее центром, называется радиусом сферы. Радиусом сферы называют также расстояние от любой точки сферы до ее центра. Для сферы, как и для окружности, определяются хорды и диаметр.

Шаром называется множество всех точек пространства, расстояние от каждой из которых до данной точки - центра шара - не превосходит данного положительного числа, которое называется радиусом шара.

Шар и куб - примеры геометрических тел, сфера и плоскость - примеры поверхностей.

Тарасова Олеся

Стереометрия – это раздел геометрии, изучающий фигуры в пространстве.

Основные фигуры в пространстве: точка, прямая и плоскость

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ЭЛЕМЕНТЫ СТЕРЕОМЕТРИИ Стереометрия – это раздел геометрии, изучающий фигуры в пространстве. Основные фигуры в пространстве: точка, прямая и плоскость

АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой, проходит единственная плоскость Если две плоскости имеют общую точку, то они пересекаются по прямой Существуют по крайней мере четыре точки, не принадлежащие одной плоскости

СЛЕДСТВИЯ ИЗ АКСИОМ Если прямая имеет с плоскостью две общие точки, то она лежит в этой плоскости Через прямую и не принадлежащую ей точку проходит единственная плоскость Через две пересекающиеся прямые проходит единственная плоскость

Две прямые Лежат в одной плоскости Не лежат в одной плоскости (скрещиваются) Имеют общую точку (пересекаются) Не имеют общих точек (параллельны) ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ В ПРОСТРАНСТВЕ

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых

Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ

Прямая и плоскость Имеют общие точки Не имеют общих точек (параллельны) Имеют одну общую точку (пересекаются) Имеют более одной общей точки (прямая лежит в плоскости) ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ

Определение. Прямая называется параллельной плоскости, если она не имеет с ней ни одной общей точки. ПАРАЛЛЕЛЬНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ

Теорема. Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то прямая параллельна самой плоскости. ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПРЯМОЙ И ПЛОСКОСТИ

Две плоскости Имеют общие точки (пересекаются по прямой) Не имеют общих точек (параллельны) ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ

Определение. Две плоскости в пространстве называются параллельными, если они не пересекаются. ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ

Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ ПЛОСКОСТЕЙ

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема. (Признак перпендикулярности прямой и плоскости.) Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна и самой плоскости.

КУБ, ПАРАЛЛЕЛЕПИПЕД Параллелепипедом называется многогранник, поверхность которого состоит из шести параллелограммов. Прямоугольным параллелепипедом называется параллелепипед, грани которого – прямоугольники. Кубом называется многогранник, поверхность которого состоит из шести квадратов.

ПРИЗМА Призмой называется многогранник, поверхность которого состоит из двух равных многоугольников, называемых основаниями призмы, и параллелограммов, имеющих общие стороны с каждым из оснований и называемых боковыми гранями призмы. Призма называется прямой, если её боковые грани – прямоугольники. Прямая призма называется правильной, если её основания – правильные многоугольники.

ПИРАМИДА Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников, имеющих общую вершину, называемых боковыми гранями пирамиды. Пирамида называется правильной, если её основание – правильный многоугольник и все боковые ребра равны.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ Правильные многогранники были известны еще в древней Греции. Пифагор и его ученики считали, что все состоит из атомов, имеющих форму правильных многогранников. В частности, атомы ог ня имеют форму тетраэдр а (его гранями являются четыре правильных треугольника (рис. а); земл и - гексаэдр а (куб – многогранник, гранями которого являются шесть квадратов, рис. б); воздух а – октаэдр а (его гранями являются восемь правильных треугольников, рис. в); вод ы – икосаэдр а (его гранями являются двадцать правильных треугольников, рис. г); вся Вселенная, по мнению древних, имела форму додекаэдра (его гранями являются двенадцать правильных пятиугольников, рис. д). Названия многогранников тоже имеют древнегреческое происхождение. В переводе с греческого: "Тетра" - четыре; "Гекса" - шесть; "Окто" - восемь; "Икоси" - двадцать, "Додека" - двенадцать. "Эдра" - грань.

ЦИЛИНДР Фигура, образованная отрезками, соединяющими точки окружности одного основания цилиндра с их проекциями, называется боковой поверхностью цилиндра. Сами отрезки называются образующими цилиндра. Прямая, проходящая через центры оснований цилиндра, называется осью этого цилиндра. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Расстояние между плоскостями оснований называется высотой цилиндра.

ПРЯМОЙ ЦИЛИНДР Фигура, образованная отрезками, соединяющими точки круга F с их ортогональными проекциями, называется прямым цилиндром, или просто цилиндром. Круги F и F ’ называются основаниями цилиндра.

НАКЛОННЫЙ ЦИЛИНДР

КОНУС Фигура, образованная отрезками, соединяющими вершину конуса с точками окружности его основания, называется боковой поверхностью конуса. Сами отрезки называются образующими конуса. Прямая, проходящая через вершину и центр основани я конуса, называется осью этого конуса. Сечение конуса плоскостью, проходящей через ось, называется осевым сечением. Расстояние от вершины конуса до плоскост и его основани я называется высотой конуса.

ПРЯМОЙ И НАКЛОННЫЙ КОНУС В случае, если отрезок, соединяющий вершину конуса с центром основания, перпендикулярен плоскости основания, то конус называется прямым. В противном случае он называется наклонным.

УСЕЧЕННЫЙ КОНУС Если конус пересечен плоскостью, параллельной основанию, то его часть, заключенная между этой плоскостью и основанием, называется усеченным конусом. Само сечение конуса плоскостью, параллельной основанию, называется также основанием усеченного конуса. Высотой усеченного конуса называется расстояние между плоскостями его оснований.

Сфера и шар Сферой называется фигура, состоящая из всех точек пространства, удаленных от данной точки, называемой центром, на данное расстояние, называемое радиусом. Шаром называется фигура, состоящая из всех точек пространства, удаленных от данной точки, называемой центром, на расстояние, не превосходящее данное, называемое радиусом. Сфера с тем же центром и того же радиуса, что и данный шар, называется поверхностью шара.