Что такое колебательная система в физике определение. Основные параметры колебательных движений

Наряду с поступательным и вращательным движением колебательное движение играет большую роль в макро- и микромире.

Различают хаотические и периодические колебания. Периодические колебания характеризуются тем, что через определенные равные промежутки времени колеблющаяся система проходит одни и те же положения. В качестве примера можно привести кардиограмму человека, представляющую собой запись колебаний электрических сигналов сердца (рис. 2.1). На кардиограмме можно выделить период колебаний, т.е. время Т одного полного колебания . Но периодичность не есть исключительная особенность колебаний, ею обладает также и вращательное движение. Наличие положения равновесия является особенностью механического колебательного движения, тогда как вращение характеризуется так называемым безразличным равновесием (хорошо сбалансированное колесо или игорная рулетка, будучи раскрученными, останавливается в любом положении равновероятно). При механических колебаниях в любом положении, кроме положения равновесия, существует сила, стремящаяся вернуть колеблющуюся систему в начальное положение т.е. возвращающая сила, всегда направленная к положению равновесия. Наличие всех трех признаков отличает механическое колебание от остальных видов движения.

Рис. 2.1.

Рассмотрим конкретные примеры механических колебаний.

Зажмем в тиски один конец стальной линейки, а другой, свободный, отведем в сторону и отпустим. Под действием сил упругости линейка будет возвращаться в исходное положение, которое является положением равновесия. Проходя через это положение (которое является положением равновесия), все точки линейки (кроме зажатой части) будут иметь определенную скорость и определенный запас кинетической энергии. По инерции колеблющаяся часть линейки пройдет положение равновесия и будет совершать работу против внутренних сил упругости за счет убыли кинетической энергии. Это приведет к возрастанию потенциальной энергии системы. Когда кинетическая энергия полностью исчерпается, потенциальная энергия достигнет максимума. Сила упругости, действующая на каждую колеблющуюся точку, также достигнет максимума и будет направлена к положению равновесия. Это описано в подразделах 1.2.5 (соотношение (1.58)), 1.4.1, а также в 1.4.4 (см. рис. 1.31) на языке потенциальных кривых. Так будет повторяться до тех пор, пока полная механическая энергия системы не перейдет во внутреннюю энергию (энергию колебаний частиц твердого тела) и не рассеется в окружающее пространство (напомним, что силы сопротивления относятся к диссипативным силам).

Таким образом, в рассматриваемом движении есть повторяемость состояний и есть силы (силы упругости), стремящиеся вернуть систему в положение равновесия. Следовательно, линейка будет совершать колебательное движение.

Другой известный всем пример - колебания маятника. Положение равновесия маятника отвечает низшему положению его центра тяжести (в этом положении потенциальная энергия, обусловленная силами тяжести, минимальна). В отклоненном положении на маятник будет действовать момент силы относительно оси вращения, стремящийся вернуть маятник в положение равновесия. В этом случае также есть все признаки колебательного движения. Понятно, что в отсутствии силы тяжести (в состоянии невесомости) не будут выполнены оговоренные выше условия: в состоянии невесомости отсутствует сила тяжести и возвращающий момент этой силы. И здесь маятник, получив толчок, будет двигаться по окружности, то есть совершать не колебательное, а вращательное движение.

Колебания могут быть не только механическими. Так, например, можно говорить о колебаниях заряда на пластинах конденсатора, соединенного параллельно с катушкой индуктивности (в колебательном контуре), или напряженности электрического поля в конденсаторе. Их изменение со временем описывается уравнением, подобным тому, что определяет механическое смещение от положения равновесия маятника. Ввиду того, что одинаковыми уравнениями можно описывать колебания самых различных физических величин, оказывается очень удобным рассмотрение колебаний безотносительно к тому, какая физическая величина колеблется. Это порождает систему аналогий, в частности, электромеханическую аналогию. Для определенности будем пока рассматривать механические колебания. Рассмотрению подлежат только периодические колебания, при которых значения изменяющихся в процессе колебаний физических величин повторяются через равные промежутки времени.

Величина, обратная периоду Т колебаний (как и времени одного полного оборота при вращении), выражает число полных колебаний, совершаемых в единицу времени, и называется частотой (это просто частота, она измеряется в герцах или с -1)

(при колебаниях так же, как при вращательном движении).

Угловая скорость связывается с введенной соотношением (2.1) частотой v формулой

измеряется в рад/с или с -1 .

Естественно начать анализ колебательных процессов с наиболее простых случаев колебательных систем с одной степенью свободы. Число степеней свободы - это число независимых переменных, необходимых для полного определения положения в пространстве всех частей данной системы . Если, например, колебания маятника (груз на нити и др.) ограничены плоскостью, в которой только и может перемещаться маятник, и если нить маятника нерастяжима, то достаточно задать только один угол отклонения нити от вертикали или только величину смещения от положения равновесия - для груза, колеблющегося вдоль одного направления на пружине, чтобы полностью определить его положение. В этом случае мы говорим, что рассматриваемая система обладает одной степенью свободы. Тот же маятник, если он может занимать любое положение на поверхности сферы, на которой лежит траектория его движения, обладает двумя степенями свободы. Возможны и трехмерные колебания, как это имеет место, например, при тепловых колебаниях атомов кристаллической решетки (см. подраздел 10.3). Для анализа процесса в реальной физической системе мы выбираем его модель, заранее ограничив исследование рядом условий.

  • Здесь и далее период колебаний будет обозначаться той же буквой, что и кинетическаяэнергия - Т (не путать!).
  • В главе 4 «Молекулярная физика» будет дано и другое определение числа степеней свободы.

Колебания – один из самых распространенных процессов в природе и технике.

Колеблются крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

Звук – это колебания плотности и давления воздуха, радиоволны – периодические изменения напряженностей электрического и магнитного полей, видимый свет – тоже электромагнитные колебания, только с несколько иными длиной волны и частотой.

Землетрясения – колебания почвы, приливы и отливы – изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса – периодические сокращения сердечной мышцы человека и т.д.

Смена бодрствования и сна, труда и отдыха, зимы и лета... Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же уравнениями.

Свободными колебаниями называются колебания, происходящие благодаря начальному запасу энергии, приданному колеблющемуся телу.

Чтобы тело совершало свободные колебания, необходимо вывести его из состояния равновесия.

НАДО ЗНАТЬ

Специальный раздел физики – теория колебаний – занимается изучением закономерностей этих явлений. Знать их необходимо судо- и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.

Первыми учеными, изучавшими колебания, были Галилео Галилей (1564...1642) и Христиан Гюйгенс (1629...1692). (Полагают, что соотношение между длиной маятника и временем каждого качания открыл Галлилей. Однажды в церкви он наблюдал, как качалась огромная люстра, и засекал время по своему пульсу. Позже он открыл, что время, за которое происходит один взмах, зависит от длины маятника - время наполовину уменьшается, если укоротить маятник на три четверти.).
Гюйгенс изобрел первые часы с маятником (1657) и во втором издании своей монографии «Маятниковые часы» (1673) исследовал ряд проблем, связанных с движением маятника, в частности нашел центр качания физического маятника.

Большой вклад в изучение колебаний внесли многие ученые: английские – У. Томсон (лорд Кельвин) и Дж. Рэлей, русские – А.С. Попов и П.Н. Лебедев и другие


Красным цветом изображается вектор силы тяжести, синим - силы реакции, желтым - силы сопротивления, бордовым - равнодействующей силы. Для остановки маятника нажать кнопку "Стоп" в окне "Управление" или щелкнуть кнопкой мыши внутри главного окна программы. Для продолжения движения действия повторить.

Дальнейшие колебания нитяного маятника, выведенного из состояния равновесия, происходят
под действием результирующей силы, которая является суммой двух векторов: силы тяжести
и силы упругости.
Результирующая сила в данном случае называется возвращающей силой.


МАЯТНИК ФУКО В ПАРИЖСКОМ ПАНТЕОНЕ

Что доказал Жан Фуко?

Маятник Фуко служит для демонстрации вращения Земли вокруг своей оси. На длинном тросе подвешен тяжелый шар. Он качается взад-вперед над круглой площадкой с делениями.
Через какое-то время зрителям начинает казаться, что маятник качается уже над другими делениями. Кажется, что маятник повернулся, но это не так. Это повернулся вместе с Землей сам круг!

Для всех факт вращения Земли очевиден хотя бы потому, что день сменяет ночь, то есть за 24 часа совершается один полный оборот планеты вокруг своей оси. Вращение Земли можно доказать многими физическими опытами. Самым знаменитым из них был опыт, проведенный Жаном Бернаром Леоном Фуко в 1851 году в парижском Пантеоне в присутствии императора Наполеона. Под куполом здания физик подвесил металлический шар массой 28 кг на стальной проволоке длиной 67 м. Отличительной особенностью этого маятника было то, что он мог свободно качаться во всех направлениях. Под ним было сделано ограждение с радиусом 6 м, внутри которого насыпали песок, чьей поверхности касалось острие маятника. После того как маятник привели в движение, стало очевидно, что плоскость качания поворачивается относительно пола по часовой стрелке. Это следовало из того, что при каждом следующем качании острие маятника делало отметку на 3 мм дальше предыдущего. Это отклонение и объясняет то, что Земля совершает вращение вокруг своей оси.

В 1887 году принцип действия маятника был продемонстрирован и в и, в Исаакиевском соборе Петербурга. Хотя сегодня увидеть его нельзя, так как теперь он хранится в фонде музея-памятника. Сделано это было для того, чтобы восстановить первоначальную внутреннюю архитектуру собора.


СДЕЛАЙ МОДЕЛЬ МАЯТНИКА ФУКО САМ


Переверни табуретку вверх ножками и положи на концы её ножек (по диагонали) какую-нибудь рейку. А к середине её подвесь небольшой груз (например, гайку)ни нити. Заставь его качаться так, чтобы плоскость качания проходила между ножек табуретки. Теперь медленно поворачивай табуретку вокруг её вертикальной оси. Тебе станет заметно, что маятник качается уже в другом направлении. На самом деле он качается всё также, а изменение произошло из-за поворота самой табуретки, которая в этом опыте играет роль Земли.


КРУТИЛЬНЫЙ МАЯТНИК

Это маятник Максвелла, он позволяет выявить ряд интересных закономерностей движения твердого тела. К диску, насаженному на ось, привязаны нити. Если закрутить нить вокруг оси, диск поднимется. Теперь отпускаем маятник, и он начинает совершать периодическое движение: диск опускается, нить раскручивается. Дойдя до нижней точки, по инерции диск продолжает вращаться, но теперь уже закручивает нить и поднимается вверх.

Обычно крутильный маятник применяется в механических наручных часах. Колесико-балансир под действием пружины вращается то в одну, то в другую сторону. Его равномерные движения обеспечивают точность хода часов.


СДЕЛАЙ КРУТИЛЬНЫЙ МАЯТНИК САМ


Вырежьте из плотного картона небольшой круг диаметром 6 – 8 см. На одной стороне кружка нарисуйте открытую тетрадь, а на другой стороне – цифру «5». С двух сторон круга проделайте иголкой 4 отверстия и вставьте 2 прочные нити. Закрепите их, чтобы они не выскакивали, узелками. Далее стоит лишь закрутить круг на 20 – 30 оборотов и натянуть нити в стороны. В результате вращения вы увидите картинку « 5 в моей тетрадке».
Приятно?


Ртутное сердце

Небольшая капля – лужица ртути, поверхности которой в её центре касается железная проволока – игла, залита слабым водяным раствором соляной кислоты, в котором растворена соль двухромовокислого калия.. ртуть в растворе соляной кислоты получает электрический заряд и поверхностное натяжение на границе cоприкасающихся поверхностей понижается. При соприкосновении иглы с поверхностью ртути заряд уменьшается и, следовательно, меняется поверхностное натяжение. При этом капля обретает более сферическую форму. Макушка капли наползает на иглу, а затем под действием силы тяжести соскакивает с неё. Внешне явление производит впечатление вздрагивания ртути. Этот первый импульс дает толчок колебаниям, капля раскачивается и «сердце» начинает пульсировать. Ртутное «сердце» - не вечный двигатель! Со временем длина иглы уменьшается, и её вновь приходится устанавливать в соприкосновение с поверхностью ртути.

– это один из частных случаев неравномерного движения. Примеров колебательного движения в жизни много: это и качание качелей, и раскачивание маршрутки на рессорах, и движение поршней в двигателе… Эти движения различаются, но у них есть общее свойство: раз в некоторое время движение повторяется.

Это время называется периодом колебаний .

Рассмотрим один из простейших примеров колебательного движения – пружинный маятник. Пружинный маятник – это пружина, соединённая одним концом с неподвижной стеной, а другим – с подвижным грузом. Для простоты будем считать, что груз может двигаться только вдоль оси пружины. Это реалистичное допущение – в реальных упругих механизмах обычно груз движется вдоль направляющей.

Если маятник не колеблется, и на него не действуют никакие силы, то он находится в положении равновесия. Если его отвести от этого положения и отпустить, то маятник станет колебаться – он будет проскакивать точку равновесия на максимальной скорости и замирать в крайних точках. Расстояние от точки равновесия до крайней точки называется амплитудой , периодом в данной ситуации будет минимальное время между посещениями одной и той же крайней точки.

Когда маятник находится в крайней точке, на него действует сила упругости, стремящаяся вернуть маятник в положение равновесия. Она убывает по мере приближения к равновесию, и в равновесной точке становится равна нулю. Но маятник уже набрал скорость и проскакивает точку равновесия, и сила упругости начинает его тормозить.


В крайних точках у маятника максимальная потенциальная энергия, в точке равновесия – максимальная кинетическая.

В реальной жизни колебания обычно затухают, так как есть сопротивления среды. В таком случает от колебания к колебанию амплитуда уменьшается. Такие колебания называются затухающими .

Если же затухания нет, и колебания происходят из-за начального запаса энергии, то они называются свободными колебаниями .

Тела, участвующие в колебании, и без которых колебания были бы невозможными, вместе называются колебательной системой . В нашем случае колебательная система состоит из грузика, пружины и неподвижной стены. Вообще, колебательной системой можно назвать любую группу тел, способных к свободным колебаниям, то есть таких, в которых при отклонениях появляются силы, возвращающие систему к равновесию.

Лабораторная работа №3

«Определение коэффицента упругости пружины с помощью пружинного маятника»

УДК 531.13(07)

Рассматриваются законы колебательного движения на примере пружинного маятника. Даны методические указания к выполнению лабораторной работы по определению коэффициента жёсткости пружины динамическим методами. Дан разбор типовых задач по теме «Гармонические колебания. Сложение гармонических колебаний.

Теоретическое введение

Колебательное движение является одним из наиболее распространённых движений в природе. С ним связаны звуковые явления, переменный ток, электромагнитные волны. Колебания совершают отдельные части самых разнообразных машин и приборов, атомы и молекулы в твёрдых телах, жидкостях и газах, сердечные мышцы у человека и животных и т. п.

Колебанием называют физический процесс, характеризующийся повторяемостью во времени физических величин, связанных с этим процессом. Движение маятника или качелей, сокращения сердечной мышцы, переменный ток - всё это примеры систем, совершающих колебания.

Колебания считают периодическими, если значения физических величин повторяются через равные промежутки времени, называемые периодом Т. Число полных колебаний, совершаемых системой за единицу времени, называют частотой ν. Очевидно, что Т = 1/ν. Частота измеряется в герцах (Гц). При частоте 1 герц система совершает 1 колебание в секунду.

Простейшим видом колебательного движения являются свободные гармонические колебания. Свободными , или собственными называются колебания, происходящие в системе после того, как она была выведена из положения равновесия внешними силами, которые в дальнейшем участия в движении системы не принимают. Наличие периодически меняющихся внешних сил вызывает в системе вынужденные колебания .

Гармоническими называют свободные колебания, происходящие под действием упругой силы при отсутствии трения. Согласно закону Гука, при малых деформациях сила упругости прямо пропорциональна смещению тела х от положения равновесия и направлена к положению равновесия: F упр. = - κх, где κ - коэффициент упругости, измеряемый в Н/м, а x - смещение тела из положения равновесия.

Силы, не упругие по своей природе, но аналогичные по виду зависимости от смещения, называют квазиупругими (лат. quasi - якобы). Такие силы также вызывают гармонические колебания. Например, квазиупругие силы действуют на электроны в колебательном контуре, вызывая гармонические электромагнитные колебания. Примером квазиупругой силы может также служить составляющая силы тяжести математического маятника при малых углах отклонения его от вертикали.

Уравнение гармонических колебаний . Пусть тело массой m прикреплено к концу пружины, масса которой мала по сравнению с массой тела. Колеблющееся тело называют осциллятором (лат. oscillum- колебание). Пусть осциллятор может свободно и без трения скользить вдоль горизонтальной направляющей, по которой направим ось координат ОХ (рис. 1). Начало координат поместим в точке, соответствующей равновесному положению тела (рис. 1, а). Приложим к телу горизонтальную силу F и сместим его из положения равновесия вправо в точку с координатой х . Растяжение пружины внешней силой вызывает появление в ней силу упругости F ynp. , направленной к положению равновесия (рис. 1, б). Если теперь убрать внешнюю силу F , то под действием силы упругости тело приобретает ускорение а , движется к положению равновесия, а сила упругости уменьшается, становясь равной нулю в положении равновесия. Достигнув положения равновесия, тело, однако, в нем не останавливается и движется влево за счёт своей кинетической энергии. Пружина вновь сжимается, возникает сила упругости, направленная вправо. Когда кинетическая энергия тела перейдет в потенциальную энергию сжатой пружины, груз остановится, затем начнет двигаться вправо, и процесс повторяется.

Таким образом, если при непериодическом движении каждую точку траектории тело проходит только один раз, двигаясь в одном направлении, то при колебательном движении за одно полное колебание в каждой точке траектории, кроме самых крайних, тело бывает дважды: один раз двигаясь в прямом направлении, другой раз -в обратном.

Напишем второй закон Ньютона для осциллятора: ma = F ynp. , где

F упр = –κx (1)

Знак «–» в формуле указывает на то, что смещение и сила имеют противоположные направления, иными словами, сила, действующая на прикрепленный к пружине груз, пропорциональна смещению его из положения равновесия и направлена всегда к положению равновесия. Коэффициент пропорциональности «κ» носит название коэффициента упругости. Численно он равен силе, вызывающей деформацию пружины, при которой её длина изменяется на единицу. Иногда его называют коэффициентом жёсткости .

Так как ускорение есть вторая производная от смещения тела, то это уравнение можно переписать в виде

, или
(2)

Уравнение (2) может быть записано в виде:

, (3)

где обе части уравнения разделены на массу m и введено обозначение:

(4)

Легко проверить подстановкой, что этому уравнению удовлетворяет решение:

х = А 0 cos (ω 0 t + φ 0) , (5)

где А 0 - амплитуда или максимальное смещение груза от положения равновесия, ω 0 - угловая или циклическая частота, которая может быть выражена через период Т собственных колебаний формулой
(см. ниже).

Величину φ = φ 0 + ω 0 t (6), стоящую под знаком косинуса и измеряемую в радианах, называют фазой колебания в момент времени t , а φ 0 - начальная фаза. Фаза представляет собой число, определяющее величину и направление смещения колеблющейся точки в данный момент времени. Из (6) видно, что

. (7)

Таким образом, величина ω 0 определяет быстроту изменения фазы и называется циклической частотой . С обычной чистотой её связывает формула

Если фаза изменяется на 2π радиан, то, как известно из тригонометрии, косинус принимает исходное значение, а следовательно, исходное значение принимает и смещение х . Но гак как время при этом изменяется на один период, то получается, что

ω 0 (t + T ) + φ 0 = (ω 0 t + φ 0) + 2π

Раскрывая скобки и сокращая подобные члены, получим ω 0 T = 2π или
. Но так как из (4)
, то получим:
. (9)

Таким образом, период колебания тела , подвешенного на пружине, как это следует из формулы (8), не зависит от амплитуды колебаний, но зависит от массы тела и от коэффициента упругости (или жесткости) пружины.

Дифференциальное уравнение гармонических колебаний:
,

Собственная круговая частота колебаний, определяемая природой и параметрами колеблющейся системы:


-для материальной точки массой m , колеблющейся под действием квазиупругой силы, характеризующейся коэффициентом упругости (жёсткости) k ;


-для математического маятника, имеющего длину l ;


-для электромагнитных колебаний в контуре с емкостью С и индуктивностью L .

ВАЖНОЕ ЗАМЕЧАНИЕ

Эти формулы верны при малых отклонениях от положения равновесия.

Скорость при гармоническом колебании:

.

Ускорение при гармоническом колебании:

Полная энергия гармонического колебания:

.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Задание 1

Определение зависимости периода собственных колебаний пружинного маятника от массы груза

1. Подвесьте к одной из пружин груз и выведите маятник из положения равновесия примерно на 1 - 2 см.

2. Предоставив грузу свободно колебаться, измерьте секундомером промежуток времени t , в течение которого маятник совершит n (n = 15 - 25) полных колебаний
. Найдите период колебания маятника, разделив измеренный вами промежуток времени на число колебаний. Для большей точности проведите измерения не менее 3 раз и вычислите среднее значение периода колебания.

Примечание : Следите за тем, чтобы боковые колебания груза отсутствовали, т. е. чтобы колебания маятника были строго вертикальными.

3. Повторите измерения с другими грузами. Результаты измерений запишите в таблицу.

4. Постройте зависимость периода колебаний маятника от массы груза. График будет более простым (прямая линия), если на горизонтальной оси откладывать значения маcсы грузов, а на вертикальной оси - значения квадрата периода.

Задание 2

Определение коэффициента упругости пружины динамическим методом

1. Подвесьте к одной из пружин груз массой 100 г., выведите его из положения равновесия на 1 - 2 см и, измерив время 15 - 20 полных колебаний, определите период колебания маятника с выбранным грузом по формуле
. Из формулы
вычислите коэффициент упругости пружины.

2. Проделайте аналогичные измерения с грузами от 150 г до 800 г (в зависимости от оборудования), определите для каждого случая коэффициент упругости и подсчитайте среднее значение коэффициента упругости пружины. Результаты измерений запишите в таблицу.

Задание 3 . По результатам лабораторной работы (задания 1 - 3):

– найдите значение циклической частоты маятника ω 0 .

– ответьте на вопрос: зависит ли амплитуда колебаний маятника от массы груза.

Возьмите на графике, полученном при выполнении задания 1 , произвольную точку и проведите из неё перпендикуляры до пересечения с осями Om и OT 2 . Определите для этой точки значения m и T 2 и по формуле
вычислите величину коэффициента упругости пружины.

Приложение

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

ПО СЛОЖЕНИЮ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами и амплитудами А 1 и А 2 , происходящих по одной прямой, определяется по формуле

где φ 0, 1 , φ 0, 2 - начальные фазы.

Начальная фаза φ 0 результирующего колебания может быть найдена по формуле

tg
.

Биения , возникающие при сложении двух колебаний x 1 =A cos2πν 1 t , происходящих по одной прямой с различными, но близкими по значению частотами ν 1 и ν 2 , описываются формулой

x = x 1 + x 2 + 2A cosπ (ν 1 – ν 2)t cosπ(ν 1 +ν 2)t .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты с амплитудами А 1 и А 2 и начальными фазами φ 0, 1 и φ 0, 2:

Если начальные фазы φ 0, 1 и φ 0, 2 составляющих колебаний одинаковы, то уравнение траектории принимает вид
. Если же начальные фазы отличаются на π, то уравнение траектории имеет вид
. Это уравнения прямых линий, проходящих через начало координат, иными словами, в этих случаях точка движется по прямой. В остальных случаях движение происходит по эллипсу. При разности фаз
оси этого эллипса расположены по осямО X и О Y и уравнение траектории принимает вид
. Такие колебания называются эллиптическими. При A 1 =A 2 =A x 2 +y 2 =A 2 . Это уравнение окружности, и колебания называются круговыми. При других значениях частот и разностей фаз траектории колеблющейся точки образует причудливой формы кривые, называемые фигурами Лиссажу .

РАЗБОР НЕКОТОРЫХ ТИПОВЫХ ЗАДАЧ

ПО УКАЗАННОЙ ТЕМЕ

Задача 1. Из графика колебаний материальной точки следует, что модуль скорости в момент времени t = 1/3 с равен...


Период гармонического колебания, изображенного на рисунке, равен 2 секундам. Амплитуда этого колебания 18 см. Поэтому зависимость x (t ) можно записать в виде x(t) = 18sinπ t . Скорость равна производной функции х (t ) по времени v (t ) = 18π cosπ t . Подставив t = (1/3) с, получим v (1/3) = 9π (см/с).

Правильным является ответ: 9 π см/с.

Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами A 0 . При разности
амплитуда результирующего колебания равна...


Решение существенно упрощается, если использовать векторный метод определения амплитуды и фазы результирующего колебания. Для этого одно из складываемых колебаний представим в виде горизонтального вектора с амплитудой А 1 . Из конца этого вектора построим второй вектор с амплитудой А 2 так, чтобы он образовал угол
с первым вектором. Тогда длина вектора, проведенного из начала первого вектора в конец последнего, будет равна амплитуде результирующего колебания, а угол, образуемый результирующим вектором с первым вектором, будет определять разность их фаз. Векторная диаграмма, соответствующая условию задания, приведена на рисунке. Отсюда сразу видно, что амплитуда результирующего колебания в
раз больше амплитуды каждого из складываемых колебаний.

Правильным является ответ:
.

ТочкаМ одновременно колеблется по гармоническому закону вдоль осей координат ОХ и OY с различными амплитудами, но одинаковыми частотами. При разности фаз π/2 траектория точки М имеет вид:

При заданной в условии разности фаз уравнением траектории является уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний (см. теоретические сведения).

Правильным является ответ: 1.

Два одинаково направленных гармонических колебания одного периода с амплитудами A 1 =10 см и А 2 =6 см складываются в одно колебание с амплитудой А рез =14 см. Разность фаз
складываемых колебаний равна...

В этом случае удобно воспользоваться формулой . Подставив в нее данные из условия задания, получим:
.

Этому значению косинуса соответствует
.

Правильным является ответ: .

Контрольные вопросы

1. Какие колебания называются гармоническими? 2. Какой вид имеет график незатухающих гармонических колебаний? 3. Какими величинами характеризуется гармонический колебательный процесс? 4. Приведите примеры колебательных движений из биологии и ветеринарии. 5. Напишите уравнение гармонических колебаний. 6. Как получить выражение для периода колебательного движения пружинного маятника?

ЛИТЕРАТУРА

    Грабовский Р. И. Курс физики. - М.: Высшая школа, 2008, ч. I, § 27-30.

    Основы физики и биофизики. Журавлёв А. И. , Белановский А. С., Новиков В. Э., Олешкевич А. А. и др. - М., Мир, 2008, гл. 2.

    Трофимова Т. И. Курс физики: Учебник для студ. вузов. - М.: МГАВМиБ, 2008. - гл. 18.

    Трофимова Т. И. Физика в таблицах и формулах: Учеб. пособие для студентов вузов. - 2-е изд., испр. - М.: Дрофа, 2004. - 432 с.

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают определённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмосферы и поверхности Земли, колебания маятников и т.д.

Если промежутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими , а промежуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний .

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторяется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические , т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

(308)

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объясняется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не только периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний (308) величина x отклонения материальной точки от положения равно­весия называется смещением .

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний . Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний . Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний . Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется (301), также изменяется по гармоническому закону

(309)

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рис.81.