Что такое сурьма. Когда и где нашли? Молекула и атом сурьмы

Сурьма — простое химическое вещество, элемент таблицы Менделеева Sb под номером 51. Химики относят его к полуметаллам, металлоидам, то есть к веществам, проявляющим свойства как металлов, так и неметаллов.

Сурьма встречается в природе в самородном виде, но чаще в составе минералов (их известно более сотни); в составе свинцовых, медных и серебряных руд. Промышленное значение имеет только один минерал — антимонит (сульфид сурьмы).

Виды и особенности

Сурьма имеет 4 металлические аллотропные модификации, и 3 аморфные: желтая сурьма, черная, взрывчатая. Металлическая сурьма, она же серая сурьма — похожее на металл серебристое вещество с синеватым отливом, твердое, но хрупкое, его легко растолочь в порошок. Металлическая сурьма очень высокой чистоты пластична. Вещество устойчиво в нормальных условиях, слабо проводит ток и тепло, имеет полупроводниковые свойства. Обладает редким качеством для металла — расширяется при охлаждении, благодаря чему используется для изготовления типографских литер.

Желтая сурьма при нагревании или ярком освещении превращается в черную сурьму с полупроводниковыми свойствами. Взрывчатая сурьма взрывается при трении. При определенных условиях черная и взрывчатая сурьма переходят в металлическую.

Сурьма растворяет многие металлы (образует с ними интерметаллические соединения). В химических реакциях проявляет валентность III и V. Для окисления кислородом требуется нагрев до 600 °С. Вступает в реакции с концентрированной азотной и серной кислотами, с «царской водкой», с галогенами и хлором.

Сурьма, особенно Sb III, а также ее соединения, ядовита, хотя как микроэлемент присутствует в организме человека и животных. В организме хим реактив может накапливаться, вызывая угнетение функции щитовидной железы и половой функции. На производствах, при работе с рудами и выплавке сплавов необходимо использовать индивидуальные средства защиты . Пары и пыль сурьмы вызывают поражение органов дыхания, носовое кровотечение, раздражение кожи и глазные заболевания. Попадание сурьмы через пищевой тракт менее опасно, так как она гидролизуется в процессе пищеварения и выводится из организма.

Сурьма относится к токсичным веществам 2 класса опасности и ее содержание в воздухе, воде, сточных водах и почвах регламентируется санитарными нормами.

Применение

— Сурьма входит в состав почти 200 сплавов. Добавление в сплав сурьмы увеличивает его твердость. Особенно часто применяются сплавы со свинцом, оловом, медью и висмутом для получения легкоплавких, но твердых, износо- и коррозиеустойчивых сплавов для производства подшипников, типографских шрифтов, труб для перекачки агрессивных жидкостей (твердый свинец), пуль и шрапнели.
— Основная часть производимой сурьмы идет на производство твердого свинца (сплав может содержать до 15% Sb) для выпуска пластин аккумуляторов и батарей. Из этого сплава также изготавливают электроды, оболочки кабелей, защитные экраны от излучения.
— Сплавы сурьмы с германием, индием, галлием и алюминием — высококачественные полупроводники. Теллурид сурьмы входит в состав термоэлектрических сплавов.
— Оксид сурьмы (III) — самое востребованное промышленностью соединение сурьмы. Оно отличается высокой термостойкостью, поэтому входит в состав жаростойких красок и эмалей, стекол, керамики, тканей, антипиренов. Краска на его основе используется для окраски кораблей, в том числе их подводной части. Триоксид сурьмы используется для получения Sb высокой чистоты для металлургии и производства полупроводников.
— Сульфиды сурьмы III и V используются в пиротехнике, в производстве трассирующих пуль, в составе спичечных головок, для вулканизации каучука, в составе особо эластичной и термостойкой резины для медицинских изделий (резина красных оттенков).
— Треххлористая сурьма применяется в химической промышленности для получения сурьмы высокой чистоты, в органическом синтезе, для получения жидкого неводного растворителя. Используется в аналитической химии; в текстильной промышленности в качестве протравы.
— Сурьма входит в состав многих красок и пигментов для стекольной, фарфоровой и керамической индустрии, в состав масляных красок для живописи. Мелкодисперсионный порошок чистой сурьмы является основой краски «железная чернь».
— Кроме того, сурьма применяется в люминесцентных лампах; в лекарственных препаратах; как источник γ-излучения и нейтронов, в бессвинцовом припое.

Магазин химических реактивов, лабораторного оборудования и средств защиты предлагает хим реактивы в широком ассортименте, среди которого имеется Сурьма (III) окись ч и

Сурьму (англ. Antimony, франц. Antimoine, нем. Antimon) человек знает издавна и в виде металла, и в виде некоторых соединений. Бертло описывает фрагмент вазы из металлической сурьмы, найденный в Телло (южная Вавилония) и относящийся к началу III в. до н. э. Найдены и другие предметы из металлической сурьмы, в частности в Грузии, датируемые I тысячелетием до н. з. Хорошо известна сурьмяная бронза, употреблявшаяся в период древнего Вавилонского царства; бронза содержала медь и добавки - олова, свинец и значительные количества сурьмы. Сплавы сурьмы со свинцом использовались для изготовления разнообразных изделий. Следует, однако, отметить, что в древности металлическая сурьма, по-видимому, не считалась индивидуальным металлом, ее принимали за свинец. Из соединений сурьмы в Междуречье, Индии, Средней Азии и других азиатских странах была известна сернистая сурьма (Sb 2 S 3), или минерал "сурьмяный блеск". Из минерала делали тонкий блестящий черный порошок, применявшийся для косметических целей, особенно для гримировки глаз "глазная мазь". Однако, вопреки всем этим данным о давнем распространении сурьмы и ее соединений, известный исследователь в области археологической химии Лукас утверждает, что в древнем Египте сурьма была почти неизвестна. Там, пишет он, установлен только один случай применения металлической сурьмы и немного случаев употребления соединений сурьмы. Кроме того, по мнению Лукаса, во всех археологических металлических объектах сурьма присутствует лишь в виде примесей; сернистая же сурьма, по крайней мере до времени и Нового царства, вообще не употреблялась для гримирования, о чем свидетельствует раскраска мумий. Между тем еще в III тысячелетии до н. э. в азиатских странах да и в самом Египте существовало косметическое средство, называемое стем, местем или стимми (stimmi); во II тысячелетии до н. э. появляется индийское слово сурьма; но все эти названия применялись, однако, главным образом для сернистого свинца (свинцового блеска). В Сирии и Палестине задолго до начала н.э. черный грим именовался не только стимми, но и каххаль или коголь, что во всех трех случаях означало любой тонкий сухой или растертый в виде мази порошок. Позднейшие писатели (около начала н. э.), например Плиний, называют стимми и стиби - косметические и фармацевтические средства для гримирования и лечения глаз. В греческой литературе Александрийского периода эти слова также означают косметическое средство черного цвета (черный порошок). Эти наименования переходят в арабскую литературу с некоторыми вариациями. Так, у Авиценны в "Каноне медицины" наряду со стимми фигурирует итмид, или атемид - порошок или осадок (паста) свинца. Позднее в указанной литературе появляются слова аль-каххаль (грим), алкооль, алкофоль, относящиеся главным образом к свинцовому блеску. Считалось, что косметические и лечебные средства для глаз содержат в себе некий таинственный дух, отсюда, вероятно, алкоголем стали называть летучие жидкости. Алхимики называли сурьмяный, также, впрочем, как и свинцовый, блеск антимонием (Antimonium). В словаре Руланда (1612) это слово объясняется, как алкофоль, камень из свинцовых рудных жил, марказит, сатурн, сурьма (Stibium), а стибиум, или стимми, как черная сера или минерал, который немцы называют списгласс (Spiesglas), впоследствии Bpiesglanz (вероятно, производное от стибиум). Однако, несмотря на такую путаницу в названиях, именно в алхимический период в Западной Европе сурьма и ее соединения были наконец разграничены со свинцом и его соединениями. Уже в алхимической литературе, а также в сочинениях эпохи Возрождения металлическая и сернистая сурьма обычно описывается достаточно точно. Начиная с XVI в. сурьму стали применять для самых различных целей, в частности в металлургии золота, для полировки зеркал, позднее в типографском деле и в медицине. Происхождение слова "антимоний", появившегося после 1050 г., объясняется различно. Известен рассказ Василия Валентина о том, как один монах, обнаруживший сильное слабительное действие сернистой сурьмы на свинье, рекомендовал его своим собратьям. Результат этого медицинского совета оказался плачевным - после приема средства все монахи умерли. Поэтому будто бы сурьма получила название, произведенное от "анти-монахиум" (средство против монахов). Но все это скорее анекдот. Слово "антимоний" , вероятнее всего, просто трансформированное итмид, или атемид, арабов. Существуют, впрочем, и другие объяснения. Так, некоторые авторы полагают, что "антимоний" - результат сокращения греч. антос аммонос, или цветок бога Амона (Юпитера); так якобы называли сурьмяный блеск. Другие производят "антимоний" от греч. анти-монос (противник уединения), подчеркивающего, что природная сурьма всегда совместна с другими минералами. Русское слово сурьма имеет тюркское происхождение; первоначальное значение этого слова - грим, мазь, притирание. Это название сохранилось во многих восточных языках (фарсидский, узбекский, азербайджанский, турецкий и др.) до наших времен. Ломоносов считал элемент "полуметаллом" и называл его сурьма. Наряду с сурьмой встречается и название антимоний. В русской литературе начала XIX в. употребляются слова сурьмяк (Захаров, 1810), сюрма, сюрьма, сюрмовой королек и сурьма.

Сурьма (латинское Stibium, обозначается символом Sb) - элемент с атомным номером 51 и атомным весом 121,75. Является элементом главной подгруппы пятой группы, пятого периода периодической системы химических элементов Дмитрия Ивановича Менделеева. Простое вещество сурьма - металл (полуметалл) серебристо-белого цвета с синеватым оттенком, грубозернистого строения. В обычном виде образует кристаллы, обладающие металлическим блеском и имеющие плотность 6,68 г/см3. Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит тепло и электрический ток, чем обычные металлы. Кроме кристаллической сурьмы известны и другие ее аллотропические модификации.

В природе известны два стабильных изотопа 121Sb (изотопная распространенность 57,25 %) и 123Sb (42,75 %). Из искусственно полученных радиоактивных изотопов важнейшие 122Sb (с периодом полураспада Т½ = 2,8 сут), 124Sb (Т½ = 60,2 сут) и 125Sb (Т½ = 2,7 года). Единственный долгоживущий радионуклид - 125Sb с периодом полураспада 2,76 года, все остальные изотопы и изомеры сурьмы имеют период полураспада, не превышающий двух месяцев.

C сурьмой человечество знакомо издревле: в странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. Соединение сурьмы - сурьмяный блеск (природный Sb2S3) применяли для окраски в черный цвет бровей и ресниц. В Древнем Египте порошок из этого минерала назывался mesten или stem, для древних греков сурьма была известна под именем stími и stíbi, отсюда латинский stibium. Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604 году. Гораздо позже появилось название antimonium. Собственно под этим названием сурьма была включена в список химических веществ в 1789 году, Лавуазье включил ее в список под именем antimoine.

Металлическая сурьма в виду своей хрупкости применяется редко, однако в связи с тем, что она увеличивает твердость других металлов (олова, свинца) и не окисляется при обычных условиях, металлурги нередко вводят ее в качестве легирующего элемента в состав различных сплавов. Сплавы с использованием пятьдесят первого элемента применяются широко в самых различных областях: для аккумуляторных пластин, типографских шрифтов, подшипников (баббиты), защитных экранов для работы с источниками ионизирующих излучений, посуды, художественного литья и т. п. Чистую металлическую сурьму в основном используют в полупроводниковой промышленности - для получения антимонидов (солей сурьмы) с полупроводниковыми свойствами. Пятьдесят первый элемент входит в состав сложных лекарственных синтетических препаратов. Широкое применение нашли и соединения сурьмы: сульфиды сурьмы используются при производстве спичек и в резиновой промышленности. Оксиды сурьмы применяются при производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий.

Сурьма относится к микроэлементам (содержание в организме человека 10–6 % по массе), однако биохимическая роль в организме ее до конца не выяснена. Известно лишь, что сурьма образует связи с атомами серы, что обусловливает ее высокую токсичность. Сурьма проявляет раздражающее и кумулятивное действие, накапливается в щитовидной железе, угнетая ее функцию и вызывая эндемический зоб. Пыль и пары пятьдесят первого элемента вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Тем не менее, еще с древних времен некоторые соединения сурьмы применяются в медицине как ценные лекарственные средства.

Биологические свойства

Сурьма относится к микроэлементам, она обнаружена во многих живых организмах. Установлено, что содержание пятьдесят первого элемента (на сто грамм сухого вещества) составляет в растениях 0,006 мг, в морских животных 0,02 мг, в наземных животных 0,0006 мг. В человеческом организме содержание сурьмы всего 10–6 % по массе. Поступление пятьдесят первого элемента в организм животных и человека происходит через органы дыхания (с вдыхаемым воздухом) или желудочно-кишечный тракт (с пищей, водой, медикаментами), среднесуточное поступление составляет около 50 мкг. Основными депо накопления сурьмы являются щитовидная железа, печень, селезенка, почки, костная ткань, также происходит накопление в крови (в эритроцитах накапливается преимущественно сурьма в степени окисления +3, в плазме крови - в степени окисления +5).

Выделяется металл из организма достаточно медленно главным образом с мочой (80 %), в незначительном количестве - с фекалиями. Однако физиологическая и биохимическая роль сурьмы до сих пор неизвестна и изучена весьма слабо, поэтому данные о клинических проявлениях дефицита сурьмы в литературе отсутствуют. Однако хорошо известны данные о предельно допустимых концентрациях пятьдесят первого элемента для человеческого организма: 10-5-10-7 грамм на 100 грамм сухой ткани. При более высокой концентрации сурьма инактивирует (препятствует работе) ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сульфгидрильных групп).

Дело в том, что сурьма и ее производные токсичны - Sb образует связи с серой (например, реагирует с SH-группами ферментов), что обусловливает ее высокую токсичность. Накапливаясь с избытком в щитовидной железе, сурьма угнетает ее функцию и вызывает эндемический зоб. При попадании в пищеварительный тракт сурьма и ее соединения не вызывают отравления, так как соли Sb (III) там гидролизуются с образованием малорастворимых продуктов, которые впоследствии выводятся из организма: наблюдается раздражение слизистой желудка, отчего наступает рефлекторная рвота, причем почти все количество принятой сурьмы выбрасывается вместе с рвотными массами. Однако после приемов значительных количеств сурьмы или при длительном ее применении могут наблюдаться местные поражения желудочно-кишечного тракта: язвы, гиперемия, набухание слизистой. При этом соединения сурьмы (III) более токсичны, чем сурьмы (V). Порог восприятия привкуса в воде - 0,5 мг/л. Смертельная доза для взрослого человека - 100 мг, для детей - 49 мг. ПДК Sb в почве 4,5 мг/кг.

В питьевой воде сурьма относится ко второму классу опасности, имеет ПДК 0,005 мг/л, установленное по санитарно-токсикологическому ЛПВ. В природных водах норматив содержания составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л. Пыль и пары пятьдесят первого элемента вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м3, в атмосферном воздухе 0,01 мг/м3. При втирании в кожу сурьма вызывает раздражение, эритемы, пустулы, подобные оспенным. Подобного рода повреждения могут наблюдаться в профессиях, имеющих дело с сурьмой: у эмалировщиков (применение окиси сурьмы), у печатников (работа с печатными сплавами, британский металл). При хронической интоксикации организма сурьмой необходимо принять соответствующие профилактические меры, ограничить ее поступление, провести симптоматическое лечение, возможно использование комплексообразователей.

Один из современнейших методов «использования» сурьмы поступил на вооружение криминалистов. Дело в том, что летящая пуля оставляет за собой вихревой поток - «след», в котором имеются мизерные доли ряда элементов - свинца, сурьмы, бария, меди. Оседая, они оставляют на любой поверхности невидимый «отпечаток». Однако невидимыми эти частицы были лишь до недавнего времени, современные научные разработки позволяют определить наличие частиц, а, следовательно, и направление полета пули. Происходит это следующим образом: на исследуемую поверхность накладывают полоски влажной фильтровальной бумаги, затем их помещают в ядерный реактор и подвергают бомбардировке нейтронами. В результате «обстрела» часть атомов, перешедших на бумагу (в том числе атомы сурьмы), превращается в радиоактивные изотопы, а степень их активности позволяет судить о долевом содержании этих элементов в пробах и таким образом определить траекторию и длину полета пули, характеристику самой пули, оружия и боеприпасов.

Многие полупроводниковые материалы, содержащие сурьму, были получены в условиях невесомости на борту советской орбитальной научной станции «Салют-6» и американской станции «Скайлэб».

Автор «Похождений бравого солдата Швейка» Ярослав Гашек в рассказе «Камень жизни» в ироничной манере излагает одну из версий происхождения названия «антимоний». В 1460 году настоятель Штальгаузенского монастыря в Баварии отец Леонардус искал философский камень. Стоит отметить, что, как ни странно, именно духовные особы имели особое пристрастие к занятиям алхимии, осуждая при этом алчных мирян, стремящихся к обогащению. В те далекие времена вряд ли удалось бы отыскать хоть один монастырь, в кельях и подвалах которого не шла бы напряженная алхимическая работа. Итак, в одном из своих опытов игумен Леонардус смешал в тигле пепел сожженного еретика с пеплом его кота и двойным количеством земли, взятой с места сожжения. Эту «адскую смесь» монах стал нагревать. После упаривания получилось тяжелое темное вещество с металлическим блеском. Результат огорчил настоятеля - в книге сожженного еретика говорилось о том, что заветный «философский камень» должен быть невесом и прозрачен. Разочаровавшись в «еретической науке», Леонардус выбросил полученное вещество на монастырский двор. Однако вскоре он заметил, что свиньи охотно лижут выброшенный им «камень» и при этом быстро жиреют. Решив, что им открыто весьма питательное вещество, которым можно накормить всех голодных, монах приготовил новую порцию «камня жизни», растолок его и этот порошок добавил в кашу, которой питались его тощие братья во Христе. На следующий день все сорок монахов Штальгаузенского монастыря умерли в страшных мучениях. Раскаиваясь в содеянном, настоятель проклял свои опыты, а «камень жизни» переименовал в антимониум, то есть средство «против монахов».

За достоверность рассказа вручаться не стоит, так же, как и за первоначального автора данной версии - средневекового алхимика монаха бенедиктинца Василия Валентина, жившего якобы в начале XV века. Дело в том, что еще в XVIII веке было установлено, что среди монахов ордена бенедиктинцев такого никогда не бывало. Ученые пришли к выводу, что «Василий Валентин» - это псевдоним неизвестного ученого, написавшего свой трактат не раньше середины XVI века...

Химики средневековья обнаружили, что в расплавленной сурьме растворяются почти все металлы. Металл, пожирающий другие металлы, - «химический хищник». Может быть, подобные рассуждения и привели к символическому изображению сурьмы в виде фигуры волка с открытой пастью.

В арабской литературе свинцовый и сурьмяный блеск называли аль-каххаль (грим), алкооль, алкофоль. Считалось, что косметические и лечебные средства для глаз содержат в себе некий таинственный дух, отсюда, вероятно, алкоголем стали называть летучие жидкости.

Всем знакомо выражение «насурьмянить брови», которое ранее обозначало косметическую операцию с использованием порошка сернистой сурьмы Sb2S3. Дело в том, что соединения пятьдесят первого элемента имеют разную расцветку: одни черного цвета, другие - оранжево-красного. Еще в незапамятные времена арабы торговали в странах Востока краской для подведения бровей, в составе которой находилась сурьма. Автор исторического романа «Самвел» Раффи подробно описывает технику этой косметической операции: «Юноша достал из-за пазухи кожаную сумочку, взял тонкую заостренную золотую палочку, поднес к губам, подышал на нее, чтобы она сделалась влажной, и опустил в порошок. Палочка покрылась тонким слоем черной пыли. Он начал накладывать сурьму на глаза». Во время археологических раскопок древних захоронений на территории Армении были обнаружены все выше описанные косметические принадлежности: тонкая заостренная золотая палочка и крохотная шкатулка из полированного мрамора.

История

Имя первооткрывателя сурьмы нам неизвестно, так как этот металл известен человеку с доисторических времен. Изделия из сурьмы и ее сплавов (в частности, сурьмы с медью) использовались человеком на протяжении многих тысячелетий, хорошо известная сурьмяная бронза, употреблявшаяся в период древнего Вавилонского царства, состояла из меди и добавок олова, свинца и большого количества сурьмы. Многочисленные археологические находки подтвердили предположения о том, что в Вавилоне еще за 3 тысячи лет до н.э. из сурьмы делали сосуды, например, хорошо известно описание фрагментов вазы из металлической сурьмы, найденной в Телло (южная Вавилония). Обнаружены и другие предметы из металлической сурьмы, в частности в Грузии, датируемые I тысячелетием до н. э. Для изготовления разнообразных изделий широко использовались и сплавы сурьмы со свинцом, вообще необходимо отметить, что в древности металлическая сурьма, по-видимому, не считалась индивидуальным металлом, ее принимали за свинец.

Что касается соединений сурьмы, то наиболее известен «сурьмяный блеск» - сернистая сурьма Sb2S3, которая была известна во многих странах. В Индии, Междуречье, Египте, Средней Азии и других азиатских странах из этого минерала делали тонкий блестящий черный порошок, применявшийся для косметических целей, особенно для гримировки глаз «глазная мазь». Так в Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска под названием mesten, stem или stimmi применялся для чернения бровей. В Сирии и Палестине задолго до начала н.э. черный грим именовался не только стимми, но и каххаль или коголь, что во всех трех случаях означало любой тонкий сухой или растертый в виде мази порошок. В Древней Греции он был известен как stimi и stibi, отсюда латинский stibium. Позднейшие писатели (примерно начало н. э.), например Плиний, называют stimmi и stibi - косметические и фармацевтические средства для гримирования и лечения глаз. В греческой литературе Александрийского периода эти слова также означают косметическое средство черного цвета (черный порошок). Однако путаница со свинцом продолжается, и зачастую все эти названия относятся к сернистому свинцу - свинцовому блеску PbS, а вовсе не к сурьме или её соединениям. Многие названия, как и отсутствие разграничения свинца с сурьмой постепенно перекочевывают в арабскую литературу, где встречаются такие понятия, как итмид или атемид - порошок или осадок (паста) свинца. Позднее появляются слова аль-каххаль, алкооль, алкофоль, относящиеся главным образом к свинцовому блеску и обозначающие грим.

В средние века алхимики называли сурьмяный, также, впрочем, как и свинцовый, блеск антимонием (antimonium), а саму металлическую сурьму в то время называли корольком сурьмы - regulus antimoni. Живший в XV столетии алхимик Василий Валентин детально описал в своей «Триумфальной колеснице антимония» получение металлической сурьмы, а также существовавшие уже тогда и употреблявшиеся сплавы на ее основе, например сплав со свинцом для отливки типографского шрифта, и значительное число препаратов сурьмы. Происхождение названия antimonium имеет несколько вариантов. Согласно первой теории название «антимоний» производится от греческого ανεμον - «цветок» - «антос аммонос», или цветок бога Амона (Юпитера) (по виду сростков игольчатых кристаллов сурьмяного блеска, похожих на цветы семейства сложноцветковых). Второй вариант происхождения слова antimonium описывает в своем труде Василий Валентин. Согласно его рассказу один монах, обнаруживший сильное слабительное действие сернистой сурьмы на свиней, зарекомендовал его своим собратьям. Результат этого медицинского опыта оказался плачевным - после приема средства все монахи скончались. Поэтому будто бы сурьма получила название, произведенное от «анти-монахиум» (средство против монахов). Однако более правдоподобными кажутся другие варианты происхождения этого слова, например, из трансформации арабских слов итмид, или атемид. Другие производят «антимоний» от греческого словосочетания анти-монос (противник уединения), подчеркивающего, что природная сурьма всегда совместна с другими минералами. Так или иначе, а в 1789 ггоду Лавуазье включил сурьму в список простых веществ и дал ей название antimonie, оно и сейчас остается французским названием пятьдесят первого элемента. Близки к нему английское и немецкое названия - antimony, antimon. Однако, несмотря на отсутствие однозначного ответа по поводу происхождения названия, именно в алхимический период в Западной Европе сурьма и ее соединения были разграничены со свинцом и его соединениями. Уже в средневековой литературе, а также в сочинениях эпохи Возрождения металлическая и сернистая сурьма обычно описываются достаточно точно.

Что касается русского слова «сурьма», то, вероятнее всего, оно имеет тюркское происхождение - surme. Первоначальное значение этого термина было - мазь, грим, притирание. Это подтверждается сохранением до нашего времени данного слова во многих восточных языках: турецком, фарсидском, узбекском, азербайджанском и других. По другим данным, «сурьма» происходит от персидского «сурме» - металл. В русской литературе начала XIX века употребляются слова сурьмяк (Захаров, 1810), сюрма, сюрьма, сюрмовой королек и сурьма.

Нахождение в природе

Несмотря на то, что содержание сурьмы в земной коре сравнительно невелико - среднее содержание (кларк) 5∙10-5 % (500 мг/т) - она была известна еще в глубокой древности. Это не удивительно, ведь сурьма входит в состав примерно ста минералов, самый распространенный из которых сурьмяный блеск Sb2S3 - минерал свинцово-серого цвета с металлическим блеском (он же антимонит, он же стибнит), содержащий более 70 % сурьмы и служащий основным промышленным сырьем для ее получения. Основная масса сурьмяного блеска образуется в гидротермальных месторождениях, где его скопления создают залежи сурьмяной руды в форме жил и тел пластообразной формы. В верхних частях рудных тел, близ поверхности земли, сурьмяный блеск подвергается окислению, образуя ряд минералов, а именно: сенармонтит и валентит Sb2O3 (оба минерала одного и того же химического состава, содержат 83,32 % сурьмы и 16,68 % кислорода); сервантит (сурьмяная охра) Sb2O4; стибиоканит Sb2O4∙nH2O; кермезит Sb2S2O. В редких случаях сурьмяные руды (благодаря сродству с серой) представлены сложными сульфидами сурьмы, меди, ртути, свинца, железа (бертьерит FeSbS4, джемсонит Pb4FeSb6S14, тетраэдрит Cu12Sb4S13, ливингстонит HgSb4S8 и другие), а также окислами и оксихлоридами (сенармонтит, надорит PbClSbO2) сурьмы.

В природных соединениях пятьдесят первый элемент с одной стороны проявляет свойства металла и является типичным халькофильным элементом, образуя антимонит. В тоже время, сурьма обладает свойствами металлоида, проявляющимися в образовании различных сульфосолей - буланжерита, тетраэдрита, бурнонита, пираргирита и прочих. С рядом металлов (палладий, мышьяк) сурьма способна создавать интерметаллические соединения. Кроме того, в природе наблюдается изоморфное замещение сурьмы и мышьяка в блёклых рудах и геокроните Pb5(Sb, As)2S8 и сурьмы и висмута в кобеллите Pb6FeBi4Sb2S16 и др. Стоит отметить, что сурьма встречается и в самородном состоянии. Самородная сурьма - минерал состава Sb, иногда с незначительной примесью серебра, мышьяка, висмута (до 5 %). Встречается в виде зернистых масс (кристаллизующихся в тригональной системе), натёчных образований и ромбоэдрических пластинчатых кристаллов. Самородная сурьма имеет металлический блеск, оловянно-белый цвет с жёлтой побежалостью. Образуется в основном при дефиците серы в низкотемпературных гидротермальных сурьмяных, сурьмяно-золото-серебряных и медно-свинцово-цинково-сурьмяно-серебряно-мышьяковых, а также высокотемпературных пневматолитово-гидротермальных сурьмяно-серебро-вольфрамовых месторождениях (в последних содержание пятьдесят первого элемента может порой достигать промышленных значений - Сейняйоки в Финляндии).

Содержание сурьмы в пластовых рудных телах от 1 до 10 %, в жильных - от 3 до 50 %, среднее содержание - от 5 до 20 %, порою более. Пластовые рудные тела образуются при посредстве низкотемпературных гидротермальных растворов путём заполнения трещин в горных породах, а также вследствие замещения последних минералами сурьмы. Основное промышленное значение имеют два типа месторождений: пластовые тела, линзы, гнёзда и штокверки в выдержанных плащеобразных залежах, образующихся в результате метасоматического замещения кремнезёмом и соединениями сурьмы известняков под сланцевым экраном (в Китае - Сикуаншань, в СНГ - Кадамджай, Терексай, Джижикрут в Средней Азии). Второй тип месторождений - системы крутопадающих секущих кварцево-антимонитовых жил в сланцах (в СНГ - Тургайское, Раздольнинское, Сарылах и др.; в Южной Африке - Гравелот и др.).

Богатые месторождения сурьмяных минералов обнаружены на территории Китая, Боливии, Японии, США, Чехии, Словакии, Мексики, ряда африканских стран.

Применение

В связи с высокой хрупкостью металлическая сурьма применяется редко, но, так как она увеличивает твердость других металлов (например, олова и свинца) и не окисляется при обычных условиях, металлурги часто вводят ее в состав различных сплавов. Общее число сплавов, содержащих пятьдесят первый элемент, приближается к двумстам. Легирование ряда сплавов сурьмой было известно еще в средние века, о чем мы можем узнать из трудов крупнейшего металлурга тех времен Георга Агриколы (XVI век): «Если путем сплавления определенная порция сурьмы прибавляется к олову, получается типографский сплав, из которого изготовляется шрифт, применяемый теми, кто получает книги».

Невероятно, но такой сплав - гарт (сурьма, олово и свинец), содержащий от 5 до 30 % Sb - непременный атрибут любой типографии наших дней! В чем же уникальность сплава, прошедшего сквозь века? Дело в том, что расплавленная сурьма, в отличие от других металлов (кроме висмута и галлия), при затвердевании расширяется, то есть увеличивает свой объем. Таким образом, при отливке шрифта типографский сплав, содержащий сурьму, застывая в литейной матрице, расширяется, благодаря чему плотно её заполняет и, следовательно, очень точно воспроизводит зеркальное изображение, которое впоследствии переносится на бумагу. Кроме того, сурьма придаёт типографскому сплаву твёрдость и износостойкость, что очень важно при многократном использовании шаблона.

Сплавы свинца с сурьмой, применяемые в химическом машиностроении (для облицовки ванн и другой кислотоупорной аппаратуры) имеют высокую твердость и коррозионную стойкость. Наиболее известный сплав гартблей (содержание Sb от 5 до 15 %) применяется для изготовления труб, по которым транспортируют агрессивные жидкости. Из этого же сплава делают оболочки телеграфных, телефонных и электрических кабелей, электроды, пластины аккумуляторов, сердечники пуль, дробь, шрапнель. Широкое применение (станкостроение, железнодорожный и автомобильный транспорт) нашли подшипниковые сплавы (баббиты), содержащие олово, медь, свинец и сурьму (Sb от 4 до 15 %), они обладают достаточной твердостью, большим сопротивлением истиранию, высокой коррозионной стойкостью. Также сурьма добавляется к металлам, предназначенным для тонких отливок.

Чистую сурьму используют для получения антимонидов (AlSb, CaSb, InSb), а так же, как добавку в производстве полупроводниковых соединений. Такой сурьмой легируют (всего 0,000001 %) важнейший полупроводниковый металл - германий, чтобы улучшить его качества. Ряд ее соединений (в частности, с галлием и индием) - сами отличные полупроводники. Пятьдесят первый элемент применяется в полупроводниковой промышленности не только как леганд. Сурьму используют и при производстве диодов (AlSb и CaSb), инфракрасных детекторов, устройств с эффектом Холла. Антимонид индия применяют для построения датчиков Холла, для преобразования неэлектрических величин в электрические, в счетно-решающих устройствах, в качестве фильтра и регистратора инфракрасного излучения. Благодаря большой ширине запрещенной зоны AlSb применяют для построения солнечных батарей.

Разнообразна «деятельность» и соединений сурьмы. Например, трёхокись сурьмы (Sb2O3) применяется в основном как пигмент для красок, глушитель для эмали, протрава в текстильной промышленности, в производстве огнеупорных соединений и красок, её используют также для изготовления оптического (просветлённого) стекла, керамических эмалей. Пятиокись сурьмы (Sb2O5) находит широкое применение в изготовление лечебных препаратов, в производстве стекла, керамики, красок, в текстильной и резиновой промышленности, в качестве составной части люминесцентных ламп дневного света (в люминесцентных лампах галофосфатом кальция активируют Sb). Трехсернистую сурьму используют в производстве спичек и в пиротехнике. Пятисеринстую сурьму применяют для вулканизации каучука (у «медицинской» резины, в состав которой входит Sb2S5, характерный красный цвет и высокая эластичность). Сурьма треххлористая (SbCl3) применяется для воронения сталей, чернения цинка, в медицине, в качестве протравы в текстильном производстве и как реактив в аналитической химии. Ядовитый стибин или сурьмянистый водород SbH3 - применяется в качестве фумиганта для борьбы с насекомыми - вредителями сельскохозяйственных растений. Многие соединения сурьмы могут служить пигментами в красках, например, сурьмянокислый калий (K2O 2Sb2O5) широко применяется в производстве керамики, краска «сурьмин», основу которой составляет трехокись сурьмы, применяется для окраски подводной части и надпалубных построек кораблей. Метасурьмянокислый натрий (NaSbO3) под названием «лейконин» используется для покрытия кухонной посуды, а также в производстве эмали и белого молочного стекла.

Производство

Сурьма довольно редкий элемент, в земной коре ее имеется не более 5∙10-5 %, тем не менее, известно свыше ста минералов, содержащих этот элемент. Самый распространенный и имеющий наибольшее промышленное значение минерал сурьмы - сурьмяный блеск, или стибнит, Sb2S3, содержащий свыше 70 % сурьмы. Остальные сурьмяные руды резко отличаются друг от друга по содержанию в них металла - от 1 до 60 %. Получать металлическую сурьму непосредственно из руд, в которых меньше 10 % Sb, экономически нецелесообразно. По этой причине бедные руды предварительно обогащаются. Сульфидные, а также комплексные руды обогащают флотацией, а сульфидно-окисленные - комбинированными методами. Пройдя обогащение, рудный концентрат содержит уже от 30 до 60 % Sb, такое сырье пригодно для переработки в элементарную сурьму, что и производится пирометаллургическим или гидрометаллургическим методами. В первом варианте все преобразования протекают в расплаве под воздействием высокой температуры, во втором - в водных растворах соединений сурьмы и других элементов. К пирометаллургическим методам получения сурьмы относятся: осадительная, восстановительная и прямая плавка в шахтных печах. Осадительная плавка, сырьём для которой является сульфидный концентрат, основана на вытеснение сурьмы из её сульфида железом:

Sb2S3 + 3Fe → 2Sb + 3FeS

Происходит процесс в отражательных или вращающихся барабанных печах следующим образом: железо в виде чугунной либо стальной стружки вводят непосредственно в печь, далее для образования восстановительной атмосферы, которая предотвращает потери с выходом летучего оксида сурьмы (III), в шихту добавляют древесный уголь (каменноугольную мелочь или кокс). Для ошлакования пустой породы в шихту вводят флюсы - сульфат натрия или соду. Плавка шихты происходит при постоянной температуре 1 300-1 400 °C. В результате осадительной плавки образуется черновая сурьма, содержащая от 95 до 97 % Sb (зависит от первоначального содержания в концентрате) и от 3 до 5 % примесей - железа, золота, свинца, меди, мышьяка и других металлов, которые содержались в исходном сырье. Извлечение сурьмы из первоначального концентрата составляет от 77 до 92 %.

Восстановительная плавка основана на восстановлении окислов сурьмы до металла твёрдым углеродом:

Sb2O4 + 4C → 2Sb + 4CO

Производится в отражательных либо коротких барабанных печах при температуре 800-1 000 °С. Шихту составляют окисленная руда, древесный уголь (возможна каменноугольная пыль) и флюс (сода, поташ). Получается черновая сурьма более чистая, чем при осадительной плавке (более 99 % Sb), извлечение металла из концентрата составляет 80-90 %.

Прямая плавка в шахтных печах применяется для выплавки металла из бедного окислённого или сульфидного крупнокускового сырья. Максимальная температура 1 300-1 500 °С достигается горением кокса - составной части шихты, в качестве флюса выступают известняк, пиритные огарки или железная руда. Металл получается как за счет восстановления коксом Sb2O3, так и в результате взаимодействия не окислившегося антимонита с Sb2O3 при постоянном удалении SO2 из расплава печными газами. Продукты плавки (черновой металл и шлак) стекают в нижнюю часть печи и выпускаются из него в отстойник.

Другой метод получения сурьмы - гидрометаллургический находит всё большее применение последнее время. Он состоит из двух стадий: обработка сырья с переводом в раствор соединений сурьмы и выделение сурьмы из этих растворов. Сложность данного метода заключается в том, что перевести сурьму в раствор довольно проблематично: большинство природных соединений сурьмы в воде почти не растворяется. Однако нужный растворитель был найден - водный раствор сернистого натрия (120 г/л) и едкого натра (30 г/л). Сульфид и окись сурьмы переходит в раствор в виде сульфасолей и солей сурьмяных кислот. Из полученного раствора металлическую сурьму выделяют электролизом. Черновая сурьма, полученная гидрометаллургическим методом, не отличается особой чистотой и содержит от 1,5 до 15 % примесей.

Для получения сурьмы с меньшим количеством примесей применяют пирометаллургическое (огневое) или электролитическое рафинирование. Наиболее распространенное в промышленности огневое рафинирование производится в отражательных печах. При добавлении к расплавленной черновой сурьме стибнита, примеси железа и меди образуют сернистые соединения и переходят в штейн. Мышьяк удаляют в виде арсената натрия при плавке в окислительной атмосфере (продувка воздухом) содой или поташом, при этом удаляется и сера. При наличии благородных металлов применяют анодное электролитическое рафинирование, позволяющее сконцентрировать благородные металлы в шламе. Рафинированная сурьма содержит уже не более 0,5-0,8 % чужеродных примесей. Однако и такой металл удовлетворяет не всех потребителей - для полупроводниковой промышленности, например, требуется сурьма 99,999 % чистоты. В таком случае применяют кристаллофизический метод очистки - зонную плавку в атмосфере аргона, в особо ответственных случаях, зонную плавку повторяют несколько раз.

Физические свойства

Сурьма известна в кристаллической форме и трех аморфных модификациях (взрывчатая, черная и желтая). По внешнему виду кристаллическая, или серая, сурьма (это ее основная модификация) - типичный блестящий металл серебристо-белого цвета с легким синеватым оттенком, который тем сильнее, чем больше примесей (чистый элемент в свободном состоянии образует игольчатые кристаллы, напоминающие форму звезд).

Многие механические свойства зависят от чистоты металла. Серая сурьма кристаллизуется в тригональной (ромбоэдрической) системе (а = 0,45064 нм, z = 2, пространственная группа R3m), ее плотность 6,61-6,73 г/см3 (в жидком состоянии - 6,55 г/см3). При давлении ~5,5 ГПа ромбоэдрическая решетка серой сурьмы переходит в кубическую модификацию SbII. При давлении 8,5 ГПа - в гексагональную SbIII. Выше 28 ГПа образуется SbIV. Плавится кристаллическая сурьма при невысокой температуре - 630,5 °C, кипеть расплавленная сурьма начинает при 1 634 °C. Удельная теплоемкость серой сурьмы при температурах 20-100° С составляет 0,210 кдж/(кг К) или 0,0498 кал/(г °С), теплопроводность при 20 °С равна 17,6 вт/(м К) или 0,042 кал/(см сек °С). Температурный коэффициент линейного расширения для поликристаллической сурьмы 11,5 10-6 при температуре от 0 до 100 °С; для монокристалла а1 = 8,1 10-6, а2 = 19,5 10-6 при 0-400 °С, удельное электросопротивление при 20 °С составляет 43,045 10-6 см см. Сурьма диамагнитна, ее удельная магнитная восприимчивость равна -0,66 10-6. Твердость по Бринеллю для литого металла равна 325-340 Мн/м2 (32,5-34,0 кгс/мм2); модуль упругости 285-300; предел прочности 86,0 Мн/м2 (8,6 кгс/мм2). Температура перехода сурьмы в сверхпроводящее состояние 2,7 К. Серая сурьма имеет слоистую структуру, где каждый атом Sb пирамидально связан с тремя соседями по слою (межатомное расстояние 0,288 нм) и имеет трех ближайших соседей в другом слое (межатомное расстояние 0,338 нм). При обычных условиях устойчива именно эта форма сурьмы.

При резком охлаждении паров серой сурьмы образуется, так называемая, черная сурьма (плотность 5,3 г/см3), которая при нагреве до 400 °С без доступа воздуха снова переходит в серую сурьму. Черная сурьма обладает полупроводниковыми свойствами. Желтая сурьма образуется при действии кислорода на жидкий стибин SbH3 и содержит незначительные количества химически связанного водорода. При нагревании, а также при освещении видимым светом желтая сурьма переходит в черную сурьму. Взрывчатая сурьма внешне похожа на графит (плотность 5,64-5,97 г/см3) взрывается при ударе и трении. Данная модификация образуется при электролизе раствора SbCl3 в соляной кислоте при малой плотности тока, содержит связанный хлор. Взрывчатая сурьма при растирании или ударе с взрывом превращается в металлическую сурьму.

Однозначно утверждать, что сурьма - металл, нельзя. Еще средневековые алхимики причислили ее (впрочем, как и некоторые истинные металлы: цинк и висмут, например) к группе «полуметаллов», ведь они хуже ковались, а ковкость считалась основным признаком металла, кроме того, по алхимическим представлениям, каждый металл был связан с каким-либо небесным телом. К тому моменту все известные небесные тела были уже распределены (Солнце связывали с золотом, Луна олицетворяла серебро, Меркурий - ртуть, Венера - медь, Марс - железо, Юпитер - олово и Сатурн - свинец), следовательно, самостоятельных металлов, по мнению алхимиков, больше не существовало.

Как оказалось позже - частично средневековые химики были правы, что подтверждается анализом ряда физических и химических свойств сурьмы. В отличие от большинства металлов, сурьма, во-первых, очень хрупка и легко истирается в порошок (это легко сделать в фарфоровой ступке фарфоровым пестиком), а во-вторых, значительно хуже проводит электричество и тепло (при 0 °C ее электропроводность составляет лишь 3,76 % электропроводности серебра). В то же время, кристаллическая сурьма имеет характерный металлический блеск, выше 310 °С становится пластичной, кроме того, монокристаллы высокой чистоты тоже пластичны. С серной кислотой сурьма образует сульфат Sb2(SO4)3 и тем самым утверждает себя в металлическом качестве, а азотная кислота окисляет сурьму до высшего оксида, образующегося в виде гидратированного соединения xSb2O5 уН2О, доказывая ее характер неметалла. Получается, что металлические свойства выражены у сурьмы довольно слабо, однако и свойства неметалла присущи ей далеко не в полной мере.

Химические свойства

Конфигурация внешних электронов атома сурьмы 5s25p3. В своих соединениях сурьма обнаруживает большое сходство с мышьяком, однако отличается от него более сильно выраженными металлическими свойствами, проявляет главным образом степени окисления +5, +3 и -3. Вообще, в химическом отношении пятьдесят первый элемент малоактивен - на воздухе при комнатной температуре металлическая сурьма устойчива, начинает окисляться лишь при температурах близких к точке плавления (~600 °С) с образованием оксида сурьмы (III), или сурьмянистого ангидрида - Sb2O3:

4Sb + 3O2 → 2Sb2O3

выше температуры плавления сурьма загорается. Оксид сурьмы (III) - типичный амфотерный оксид с некоторым преобладанием основных свойств, нерастворим, образует минералы. Реагирует со щелочами и кислотами, причем в сильных кислотах, например серной и соляной, оксид сурьмы (III) растворяется с образованием солей сурьмы (III), в щелочах с образованием солей сурьмянистой H3SbO3 или метасурьмянистой HSbO2 кислоты:

Sb2O3 + 2NaOH → 2NaSbO2 + Н2О

Sb2O3 + 6HCl → 2SbCl3 + 3H2O

При нагревании Sb2O3 выше 700 °C в кислороде образуется оксид состава Sb2O4:

2Sb2O3 + O2 → 2Sb2O4

Sb2O4 одновременно содержит трех- и пятивалентную сурьму. В его структуре соединены друг с другом октаэдрические группировки и . Этот окисел сурьмы самый устойчивый.

Измельченная порошкообразная сурьма горит в атмосфере хлора, пятьдесят первый элемент активно реагирует и с другими галогенами, образуя галогениды сурьмы. С азотом и водородом у металлической сурьмы реакции не возникает, также как с кремнием и бором, углерод незначительно растворяется в расплавленной сурьме. С серой, фосфором, мышьяком и со многими металлами сурьма соединяется при сплавлении. Соединяясь с металлами, сурьма образует антимониды, например, антимонид олова SnSb, никеля Ni2Sb3, NiSb, Ni5Sb2 и Ni4Sb. Антимониды можно рассматривать как продукты замещения водорода в стибине (SbН3) атомами металла. Некоторые антимониды, в частности AlSb, GaSb, InSb, обладают полупроводниковыми свойствами.

Сурьма устойчива по отношению к воде и разбавленным кислотам. Так, например, в соляной кислоте и в разбавленной серной кислоте сурьма не растворяется. Не реагирует она и с фтористоводородной и плавиковой кислотами. Однако концентрированные соляная и серная кислоты медленно растворяют сурьму с образованием хлорида SbCl3 и сульфата Sb2(SO4)3. С концентрированной азотной кислотой образуется плохо растворимая β-сурьмяная кислота HSbO3:

3Sb + 5HNO3 → 3HSbO3 + 5NO + H2O

Сурьма легко растворяется в царской водке, в смеси азотной и винной кислот. Растворы щелочей и NH3 на сурьму не действуют, расплавленные щелочи растворяют сурьму с образованием антимонатов.

При нагревании с нитратами или хлоратами щелочных металлов порошкообразная сурьма со вспышкой образует соли сурьмяной кислоты. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты (MeSbO3 3H2O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO2 3H2O), обладающие восстановительными свойствами. Антимонаты (III) щелочных металлов, в особенности калия, растворимы в воде, в отличие от остальных антимонатов. При нагревании на воздухе окисляются до антимонатов (V). Известны метаантимонаты (III), например КSbО2, ортоантимонаты (III), как Na3SbO3, и полиантимонаты, например NaSb5O8, Na2Sb4O7. Для редкоземельных элементов характерно образование ортоантимонатов LnSbO3, а также Ln3Sb5O12. Антимонаты никеля, марганца - катализаторы в органическом синтезе (реакции окисления и поликонденсации), антимонаты редкоземельных элементов - люминофоры.

Из наиболее важных соединений сурьмы, кроме выше описанного оксида (III) выделяют также: гидрид (стибин) SbН3 - бесцветный ядовитый газ, образующийся действием HCl на антимониды магния или цинка или солянокислого раствора SbCl3 на NaBH4. Стибин медленно разлагается при комнатной температуре на сурьму и водород, процесс значительно ускоряется при нагреве до 150 °C; он легко окисляется, горит на воздухе; мало растворим в воде; используют для получения сурьмы высокой чистоты. Другое важное соединение пятьдесят первого элемента - оксид сурьмы (V) или сурьмяный ангидрид, Sb2O5 (желтые кристаллы, растворяется в воде, образуя сурьмяную кислоту) обладает главным образом кислотными свойствами.

Что интересно, низший оксид сурьмы (Sb2O3) называют сурьмянистым ангидридом, хотя это утверждение неверно, ведь ангидрид является кислотообразующим окислом, а у Sb(OH)3, гидрата Sb2O3, основные свойства явно преобладают над кислотными. Таким образом, свойства низшего окисла сурьмы говорят о том, что сурьма - металл. Однако, высший окисел сурьмы Sb2O5 - это действительно ангидрид с четко выраженными кислотными свойствами, что говорит в пользу того, что сурьма всё же - неметалл. Получается, что дуализм, наблюдаемый в физических характеристиках пятьдесят первого элемента, так же прослеживается и в химических свойствах сурьмы.

Атомный номер 51
Внешний вид простого вещества металл серебристо-белого цвета
Свойства атома
Атомная масса
(молярная масса)
121,760 а. е. м. ( /моль)
Радиус атома 159 пм
Энергия ионизации
(первый электрон)
833,3 (8,64) кДж/моль (эВ)
Электронная конфигурация 4d 10 5s 2 5p 3
Химические свойства
Ковалентный радиус 140 пм
Радиус иона (+6e)62 (-3e)245 пм
Электроотрицательность
(по Полингу)
2,05
Электродный потенциал 0
Степени окисления 5, 3, −3
Термодинамические свойства простого вещества
Плотность 6,691 /см ³
Молярная теплоёмкость 25,2 Дж /( ·моль)
Теплопроводность 24,43 Вт /( ·)
Температура плавления 903,9
Теплота плавления 20,08 кДж /моль
Температура кипения 1908
Теплота испарения 195,2 кДж /моль
Молярный объём 18,4 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки тригональная
Параметры решётки 4,510
Отношение c/a n/a
Температура Дебая 200,00
Sb 51
121,760
4d 10 5s 2 5p 3

— элемент главной подгруппы пятой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 51. Обозначается символом Sb (лат. Stibium). Простое вещество сурьма (CAS-номер: 7440-36-0) — металл (полуметалл) серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации.

Историческая справка

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb 2 S 3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi , отсюда латинский stibium . Около 12—14 вв. н. э. появилось название antimonium . В 1789 А. Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony , испанский и итальянский antimonio , немецкий Antimon ). Русская «сурьма» произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, «сурьма» — от персидского «сурме» — металл). Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.

Нахождение в природе

В среднетемпературных гидротермальных жилах с рудами серебра, кобальта и никеля, также в сульфидных рудах сложного состава.

Изотопы сурьмы

Природная сурьма является смесью двух изотопов: 121 Sb (изотопная распространённость 57,36 %) и 123 Sb (42,64 %). Единственный долгоживущий радионуклид — 125 Sb с периодом полураспада 2,76 года, все остальные изотопы и изомеры сурьмы имеют период полураспада, не превышающий двух месяцев, что не позволяет использовать их в ядерном оружии.

Пороговая энергия для реакций с высвобождением нейтрона (1-го):
121 Sb — 9,248 Мэв
123 Sb — 8,977 Мэв
125 Sb — 8,730 Мэв

Физические и химические свойства

Сурьма в свободном состоянии образует серебристо-белые кристаллы с металлическим блеском, плостность 6,68 г/см³. Напоминая внешним видом металл, кристаллическая сурьма обладает большей хрупкостью и меньшей тепло- и электропроводностью.

Применение

Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов, устройств с эффектом Холла. В виде сплава этот металлоид существенно увеличивает твёрдость и механическую прочность свинца.
Используется:

— батареи
— антифрикционные сплавы
— типографские сплавы
— стрелковое оружие и трассирующие пули
— оболочки кабелей
— спички
— лекарства, противопротозойные средства
— пайка отдельные бессвинцовые припои содержат 5 % Sb
— использование в линотипных печатных машинах

Соединения сурьмы в форме оксидов, сульфидов, антимоната натрия и трихлорида сурьмы, применяются в производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий. Триоксид сурьмы является наиболее важным из соединений сурьмы и главным образом используется в огнестойких композициях. Сульфид сурьмы является одним из ингредиентов в спичечных головках.

Природный сульфид сурьмы, стибнит, использовали в библейские времена в медицине и косметике. Стибнит до сих пор используется в некоторых развивающихся странах в качестве лекарства. Соединения сурьмы — меглюмина антимониат (глюкантим) и натрия стибоглюконат (пентостам), применяются в лечении лейшманиоза .

Физические свойства

Обыкновенная сурьма это серебристо-белый с сильным блеском металл. В отличие от большинства других металлов, при застывании расширяется. Sb понижает точки плавления и кристаллизации свинца, а сам сплав при отвердении несколько расширяется в объёме. Вместе с оловом и медью сурьма образует металлический сплав — Баббит, обладающий антифрикционными свойствами(использование в подшипниках).Также Sb добавляется к металлам, предназначенным для тонких отливок.

Красной ртути ». Особенность этого вещества состоит в том что оно является своего рода многофункциональным ядерным катализатором (коэффициент размножения нейтронов 7—9) и должно очень строго учитываться любой страной ввиду угрозы ядерного терроризма.

Цены

Цены на металлическую сурьму в слитках чистотой 99 % составили около 5,5 долл/кг.

Термоэлектрические материалы

Теллурид сурьмы применяется как компонент термоэлектрических сплавов (термо-э.д.с 100—150 мкВ/К) с теллуридом висмута.

Биологическая роль и воздействие на организм

Сурьма относится к микроэлементам. Её содержание в организме человека составляет 10 -6 % по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль не выяснена. Сурьма проявляет раздражающее и кумулятивное действие. Нaкапливается в щитовидной железе, угнетает её функцию и вызывает эндемический зоб. Однако, попадая в пищеварительный тракт, соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. При этом соединения сурьмы (III) более токсичны чем сурьмы (V). Пыль и пары Sb вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Порог восприятия привкуса в воде — 0,5 мг/л. Смертельная доза для взрослого человека — 100 мг, для детей — 49 мг. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м 3 , в атмосферном воздухе 0,01 мг/м 3 . ПДК в почве 4,5 мг/кг. В питьевой воде сурьма относится ко 2 классу опасности, имеет ПДК 0,005 мг/л, установленное по санитарно-токсикологическому ЛПВ . В природных водах норматив содержания составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л.

Сурьма химический элемент (франц. Antimoine, англ. Antimony, нем. Antimon, лат. Stibium, откуда символ - Sb, или Regulus antimonii; атомн. вес = 120, если О = 16) - блестящий серебристо-белый металл, обладающий грубопластинчатым кристаллическим изломом или зернистым, смотря по быстроте застывания из расплавленного состояния. Сурьма кристаллизуется в тупых ромбоэдрах, весьма близких к кубу, как и висмут (см.), и имеет уд. вес 6,71-6,86. Самородная сурьма встречается в виде чешуйчатых масс, обыкновенно с содержанием серебра, железа и мышьяка; уд. вес ее 6,5-7,0. Это самый хрупкий из металлов, легко обращаемый в порошок в обыкновенной фарфоровой ступке. Плавится С. при 629,5° [По новейшим определениям (Heycock and Neville. 1895 г.).] и перегоняется при белом калении; была определена даже плотность пара ее, каковая при 1640° оказалась несколько большей, чем требуется для принятия в частице двух атомов - Sb 2 [Именно В. Мейер и Г. Бильтц нашли в 1889 г. для плотности пара С. по отношению к воздуху следующие величины: 10,743 при 1572° и 9,781 при 1640°, что говорит о способности частицы ее диссоциировать при нагревании. Так как для частицы Sb 2 вычисляется плотность 8,3, то найденные плотности говорят как бы о неспособности этого "металла" быть в состоянии простейшем, в виде одноатомной частицы Sb 3 , что отличает его от настоящих металлов. Те же авторы исследовали плотности пара висмута, мышьяка и фосфора. Только один висмут оказался способным дать частицу Bi 1 ; для него найдены следующие плотности: 10,125 при 1700° и 11,983 при 1600°, а вычисленные для Bi 1 и Вi 2 плотности равны 7,2 и 14,4. Частицы фосфора Р 4 (при 515° - 1040°) и мышьяка As 4 (при 860°) диссоциируют от нагревания трудно, особенно Р 4 : при 1700° из 3Р 4 только одна частица - можно думать - превращается в 2Р 2 , a As4 при этом претерпевает почти полное превращение в As2 Таким образом, самый металличный из этих элементов, составляющих одну из подгрупп периодической системы есть висмут, судя по плотности пара; свойства же неметалла принадлежат в наибольшей степени фосфору, характеризуя в то же время мышьяк и в меньшей степени - С.]]. Перегонять С. можно в токе сухого газа, напр. водорода, так как она легко окисляется не только на воздухе, но и в парах воды при высокой темп., превращаясь в окись, или, что то же, в сурьмянистый ангидрид:

2Sb + 3Н 2 O = Sb2 O3 + 3Н 2 ;

если расплавить кусочек С. на угле перед паяльной трубкой и бросить его с некоторой высоты на лист бумаги, то получается масса раскаленных шариков, которые катятся, образуя белый дым окиси. При обыкновенной температуре С. не изменяется на воздухе. По формам соединений и по всем химическим отношениям С. принадлежит в V группе периодической системы элементов, именно к менее металлической ее подгруппе, которая содержит еще фосфор, мышьяк и висмут; к последним двум элементам она относится так же, как олово в IV группе относится к германию и свинцу. Важнейших типов соединений С. два - SbX 3 и SbX 5 , где она является трехвалентной и пятивалентной; очень вероятно, что эти типы в то же время и единственные. Галоидные соединения С. в особенности ясно удостоверяют только что сказанное о формах соединений.

Треххлористая

C . SbCl3 может быть получена уже по указанию Василия Валентина (XV века), именно при нагревании природной сернистой С. (Antimonium) с сулемой:

Sb2 S3 + 3HgCl2 = 2SbCl3 + 3HgS

при чем в реторте остается труднее летучая сернистая ртуть, a SbCl 3 перегоняется в виде бесцветной жидкости, застывающей в приемнике в массу, подобную коровьему маслу (Butyrum Antimonii). До 1648 г. полагали, что летучий продукт содержит ртуть; в этом году Глаубер показал неверность такого предположения. При сильном нагревании остатка в реторте он также улетучивается и дает кристаллический возгон киновари (Cinnabaris Antimonii) HgS. Проще всего готовить SbCl 3 из металлической С., действуя на нее медленным током хлора при нагревании Sb + 1 ½ Cl2 = SbCl3 , причем по исчезновении металла получается жидкий продукт, содержащий некоторое количество пятихлористой С., избавиться от которого очень легко через прибавление порошкообразной С.:

3SbCl5 + 2Sb = 5SbCl3 ;

в заключение SbCl 3 подвергается перегонке. Чeрез нагревание сернистой С. с крепкой соляной кислотой в избытке получается раствор SbCl 3 , при чем развивается сероводород:

Sb2 S3 + 6HCl = 2SbCl3 + 3H2 S.

Такой же раствор получается и при растворении окиси С. в соляной кислоте. При перегонке кислого раствора прежде всего отгоняется вода и избыточная соляная кислота, а потом гонится SbCl 3 - обыкновенно желтоватая в первых порциях (вследствие присутствия хлорного железа) и после того бесцветная. Треххлористая С. представляет кристаллическую массу, которая плавится при 73,2° и кипит при 223,5°, образуя бесцветный пар, плотность которого вполне отвечает формуле SbCl 3 , а именно равна 7,8 по отношению к воздуху. Она притягивает влагу из воздуха, расплываясь в прозрачную жидкость, из которой может быть выделена снова в кристаллическом виде при стоянии в эксикаторе над серной кислотой. По способности растворяться в воде (в малых количествах) SbCl 3 вполне сходна с другими, настоящими солями соляной кислоты, но большие количества воды разлагают SbCl 3 , превращая ее в ту или иную хлорокись , по уравн.:

SbCl3 + 2Н 2 O = (HO)2 SbCl + 2НСl = OSbCl + Н 2 O + 2НСl

и 4SbCl 3 + 5Н 2 O = O5 Sb4 Cl2 + 10HCl

которые представляют крайние пределы неполного действия воды (существуют хлорокиси промежуточного состава); большой избыток воды приводит к полному удалению хлора из сурьмяного соединения. Вода осаждает белый порошок подобных хлорокисей С., но часть SbCl 3 может оставаться в растворе и переходить в осадок при большем количестве воды. Прибавляя соляной кислоты, можно осадок снова растворить, превратить его в раствор SbCl 3 . Очевидно, окись С. (см. далее) есть основание слабое, как и окись висмута, а потому вода - в избытке - способна отнимать от него кислоту, превращая средние соли С. в основные соли , или, в данном случае, в хлорокиси; прибавление соляной кислоты аналогично уменьшению количества реагирующей воды, почему при этом хлорокиси и превращаются в SbCl 3 . Белый осадок, получающийся при действии воды на SbCl 3 , называется порошком Альгорота по имени веронского врача, употреблявшего его (в конце XVI в.) для медицинских целей.

Если насыщать хлором расплавленную треххлористую С., то получается пятихлористая С.:

SbCl3 + Cl2 = SbCl5

открытая Г. Розе (1835). Ее можно получить и из металлической С., порошок которой при всыпании в сосуд с хлором горит в нем:

Sb + 2 ½ Cl2 = SbCl5 .

Это бесцветная или слабо-желтоватая жидкость, которая дымит на воздухе и обладает противным запахом; на холоду она кристаллизуется в виде иголочек и плавится при -6°; она летучее SbCl 3 , но при перегонке частью разлагается:

SbCl5 = SbCl3 + Cl2 ;

под давлением в 22 мм кипит при 79° - без разложения (в этих условиях темп. кипения SbCl 3 = 113,5°). Плотность пара при 218° и под давлением в 58 мм равна 10,0 относительно воздуха, что отвечает приведенной частичной формуле (для SbCl 5 вычисленная плотность пара равна 10,3). С вычисленным количеством воды при 0° SbCl 5 дает кристаллический гидрат SbСl 5 + Н 2 O, растворимый в хлороформе и плавящийся при 90°; с большим количеством воды получается прозрачный раствор, который при испарении над серной кислотой дает другой кристаллический гидрат SbСl 5 + 4Н 2 O, уже не растворимый в хлороформе (Аншютц и Эванс, Вебер). К горячей воде SbCl 5 относится, как хлорангидрид, давая с избытком ее кислый гидрат (см. ниже). Пятихлористая С. легко переходит в треххлористую, если присутствуют вещества, способные присоединять хлор, вследствие чего она часто применяется в органической химии для хлорирования; это - "передатчик хлора". Треххлористая С. способна образовать кристаллические соединения, двойные соли с некоторыми хлористыми металлами; подобные соединения дает и пятихлористая сурьма с различными соединениями и окисями. Известны соединения сурьмы и с прочими галоидами, а именно SbF 3 и SbF 5 , SbBr3 , SbJ3 и SbJ 5 .
, или сурьмянистый ангидрид , принадлежит к типу треххлористой С. и потому может быть представлена формулой Sb 2 O3 , но определения плотности пара (при 1560°, В. Мейер, 1879), которая найдена равною 19,9 по отношению к воздуху показали, что этому окислу должно придавать удвоенную формулу Sb 4 O6 , аналогично с мышьяковистым и фосфористым ангидридами. Окись С. встречается в природе в виде валентинита , образуя белые, блестящие призмы ромбической системы, уд. веса 5,57, и реже - сенармонтита - бесцветные или серые октаэдры, с уд. вес. 5,2-5,3, а также иногда покрывает в виде землистого налета - сурьмяная охра - различные руды С. Окись получается также при обжигании сернистой С. и возникает как окончательный продукт действия воды на SbСl 3 в кристаллическом виде и в аморфном - при обработке металлической или сернистой С. разведенною азотною кислотою при нагревании. Окись С. обладает белым цветом, при нагревании желтеет, при более высокой температуре плавится и, наконец, улетучивается при белом калении. При охлаждении расплавленной окиси она получается в кристаллическом виде. Если нагревать окись С. в присутствии воздуха, то она поглощает кислород, превращаясь в нелетучий окисел SbO 2 , или, что вероятнее, в Sb 2 O4 (см. ниже). Основные свойства окиси С. весьма слабы, что уже указано выше; соли ее чаще всего основные. Из минеральных кислородных кислот почти одна серная способна давать соли С.; средняя соль Sb 2 (SO4 )3 получается, когда нагревают металл или окись с концентрированной серной кислотой, в виде белой массы и кристаллизуется из несколько разведенной серной кислоты в длинных, с шелковистым блеском иглах; вода разлагает ее на растворимую кислую и нерастворимую основную соль. Существуют соли с органическими кислотами, напр. основная сурьмяно-калиевая соль винной кислоты, или рвотный камень KO-CO-CH(OH)-CH(OH)-CO-O-SbO + ½ H2 O (Tartarus emeticus), довольно растворимая в воде (в 12,5 вес. част. при 21°). Окись С. обладает, с другой стороны, слабыми ангидридными свойствами, в чем легко убедиться, если приливать раствор едкого кали или натра к раствору SbCl 3 : образующийся белый осадок растворяется в избытке реактива, подобно тому как это имеет место для растворов солей алюминия. Преимущественно для калия и натрия известны соли сурьмянистой кислоты, например из кипящего раствора Sb 2 O3 в едком натре кристаллизуется сурьмянистокислый натрий NaSbO2 + 3H2 O, в блестящих октаэдрах; известны еще такие соли - NaSbO 2 + 2HSbO2 и KSbO 2 + Sb2 O3 [Быть может, эту соль можно рассматривать как основную двойную соль, калиево-сурьмяную, ортосурьмянистой кислоты -

]. Кислота соответствующая, т. е. метакислота (по аналогии с названиями фосфорных кислот), HSbO 2 , однако, неизвестна; известны орто- и пирокислоты: H 3 SbO3 получается в виде тонкого белого порошка при действии азотной кислоты на раствор упомянутой двойной соли винной кислоты и имеет этот состав после высушивания при 100°; Н 4 Sb2 O5 образуется, если подвергнуть щелочной раствор трехсернистой С. действию медного купороса в таком количестве, чтобы фильтрат перестал давать оранжевый осадок с уксусной кислотой - осадок тогда получается белый и имеет указанный состав.

Высший окисел типа пятихлористой С. есть сурьмяный ангидрид Sb2 O5 . Он получается при действии энергично кипящей азотной кислоты на порошок С. или на ее окись; образовавшийся порошок подвергают затем осторожному нагреванию; он содержит обыкновенно примесь низшего окисла. В чистом виде ангидрид можно получить из растворов солей сурьмяной кислоты, разлагая их азотной кислотой и подвергая промытый осадок нагреванию до полного удаления элементов воды; это - желтоватый порошок, нерастворимый в воде, однако, сообщающий ей способность окрашивать синюю лакмусовую бумажку в красный цвет. В азотной кислоте ангидрид совершенно нерастворим, в соляной же (крепкой) растворяется, хотя и медленно, вполне; при нагревании с нашатырем способен улетучиваться. Известны три гидрата сурьмяного ангидрида, обладающих составом, отвечающим гидратам фосфорного ангидрида. Ортосурьмяная кислота H3 SbO4 получается из метасурьмянокислого калия через обработку его разведенной азотной кислотой и имеет надлежащий состав после промывки и сушения при 100°; при 175° она превращается в метакислоту HSbO3 ; оба гидрата суть белые порошки, растворимые в растворах едкого кали и трудно - в воде; при более сильном нагревании превращаются в ангидрид. Пиросурьмяная кислота (Фреми назвал ее метакислотой) получается при действии горячей воды на пятихлористую С. в виде белого осадка, который по высушивании на воздухе имеет состав Н 4 Sb2 O7 + 2Н 2 O, а при 100° превращается в безводную кислоту, которая при 200° (и даже просто при стоянии под водой - со временем) превращается в метакислоту. Пирокислота растворимее в воде, чем ортокислота; она способна растворяться также в холодном нашатырном спирте, к чему ортокислота не способна. Соли известны только для мета- и пирокислоты, что дает, вероятно, право придать ортокислоте формулу HSbO 3 + Н 2 O, считать ее гидратом метакислоты. Натриевая и калиевая метасоли получаются при сплавлении с соответственной селитрой порошка металлической С. (или из сернистой С.). С KNO 3 получается после промывки водой белый порошок, растворимый в заметном количестве в воде и способный кристаллизоваться; выделенная из раствора и высушенная при 100° соль содержит воду 2KSbOЗ + 3H2 O; при 185° она теряет одну частицу воды и превращается в KSbO 3 + H2 O. Соответствующая натриевая соль имеет состав 2NaSbOЗ + 7H2 O, которая при 200° теряет 2H 2 О и делается безводной только при красном калении. Даже угольная кислота способна разлагать эти соли: если пропускать СО 2 через раствор калиевой соли, то получается труднорастворимый осадок такой кислой соли 2K 2 O∙3Sb2 O5 + 7H2 O (это после высушивания при 100°, после сушения при 350° остается еще 2H 2 O). Если растворить метакислоту в горячем растворе аммиака, то при охлаждении кристаллизуется аммонийная соль (NH 4 )SbO3 , трудно растворимая на холоду. Окисляя окись С., растворенную в едком кали (сурьмянисто-кислый калий), хамелеоном и испаряя затем фильтрат, получают кислый пиросурьмянокислый калий К 2 H2 Sb2 O7 + 4Н 2 O; эта соль довольно растворима в воде (при 20° - 2,81 ч. безводной соли в 160 ч. воды) и служит реактивом при качественном анализе на соли натрия (в среднем растворе), так как соответственная кристаллическая соль Na 2 H2 Sb2 O7 + 6H2 O очень трудно растворима в воде. Это, можно сказать, наиболее трудно растворимая соль натрия, особенно в присутствии некоторого количества спирта; когда в растворе находится только 0,1% натриевой соли, то и в этом случае появляется кристаллический осадок пиросоли. Так как сурьмяные соли лития, аммония и щелочноземельных металлов также образуют осадки, то, понятно, эти металлы должны быть удалены предварительно. Соли остальных металлов трудно растворимы или нерастворимы в воде; они могут быть получены через двойное разложение в виде кристаллических осадков и превращаются слабыми кислотами в кислые соли, а сильные кислоты вытесняют сурьмяную кислоту вполне. Почти все антимониаты растворимы в соляной кислоте.

При сильном нагревании на воздухе каждого из описанных окислов С. получается еще один окисел, именно Sb 2 O4 :

Sb2 O5 = Sb2 O4 + ½O2 и Sb 2 O3 + ½O2 = Sb2 O4 .

Этот окисел можно считать содержащим трехвалентную и пятивалентную С., т. е. в таком случае это была бы средняя соль ортосурьмяной кислоты Sb "" SbO4 или основная - метакислоты OSb-SbO 3 . Этот окисел есть наиболее устойчивый при высокой температуре и представляет аналогию с суриком (см. Свинец) и в особенности с соответствующим окислом висмута Bi 2 O4 (см. Висмут). Sb 2 O4 представляет нелетучий белый порошок, весьма трудно растворимый в кислотах и получающийся вместе с Sb 2 O3 при обжигании природной сернистой С. - Sb2 O4 обладает способностью соединяться со щелочами; при сплавлении с поташом после промывки водой получается белый продукт, растворимый в горячей воде и имеющий состав K 2 SbO5 ; это солеобразное вещество есть, быть может, двойная сурьмяно-калиевая соль ортосурьмяной кислоты (OSb)K 2 SbO4 . Соляная кислота осаждает из раствора такой соли кислую соль K 2 Sb4 O9 , которую можно считать за двойную соль пиросурьмяной кислоты, именно (OSb) 2 K2 Sb2 O7 . В природе встречаются подобные двойные (?) соли для кальция и для меди: ромеит (OSb)CaSbO4 и аммиолит (OSb)CuSbO4 . В виде Sb 2 O4 можно взвешивать С. при количественном анализе; необходимо только промытое кислородное соединение металла прокаливать при хорошем доступе воздуха (в открытом тигле) и тщательно заботиться, чтобы горючие газы из пламени не попадали в тигель.

По способу образования сернистых соединений С., как и мышьяк, может быть причислена к настоящим металлам с большим правом, чем, напр., хром. Все соединения трехвалентной С. в кислых растворах (лучше всего в присутствии соляной кисл.) при действии сероводорода превращаются в оранжево-красный осадок трехсернистой С., Sb 2 S3 , который, кроме того, содержит еще воду. Соединения пятивалентной С., также в присутствии соляной кислоты, с сероводородом дают желтовато-красный порошок пятисернистой С. Sb 2 S5 , содержащий обыкновенно еще примесь Sb 2 S3 и свободной серы; чистая Sb 2 S5 получается, когда при обыкновенной температуре прибавляют избыток сероводородной воды к подкисленному раствору сурьмяной соли (Бунзен); в смеси с Sb 2 S3 и серой получают ее, если пропускают сероводород в нагретый кислый раствор; чем ниже температура осаждаемого раствора и чем быстрее ток сероводорода, тем меньше получается Sb 2 S3 и серы и тем чище осаждаемая Sb 2 S5 (Bosêk, 1895). С другой стороны, Sb 2 S3 и Sb 2 S5 , как и соответствующие соединения мышьяка, обладают свойствами ангидридов; это тиоангидриды ; соединяясь с сернистым аммонием или с сернистыми калием, натрием, барием и проч., они дают тиосоли , напр. Na 3 SbS4 и Ba 3 (SbS4 )2 или KSbS 2 и проч. Эти соли аналогичны, очевидно, с кислородными солями элементов группы фосфора; они содержат двухвалентную серу вместо кислорода и называются обыкновенно сульфосолями , что ведет к спутанности понятий, напоминая о солях сульфокислот органических, которые лучше всего было бы всегда называть сульфононовыми кислотами [Точно так же и названия сульфо ангидриды (SnS 2 , As2 S5 и проч.) и сульфо основания (N 2 S, BaS и проч.) следовало бы заменить тио ангидридами и тио основаниями.]. Трехсернистая С. Sb 2 S3 под именем сурьмяного блеска представляет важнейшую руду С.; она довольно распространена среди кристаллических и более старых слоистых каменных пород; встречается в Корнваллисе, Венгрии, Трансильвании, Вестфалии, Шварцвальде, Богемии, Сибири; в Японии ее находят в виде особо крупных хорошо образованных кристаллов, а на Борнео встречаются значительные залежи. Кристаллизуется Sb 2 S3 в призмах и образует обыкновенно лучисто-кристаллические, серовато-черные массы с металлическим блеском; уд. вес 4,62; легкоплавка и легко измельчается в порошок, который марает пальцы подобно графиту и издавна (Библия , книга прор. Иезекииля, XXIII, 40) употреблялся как косметическое средство для подводки бровей; под именем "сурьмы" она употреблялась и, вероятно, употребляется еще для этой цели и у нас. Черная сернистая С. в торговле (Antimonium crudum) есть выплавленная руда; этот материал в изломе представляет серый цвет, металлический блеск и кристаллическое сложение. В природе, кроме того, встречаются многочисленные солеобразные соединения Sb 2 S3 с различными сернистыми металлами (тиооснованиями), напр.: бертьерит Fe(SbS2 )2 , вольфсбергит CuSbS2 , буланжерит Pb3 (SbS3 )2 , пираргирит , или красная серебряная руда, Ag 3 SbS3 , и др. Руды, содержащие, кроме Sb 2 S3 , сернистые цинк, медь, железо и мышьяк, суть так наз. блеклые руды. Если расплавленная трехсернистая С. подвергается быстрому охлаждению до затвердевания (вливают в воду), то она получается в аморфном виде и имеет тогда меньший уд. вес, именно 4,15, обладает свинцово-серым цветом, в тонких слоях просвечивает гиацинтово-красным и в виде порошка имеет красно-бурую окраску; она не проводит электричество, что свойственно кристаллическому видоизменению. Из так наз. сурьмяной печени (hepar antimontii), которая получается при сплавлении кристаллической Sb 2 S3 с едким кали или поташом и содержит смесь тиоантимониита и антимониита калия [Растворы такой печени очень способны поглощать кислород воздуха. Другой сорт печени, которая готовится из порошковатой смеси Sb 2 S3 и селитры (в равных количествах), причем реакция начинается от раскаленного уголька, брошенного в смесь, и идет весьма энергично при постепенном прибавлении смеси, содержит, кроме KSbS 2 и KSbO 2 , еще K 2 SO4 , a также некоторое количество сурьмяной кислоты (К-соли).]:

2Sb2 S3 + 4KOH = 3KSbS2 + KSbO2 + 2H2 O

точно так же можно получить аморфную трехсернистую С., для чего извлекают печень водой и профильтрованный раствор разлагают серной кислотой или кристаллическую Sb 2 S3 обрабатывают кипящим раствором КОН (или К 2 СО 3 ), а затем фильтрат разлагают кислотой; в обоих случаях промывают осадок сильно разведенной кислотой (винной под конец) и водой и высушивают при 100°. Получается легкий красно-бурый, маркий порошок сернистой С., растворимый в соляной кислоте, едких и углекислых щелочах гораздо легче, чем кристаллическая Sb 2 S3 . Подобные препараты сернистой С., только не вполне чистые, известны с давних пор под именем "минерального кермеса" и находили применение в медицине и как краска. Оранжево-красный осадок гидрата Sb 2 S3 , который получается при действии сероводорода на кислые растворы окиси С., теряет (промытый) воду при 100°-130° и превращается в черное видоизменение при 200°; под слоем разбавленной соляной кислоты в токе углекислого газа превращение это совершается уже при кипячении (лекционный опыт Митчелля, 1893 г.). Если прибавить сероводородной воды к раствору рвотного камня, то получается оранжево-красный (при проходящем свете) раствор коллоидальной Sb 2 S3 , которая осаждается при прибавлении хлористого кальция и некоторых других солей. Нагревание в токе водорода приводит Sb 2 S3 к полному восстановлению металла, в атмосфере же азота она только возгоняется. Кристаллическая Sb 2 S3 идет на приготовление прочих соединений С., а также применяется как горючее вещество в смеси с бертолетовой солью и другими окислителями для пиротехнических целей, входит в состав головок шведских спичек и употребляется для иных запальных приспособлений, имеет также лекарственное значение - как слабительное для животных (лошадей). Пятисернистая С. может быть получена, как указано выше, или через разложение разбавленной кислотой упомянутых растворимых тиосолей:

2K З SbS4 + 6HCl = Sb2 S5 + 6KCl + 3H2 S.

Она в природе не встречается, но известна уже давно; Глаубер описал (в 1654 г.) получение ее из шлака, который образуется при приготовлении металлической С. из сурьмяного блеска при сплавлении его с винным камнем и селитрой, действием уксусной кислоты и рекомендовал как слабительное средство (panacea antimonialis seu sulfur purgans universale). С этим сернистым соединением приходится иметь дело при анализе: сероводород осаждает из подкисленного раствора металлы 4-й и 5-й аналитических групп; среди последних и находится С.; она осаждается обыкновенно в виде смеси Sb 2 S5 и Sb 2 S3 (см. выше) или только в виде Sb 2 S З (когда в осаждаемом растворе не было соединений типа SbX 5 ) и затем отделяется действием многосернистого аммония от сернистых металлов 4-й группы, которые остаются при этом в осадке; Sb 2 S3 переводится многосернистым аммонием в Sb 2 S5 и затем вся С. оказывается в растворе в виде аммонийной тиосоли высшего типа, из которого по отфильтровании осаждается кислотою вместе с друг. сернистыми металлами 5-й группы, если таковые были в исследуемом веществе. Пятисернистая С. нерастворима в воде, легко растворима в водных растворах едких щелочей, их углекислых солей и сернистых щелочных металлов, также в сернистом аммонии и в горячем растворе аммиака, но не углекислого аммония. Когда Sb 2 S5 подвергается действию солнечного света или нагревается под водой при 98°, а также и без воды, но в отсутствие воздуха, то она распадается по уравнению:

Sb2 S5 = Sb2 S3 + 2S

вследствие чего при нагревании с крепкой соляной кислотой дает серу, сероводород и SbCl 3 . Тиосурьмянокислый нampий , или "соль Шлиппе", которая кристаллизуется в больших правильных тетраэдрах, бесцветных или желтоватых, состава Nа 3 SbS4 + 9Н 2 O, может быть получена при растворении смеси Sb 2 S3 и серы в растворе едкого натра определенной концентрации или путем сплавления безводного сернокислого натрия и Sb 2 S3 с углем и кипячения затем водного раствора полученного сплава с серой. Растворы этой соли имеют щелочную реакцию и соляной, холодящий и вместе с тем горьковато-металлический вкус. Подобным же образом может быть получена и калиевая соль, а бариевая возникает при растворении Sb 2 S5 в растворе BaS; эти соли образуют кристаллы состава K3 SbS4 + 9H2 O и Ва 3 (SbS4 )2 + 6Н 2 O. Пятисернистая С. употребляется при вулканизации каучука (см.) и сообщает ему известный буро-красный цвет.

Сурьмянистый водород

, или стибин, SbH 3 . Если водород образуется в растворе, содержащем какое-либо растворимое соединение С. (прибавляют, например, к смеси цинка и разведенной серной кислоты раствора SbCl 3 ), то он не только восстановляет (в момент выделения) ее, но и соединяется с нею; при действии воды на сплавы С. с калием или натрием или разведенной кислоты на сплав ее с цинком точно так же образуется SbH 3 . Во всех случаях газообразный SbH 3 получается в смеси с водородом; наиболее бедную водородом смесь можно получить (F. Jones), если приливать по каплям концентрированный раствор SbCl 3 в крепкой соляной кислоте к избытку гранулированного или порошкообразного цинка, причем SbH 3 частью разлагается (стенки колбы покрываются зеркальным налетом С.) и получается газообразная смесь, которая содержит SbH 3 не более 4%. Что чистый SbH 3 нельзя иметь при обыкновенной темп., особенно ясно из опытов К. Ольшевского, который показал, что это вещество замерзает при -102,5°, образуя снегоподобную массу, плавится в бесцветную жидкость при -91,5° и кипит при -18°, и что жидкий SbH 3 начинает разлагаться уже при - 65° - 56°. Полное разложение разбавленного водородом SbH 3 происходит при 200° - 210°; он разлагается гораздо легче мышьяковистого водорода, что, вероятно, находится в связи с большим поглощением тепла при образовании из элементов (на граммов. частицу - 84,5 б. кал.) [Разлагаемостью при нагревании SbH 3 можно пользоваться для качественного открытия соединений С. по способу Марша (см. Мышьяк).]. SbH 3 обладает противным запахом и весьма неприятным вкусом; в 1 объеме воды при 10° растворяется от 4 до 5 об. SbH 3 ; в такой воде рыбы гибнут через несколько часов. На солнечном свете, быстрее при 100°, сера разлагает SbH 3 по уравн.:

2SbH3 + 6S = Sb2 S З +3H2 S

при чем получается оранжево-красное видоизменение Sb 2 S3 ; разлагающим образом действует, даже в темноте, и сероводород, который сам разлагается при этом:

2SbH3 + 3Н 2 S = Sb2 S3 + 6Н 2 .

Если пропустить SbH 3 (с Н 2 ) в раствор азотнокислого серебра, то получается черный осадок, который представляет сурьмянистое серебро с примесью металлического серебра:

SbH3 + 3AgNO3 = Ag3 Sb + 3HNO3 ;

это соединение С. встречается и в природе - дискразит. Растворы едких щелочей растворяют SbH 3 , приобретая бурый цвет и способность поглощать кислород из воздуха. Подобные же отношения характеризуют и мышьяковистый водород; оба водородистые соединения не обнаруживают ни малейшим образом способности давать производные аммониевого типа; они скорее напоминают о сероводороде и проявляют свойства кислот. Иных водородистых соединений С., более бедных водородом, судя по аналогиям, не известно с достоверностью; металлическая С., полученная электролизом и обладающая способностью взрываться, содержит водород; быть может, здесь и присутствует подобное водородистое соединение, которое взрывчато, как бедные водородом ацетилен или азотистоводородная кислота. Существование летучего, газообразного даже, водородистого соединения для С. позволяет в особенности относить ее к числу неметаллов; а неметалличность ее находится, вероятно, в связи со способностью давать разнообразные сплавы с металлами.
С . находят весьма значительное применение; присутствие в них С. обусловливает увеличение блеска и твердости, а при значительных количествах - и хрупкости сплавленных с нею металлов. Сплав, состоящий из свинца и С. (обыкновенно 4 ч. и 1 ч.), употребляется для отливки типографских букв, для чего часто готовят сплавы, содержащие сверх того значительное количество олова (10-25%), а иногда еще и немного меди (около 2%). Так наз. "британский металл" представляет сплав 9 ч. олова, 1 ч. С. и содержит медь (до 0,1%); он употребляется для приготовления чайников, кофейников и т. под. посуды. "Белый, или антифрикционный, металл" - сплавы, употребляющиеся для подшипников; такие сплавы содержат около 10% С. и до 85% олова, которое иногда заменяется почти наполовину свинцом (Babbit"s metall), сверх того, до 5% меди, количество которой падает в пользу С. до 1,5%, если в сплаве находится свинец; 7 ч. С. с 3 ч. железа образуют при белом калении "сплав Реомюра", который очень тверд и дает при обработке напилком искры. Известны два кристаллических соединения с цинком (Cooke jr.) Zn3 Sb2 и Zn 2 Sb2 и пурпуровый сплав с медью состава Cu 2 Sb (Regulus Veneris). Сплавы с натрием или калием, которые готовятся сплавлением С. с углекислыми щелочными металлами и углем, а также накаливанием окиси С. с винным камнем, в сплошном состоянии довольно постоянны на воздухе, но в виде порошков и при значительном содержании щелочного металла способны самовоспламеняться на воздухе, а с водой выделяют водород, дают едкую щелочь в растворе и порошок сурьмы в осадке. Сплав, который получается при белом калении тесной смеси 5 частей винного камня и 4 частей С., содержит до 12% калия и употребляется для получения металлоорганических соединений С. (см. также Сплавы).

Металлоорганические соединения

С. получаются при действии цинкорганических соединений на треххлористую С.:

2SbCl3 + 3ZnR2 = 2SbR З + 3ZnCl2 ,

где R = СН 3 или C 2 H5 и пр., а также при взаимодействии RJ, йодистых спиртовых радикалов, с упомянутым выше сплавом С. с калием. Триметилстибин Sb(CH3 )3 кипит при 81°, уд. вес 1,523 (15°); триэтилстибин кипит при 159°, уд. вес 1,324 (16°). Это почти не растворимые в воде, обладающие запахом лука жидкости, которые самовоспламеняются на воздухе. Соединяясь с RJ, стибины дают йодистые стибонии R4 Sb-J, из которых - совершенно аналогично четырехзамещенным углеводородными радикалами йодистым аммониям, фосфониям и арсониям - можно получить основные гидраты окисей замещенных стибониев R 4 Sb-OH, обладающие свойствами едких щелочей. Но, кроме того, стибины весьма сходны по своим отношениям с двухвалентными электроположительного характера металлами; они не только легко соединяются с хлором, серою и кислородом, образуя солеобразные соединения, напр. (CH 3 )3 Sb=Cl2 и (CH 3 )3 Sb=S, и окиси, например (CH 3 )3 Sb=O, но даже вытесняют водород из кислот, подобно цинку, напр.:

Sb(C2 Н 5 )3 + 2СlH = (С 2 H5 )3 Sb = Сl 2 + Н 2 .

Сернистые стибины осаждают из соляных растворов сернистые металлы, превращаясь в соответствующие соли, например:

(C2 H5 )3 Sb = S + CuSO4 = CuS + (C2 H5 )3 Sb=SO4 .

Из сернокислого стибина можно получить раствор его окиси, осаждая серную кислоту едким баритом:

(C2 H5 )3 Sb = SО 4 + Ва(OН) 2 = (С 2 H5 )3 Sb = О + BaSO 4 + Н 2 O.

Такие окиси получаются и при осторожном действии воздуха на стибины; они растворимы в воде, нейтрализуют кислоты и осаждают окиси настоящих металлов. По составу и строению окиси стибинов совершенно аналогичны окисям фосфинов и арсинов, но отличаются от них сильно выраженными основными свойствами. Трифенилстибин Sb(C6 H5 )3 , который получается при действии натрия на бензольный раствор смеси SbCl 3 с хлористым фенилом и кристаллизуется в прозрачных табличках, плавящихся при 48°, способен соединяться с галоидами, но не с серой или СН 3 J: присутствие отрицательных фенилов понижает, след., металлические свойства стибинов; это тем более интересно, что соответствующие отношения аналогичных соединений более металличного висмута совершенно обратны: бисмутины Β iR3 , содержащие предельные радикалы, не способны к присоединениям вообще, a Β i(C6 Η 5 )3 дает (C 6 H5 )3 Bi=Cl2 и (C 6 H5 )3 Bi=Вr 2 (см. Висмут). Как будто электроположительный характер Вi необходимо ослабить электроотрицательными фенилами, чтобы получилось соединение, подобное металлическому двухвалентному атому.

С. С. Колотов.

Δ .

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . - ЗОЛОТО (лат. Aurum), Au (читается «аурум»), химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197Au. Конфигурация внешней и предвнешней электронных оболочек… … Энциклопедический словарь

- (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… …

- (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag 2 S]) принадлежит к числу важнейших неметаллических элементов.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Platine фр., Platina или um англ., Platin нем.; Pt = 194,83, если О = 16 по данным К. Зейберта). П. обыкновенно сопровождают другие металлы, и те из этих металлов, которые примыкают к ней по своим химическим свойствам, получили название… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag2S]) принадлежит к числу важнейших неметаллических элементов. Она… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Ы; ж. [перс. surma металл] 1. Химический элемент (Sb), синевато белый металл (употребляется в различных сплавах в технике, в типографском деле). Выплавка сурьмы. Соединение сурьмы с серой. 2. В старину: краска для чернения волос, бровей, ресниц.… … Энциклопедический словарь

- (перс. sourme). Металл, встречающийся в природе в соединении с серою; употребляется в медицине как рвотное. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. СУРЬМА антимоний, металл серого цвета; уд. в. 6,7;… … Словарь иностранных слов русского языка