В каких единицах измеряется дипольный момент. Примеры решения задач

Объяснил тем, что этих электрически полярны и что поэтому в электрическом поле, кроме обычной (в результате ), происходит также вследствие определенной ориентации молекул-диполей по отношению к силам электрического поля. Если находится в газообразном или растворенном состоянии, эта ориентация молекул-диполей нарушается вследствие теплового движения . Поэтому слагающая , зависящая от ориентации молекул-диполей, уменьшается с повышением

К - постоянная;

μ - электрический момент молекулы-диполя, который и получил название .

Приведенное уравнение дает возможность вычислить на экспериментальных данных для в газообразном состоянии и в виде в неполярных ( , и пр.).

Иногда стрелку ставят посредине ковалентного штриха, например:

Таким образом, порядок величины определяется произведением элементарного заряда (4,8 ∙ 10 –10 эл.-ст. ед.) на длину, которая для межатомных расстояний в близка к 10 –8 см. Поэтому удобно выражать величины в так называемых единицах Дебая (D ), равных 10 –10 ∙ 10 –8 =10 –18 эл.-cт. ед.∙см.

Для чисто ковалентной (гомеополярной) связи должен равняться нулю, а для чисто он должен был бы измеряться произведением заряда (4,8 ∙ 10 –10 эл.-ст. ед.) на сумму r A + r B обоих партнеров связи - элементов А и В.

Оказалось, что μ = 0 для следующих :

2. Симметричные двухатомные типа А-А: Н 2 , N 2 , О 2 , Сl 2 .

3. Симметричные линейные трехатомные, четырехатомные и т. д. типа В-(А) n -В: О =С=О, S=C=S,

4. Симметричные тетраэдрические типа АВ 4: СН 4 , ССl 4 , SiCl 4 , SnJ 4 .

Существенно отличный от нуля имеют: 1. Несимметричные двухатомные типа А-В:

2. Несимметричные линейные типа В-А-С;

3. Нелинейные типа В-А-В:


4. типа АВ 3:

Наличие у таких , как Н 2 О, H 2 S, объясняется тем, что связи у и расположены под углом; по квантово-механическим соображениям этот угол должен быть равен 90°, однако он несколько искажается вследствие взаимного отталкивания заместителей. Поэтому у , например, угол НОН оказывается равным ~105°.

Учитывая, что , как величины направленные, должны подчиняться правилу векториального сложения, мы можем по , зная величину угла НОН, построить параллелограмм моментов, вносимых каждой связью О-Н, и найти их величину. Эта величина μ OH оказывается равной 1,51 D.

Обладает значительным моментом. Для нее была доказана пирамидальная структура, причем плоский угол при вершине пирамиды, где находится ядро (угол HNH), составляет ~107°. Расчет, аналогичный приведенному выше, дает для момента связи N-Н величину μ NH =1,31 D.

Что касается , то здесь оказалось, что не только для СН 4 и СН 3 -СН 3 , но и вообще для всех равен нулю.

В табл. 31 сопоставлены некоторых , обладающих функциональными заместителями. Из данных табл. 31 можно сделать вывод, что величина у производных определяется в основном , оставаясь практически почти постоянной (или слабо возрастая) в пределах (небольшие отклонения наблюдаются лишь у первых членов ряда).


В более сложных надо, однако, учитывать и некоторые особенности. Так, например, поскольку для СН 4 и ССl 4 равен нулю, СН 3 Сl и СНСl 3 должны были бы обладать одинаковыми . Однако оказывается, что для СН 3 Сl эта величина (1,87 D ) значительно больше, чем для СНСl 3 , для которого μ=0,95D . Это может быть объяснено тем, что взаимное отталкивание трех ядер в сильно деформирует угол СlССl в сторону его увеличения (от 109° до ~116°), а следовательно, и углы НССl - в сторону их уменьшения.

Сопоставление кислородных соединений


приводит к заключению, что угол между , составляющий у ~105°, все более и более деформируется в сторону увеличения в ряду , стремящихся, очевидно, приобрести энергетически наиболее выгодную конфигурацию, напоминающую конфигурацию (угол 112°).

В ряду R-О-Н такая , очевидно, не может быть достигнута ни при каком радикале R, чем и объясняется сравнительное постоянство дчпольного момента в этом ряду (μ≈l,7 D ). В уменьшение у (этот угол стремится стать близким к 60°) обусловливает увеличение , даже по сравнению с , до величины 1,88 D .

Линейные симметричные , вроде О=С=О, имеют μ= 0 благодаря взаимной компенсации противоположно направленных сильных диполей связи С-О (μ СО =2,5 D ). Аналогичная компенсация диполей происходит, например, в случае дихлорзамещенных производных

Диполь есть система, состоящая из двух равных по модулю и противоположных по знаку зарядов. Вектор I, проведенный от отрицательного к положительному заряду, называется плечом диполя.

Электрический момент диполя

где – заряд диполя.

Электрический дипольный момент молекулы принято выражать в единицах атомного масштаба – дебай (D) = 3,33∙10 -30 Кл∙м.

Диполь называется точечным, если расстояние rот центра диполя до точки, в которой рассматривается действие диполя, много больше плеча диполя.

Напряженность поля точечного диполя:

а) на оси диполя

, или
;

б) на перпендикуляре к оси диполя

, или
;

в) в общем случае

, или
,

где
─ угол между радиусом-векторомrи электрическим дипольным моментомр (рис. 2.1).

Потенциал поля диполя

.

Потенциальная энергия диполя в электростатическом поле

Механический момент, действующий на диполь с электрическим дипольным моментом , помещенный в однородное электрическое поле с напряженностью,

или
,

где
– угол между направлением векторови.

Сила F, действующая на диполь в неоднородном электростатическом поле, обладающем осевой (вдоль осих) симметрией,

,

где ─ величина, характеризующая степень неоднородности электростатического поля вдоль оси х;– угол между векторамии.

Примеры решения задач

Пример 1. Диполь с электрическим моментом

. Вектор электрического моментасоставляет угол
с направлением силовых линий поля. Определить работуA внешних сил, совершенную при повороте диполя на угол
.

Решение . Из исходного положения (рис. 2.2, а ) диполь можно повернуть на угол
, вращая его по часовой стрелкедо угла (рис. 2.2, б ), или против часовой стрелки до угла (рис. 2.2,в ).

В первом случае диполь будет поворачиваться под действием сил поля. Следовательно, работа внешних сил при этом отрицательна. Во втором случае поворот может быть произведен только под действием внешних сил и работа внешних сил при этом положительна.

Работу, совершаемую при повороте диполя, можно вычислить двумя способами: 1) непосредственно интегрированием выражения элементарной работы; 2) с помощью соотношения между работой и изменением потенциальной энергии диполя в электрическом поле.

а б в

1-й способ . Элементарная работа при повороте диполя на угол
:

а полная работа при повороте на угол от до
:

.

Произведя интегрирование, получим

Работа внешних сил при повороте диполя по часовой стрелке

против часовой стрелки

2-й способ . Работа А внешних сил связана с изменением потенциальной энергии
соотношением

,

где
─ потенциальные энергии системы соответственно в начальном и конечном состояниях. Так как потенциальная энергия диполя в электрическом поле выражается формулой
,то

что совпадает с формулой (2.1), полученной первым способом.

Пример 2. Три точечных заряда ,
,
, образуют электрически нейтральную систему, причем
. Заряды расположены в вершинах равностороннего треугольника. Определить максимальные значения напряженности
и потенциала
поля, создаваемого этой системой зарядов, на расстоянии
от центра треугольника, длина стороны которого
.

Решение. Нейтральную систему, состоящую из трех точечных зарядов, можно представить в виде диполя. Действительно, «центр тяжести» зарядов и
лежит на середине отрезка прямой, соединяющей эти заряды (рис. 2.3). В этой точке можно считать сосредоточенным заряд
. А так как система зарядов нейтральная (
), то

Так как расстояние между зарядами Q 3 и Q много меньше расстояния r (рис. 2.4), то систему этих двух зарядов можно считать диполем с электрическим моментом
,где
─ плечо диполя. Электрическиймомент диполя

.

Тот же результат можно получить другим способом. Систему из трех зарядов представим как два диполя с электрическими моментами (рис. 2.5), равными по модулю:
;
. Электрический момент системы зарядов найдем как векторную суммуи, и
.Как это следует из рис. 2.5, имеем
.Так как

,то

,

что совпадает с найденным ранее значением.

Напряженность и потенциалполя диполя выражаются формулами

;
,

где
─ угол между радиусом-вектороми электрическим дипольным моментом (рис. 2.1).

Напряженность и потенциал будут иметь максимальные значения при
= 0, следовательно,

;
.

Так как
,то

;
.

Вычисления дают следующие значения:

;
.

Задачи

201. Вычислить электрический момент р диполя, если его заряд
,
. (Ответ:50 нКл∙м).

202. Расстояние между зарядами
и
диполя равно 12 см. Найти напряженность Е и потенциалполя, созданного диполем в точке, удаленной на
как от первого, так и от второго заряда.(Ответ:
;
).

203. Диполь с электрическим моментом
образован двумя точечными зарядами
и
. Найти напряженностьE и потенциал электрического поля в точкеA (рис. 2.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

204. Электрический момент диполя
поля, созданного в точкеA (рис. 2.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

205. Определить напряженность E и потенциал
на расстоянии

с вектором электрического момента.(Ответ:
;
).

206. Диполь с электрическим моментом
равномерно вращается с частотой
относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Точка С находится на расстоянии
от центра диполя и лежит в плоскости вращения диполя. Вывести закон изменения потенциала как функцию времени в точке С. Принять, что в начальный момент времени потенциал в точке С
. Построить график зависимости
. (Ответ:
;
;
).

207. Диполь с электрическим моментом

относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Определить среднюю потенциальную энергию
заряда
, находящегося на расстоянии
и лежащего в плоскости вращения, завремя, равное полупериоду (от
до
). В начальный момент времени считать
. (Ответ:).

208. Два диполя с электрическими моментами
и
находятся на расстоянии
друг от друга. Найти силу их взаимодействия, если оси диполей лежат на одной прямой. (Ответ:
).

209. Два диполя с электрическими моментами
и
находятся на расстоянии
друг от друга, так что оси диполей лежат на одной прямой. Вычислить взаимную потенциальную энергию диполей, соответствующую их устойчивому равновесию. (Ответ:
).

210. Диполь с электрическим моментом
прикреплен к упругой нити (рис. 2.7). Когда в пространстве, где находится диполь, было создано электрическое поле напряженностью
, перпендикулярно плечу диполя и нити, диполь повернулся на угол
. Определить момент силы М, который вызывает закручивание нити на 1 рад. (Ответ:
).

211. Диполь с электрическим моментом
прикреплен к упругой нити (рис. 2.7). Когда в пространстве, где находится диполь, было создано электрическое поленапряженностью
, перпендикулярно плечу диполя и нити, диполь повернулся на малый угол
. Определить момент силы М, который вызывает закручивание нити на 1 рад. (Ответ: ).

212. Диполь с электрическим моментом
находится в однородном электрическом поле напряженностью
. Вектор электрического момента составляет угол
с линиями поля. Какова потенциальная энергия П поля? Считать
, когда вектор электрического момента диполя перпендикулярен линиям поля. (Ответ: ).

213. Диполь с электрическим моментом
свободно устанавливается в однородном электрическом поле напряженностью

. (Ответ: ).

214. Диполь с электрическим моментом



. (Ответ: ).

215. Перпендикулярно плечу диполя с электрическим моментом
возбуждено однородное электрическое поле напряженностью
. Под действием сил поля диполь начинает поворачиваться относительно оси, проходящей через его центр. Найти угловую скорость
диполя в момент прохождения им положения равновесия. Момент инерции диполя относительно оси, перпендикулярной плечу ипроходящей через его центр. (Ответ:
;
).

216. Диполь с электрическим моментом
свободно установился в однородном электрическом поле напряженностью
. Диполь повернули на малый угол и предоставили самому себе. Определить частоту собственных колебаний диполя в электрическом поле. Момент инерции диполя относительно оси, проходящей через его центр
. (Ответ:
).

217. Диполь с электрическим моментом
находится в неоднородном электрическом поле. Степень неоднородности поля характеризуется величиной
, взятой в направлении оси диполя. Вычислить силуF, действующую на диполь в этом направлении. (Ответ: ).

218. Диполь с электрическим моментом
установился вдоль силовой линии в поле точечного заряда
на расстоянии
от него. Определить для этой точки величину
, характеризующую степень неоднородности поля в направлении силовой линии и силуF, действующую на диполь. (Ответ:
;
).

219. Диполь с электрическим моментом
установился вдоль силовой линии в поле, созданном бесконечной прямой нитью, заряженной бесконечной прямой нитью, заряженной с линейной плотностью
на расстоянии
от нее. Определить в этой точке величину
, характеризующую степень неоднородности поля в направлении силовой линии и силуF, действующую на диполь.(Ответ:
;
).

220. Диполь с электрическим моментом
образован двумя точечными зарядами
и
. Найти напряженность Е и потенциалэлектрического поля в точке В (рис. 2.6), находящихся на расстоянии
от центра диполя. (Ответ:
;
).

221. Электрический момент диполя
. Определить напряженность Е и потенциалполя, созданного в точке В (рис. 3.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

222. Определить напряженность Е и потенциал поля, создаваемого диполем с электрическим моментом
на расстоянии
от центра диполя, в направлении, составляющем угол
с вектором электрического момента. (Ответ:
;
).

223. Диполь с электрическим моментом
равномерно вращается с угловой скоростью
относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Определить среднюю потенциальную энергию
заряда
, находящегося на расстоянии
и лежащего в плоскости вращения, в течение времени
.В начальный момент времени считать
. (Ответ:
).

224. Диполь с электрическим моментом
свободно устанавливается в однородном электрическом поле напряженностью
. Вычислить работу А, необходимую для того, чтобы повернуть диполь на угол
. (Ответ:
).

225. Диполь с электрическим моментом
свободно установился в однородном электрическом поле напряженностью
. Определить изменение потенциальной энергии
диполя при повороте его на угол
. (Ответ: ).

226. Молекула HF обладает электрическим моментом
. Межъядерное расстояние
. Найти заряд такого диполя и объяснить, почему найденное значениесущественно отличается от значения элементарного заряда
. (Ответ:
).

227. Точечный заряд
находится на расстоянии

. Определить потенциальную энергию П и силуF их взаимодействия в случае, когда точечный заряд находится на оси диполя. (Ответ:
;
).

228. Точечный заряд
находится на расстоянии
от точечного диполя с электрическим моментом
. Определить потенциальную энергию П и силуF их взаимодействия в случае, когда точечный заряд находится на перпендикуляре к оси диполя. (Ответ:
;
).

229. Два диполя (рис. 2.8) с электрическими моментами
находятся на расстоянии
друг от друга (
─ плечо диполя). Определить потенциальную энергию П взаимодействия диполей. (Ответ:
).

230. Два одинаково ориентированных диполя (рис. 2.9) с электрическими моментами
находятся на расстоянии
друг от друга (
─ плечо диполя). Определить потенциальную энергию П и силуF взаимодействия диполей. (Ответ:
;
).

Часто возникает необходимость найти характеристики электрического поля, создаваемого системой зарядов, локализованных в небольшой области пространства. Примером такой системы зарядов могут служить атомы и молекулы, состоящие из электрически заряженных ядер и электронов. Если требуется найти поле на расстояниях, которые значительно больше размеров области расположения частиц, то нет необходимости пользоваться точными, но громоздкими формулами, достаточно ограничится более простыми приближенными выражениями.
 Пусть электрическое поле создается набором точечных зарядов q k (k = 1, 2, …, N) , расположенных в пределах небольшой области пространства, характерные размеры которой обозначим l (рис. 285).

Рис. 285
 Для расчета характеристик электрического поля, в некоторой точке A , находящейся на расстоянии r , значительно превышающем l , все заряды системы можно «объединить» и рассматривать систему зарядов как точечный заряд Q , величина которого равна сумме зарядов исходной системы

 Этот заряд можно мысленно расположить в любой точке области расположения системы зарядов q k (k = 1, 2, …, N) , так как при l << r , изменение положения в пределах малой области незначительно повлияет на изменение поля в рассматриваемой точке.
 В рамках такого приближения напряженность и потенциал электрического поля определяются по известным формулам

 Если суммарный заряд системы равен нулю, то указной приближение является слишком грубым, приводящим к выводу об отсутствии электрического поля.
 Более точное приближение можно получить, если мысленно собрать отдельно положительные и отрицательные заряды рассматриваемой системы. Если их «центры» смещены друг относительно друга, то электрическое поле такой системы может быть описано как поле двух точечных зарядов, равных по величине и противоположных по знаку, смещенных друг относительно друга. Более точную характеристику системы зарядов в этом приближении мы дадим немного позднее, после изучения свойств электрического диполя.
Электрическим диполем называется система, состоящая из двух точечных зарядов одинаковых по величине и противоположных по знаку, расположенных на малом расстоянии друг от друга.
 Рассчитаем характеристики электрического поля, создаваемого диполем, состоящего из двух точечных зарядов +q и −q , расположенных на расстоянии a друг от друга (рис. 286).

рис. 286
 Сначала найдем потенциал и напряженность электрического поля диполя на его оси, то есть на прямой, проходящей через оба заряда. Пусть точка A , находится на расстоянии r от центра диполя, причем будем считать, что r >> a . В соответствии с принципом суперпозиции потенциал поля в данной точке описывается выражением

На последнем шаге мы пренебрегли вторым малой величиной (a/2) 2 по сравнению с r 2 . Величину вектора напряженности электрического поля также можно вычислить на основании принципа суперпозиции

Напряженность поля можно вычислить, используя соотношение между потенциалом и напряженностью поля E x = −Δφ/Δx . В данном случае вектор напряженности направлен вдоль оси диполя, поэтому его модуль рассчитывается следующим образом


Обратите внимание, что поле диполя ослабевает быстрее поля точечного заряда, так потенциал поля диполя убывает обратно пропорционально квадрату расстояния, а напряженность поля − обратно пропорционально кубу расстояния.
 Аналогичным, но более громоздким, способом можно найти потенциал и напряженность поля диполя в произвольной точке, положение которой определим с помощью полярных координат: расстояния до центра диполя r и угла θ (рис. 287).

рис. 287
 По принципу суперпозиции потенциал поля в точке A равен

Учитывая, что r >> a , формулу (6) можно упростить с помощью приближений

в этом случае получаем

 Вектор напряженности электрического поля E удобно разложить на две составляющие: радиальную E r , направленную вдоль прямой, соединяющей данную точку с центром диполя, и перпендикулярную ей E θ (рис. 288).

рис. 288
 При таком разложении каждая компонента направлена вдоль направления изменения каждой из координат точки наблюдения, поэтому может быть найдена из соотношения, связывающего напряженность поля и изменение потенциала.
 Для того, чтобы найти компоненты вектора напряженности поля, запишем отношение изменения потенциала, при смещении точки наблюдения в направлении соответствующих векторов (рис. 289).

рис. 289
Радиальная составляющая тогда выразится соотношением


 Для расчета перпендикулярной составляющей следует учесть, что величина малого смещения в перпендикулярном направлении выражается через изменение угла следующим образом Δl = rΔθ.
Поэтому величина этой компоненты поля равна


 При выводе последнего соотношения использована тригонометрическая формула для разности косинусов и приближенное соотношение, справедливое при малых Δθ :
sinΔθ ≈ Δθ.
 Полученные соотношения полностью определяют поле диполя в произвольной точке и позволяют построить картину силовых линий этого поля (рис. 290).

рис. 290
 Теперь обратим внимание, что во всех формулах, определяющих потенциал и напряженность поля диполя, фигурирует только произведение величины одного из зарядов диполя на расстояние между зарядами. Поэтому именно это произведение является полной характеристикой электрических свойств и называется дипольным моментом системы. Так как диполь является системой двух точечных зарядов, то он обладает осевой симметрией, осью которой является прямая, проходящая через заряды. Следовательно, для задания полной характеристики диполя следует указать и ориентацию оси диполя. Проще всего это сделать, задавая вектор дипольного момента , величина которого равна дипольному моменту, а направление совпадает с осью диполя

где a − вектор, соединяющий отрицательный и положительный заряды диполя 1 . Такая характеристика диполя весьма удобна и позволяет во многих случая упрощать формулы, придавая им векторный вид. Так, например, потенциал поля диполя в произвольной точке, описываемый формулой (6), может быть записан в векторной форме

 После введения векторной характеристики диполя, его дипольного момента, появляется возможность использовать еще одну упрощающую модель − точечный диполь: систему зарядов, геометрическими размерами которой можно пренебречь, но обладающей дипольным моментом 2 .
Рассмотрим поведение диполя в электрическом поле.

рис. 291
 Пусть два точечных заряда, находящиеся на фиксированном расстоянии друг от друга, помещены в однородное электрическое поле. Со стороны поля на заряды действуют силы F = ±qE , равные по величине и противоположные по направлению. Суммарная сила, действующая на диполь равна нулю, однако эти силы приложены к различным точкам, поэтому суммарный момент этих отличен от нуля, а равен

где α − угол меду вектором напряженности поля и вектором дипольного момента. Наличие момента силы, приводит к тому, что дипольный момент системы стремится повернуться по направлению вектора напряженности электрического поля.
 Обратите внимание, что и момент силы, действующий на диполь, полностью определяется его дипольным моментом. Как мы показали ранее, если сумма сил, действующих на систему, равна нулю, то суммарный момент сил не зависит от оси, относительно которой этот момент рассчитывается. Положению равновесия диполя соответствуют как направление по полю α = 0 , так и против него α = π , однако легко показать, что первое положение равновесия устойчиво, а второе нет.
Если электрический диполь находится в неоднородном электрическом поле, то силы, действующие на заряды диполя различны, поэтому результирующая сила отлична от нуля.
 Для упрощения, будем считать, что ось диполя совпадает с направлением вектора напряженности внешнего электрического поля. Совместим ось x системы координат с направлением вектора напряженности (рис. 292).

рис. 292
 Результирующая сила, действующая на диполь, равна векторной сумме сил, действующих на заряды диполя,

 Здесь E(x) − напряженность поля в точке расположения отрицательного заряда, E(x + a) − напряженность в точке положительного заряда. Так как расстояние между зарядами мало, разность напряженностей представлена как произведение скорости изменения напряженности на размер диполя. Таким образом, в неоднородном поле, на диполь действует сила, направлена в сторону возрастания поля, или диполь втягивается в область более сильного поля.
 В заключение вернемся к строгому определению дипольного момента произвольной системы зарядов. Вектор дипольного момента, системы, состоящей из двух зарядов (рис. 293),

рис. 293
может быть записан в виде

Если теперь пронумеровать заряды, то эта формула приобретает вид

где величины зарядов понимаются в алгебраическом смысле, с учетом их знаков. Последняя формула допускает очевидное обобщение (обоснованием которого является принцип суперпозиции) на систему произвольного числа зарядов

 Эта формула определяет дипольный момент произвольной системы зарядов, с ее помощью произвольная система зарядов может быть заменена на точечный диполь (рис. 294).

рис. 294
 Положение диполя внутри области расположения зарядов произвольно, естественно, если электрическое поле рассматривается на расстояниях значительно превышающих размеры системы.

Задания для самостоятельной работы.
1. Докажите, что для произвольной системы зарядов, алгебраическая сумма которых равна нулю, дипольный момент, определяемый по формуле (11), не зависит от выбора системы отсчета.
2. Определите «центры» положительных и отрицательных зарядов системы, по формулам аналогичным, формулам для координат центра масс системы. Если все положительный и все отрицательные заряды собрать в своих «центрах», то получим диполь, состоящий из двух зарядов. Покажите, что его дипольный момент совпадает с дипольным моментом, рассчитанным по формуле (11).
3. Получите двумя способами формулу, выражающую силу взаимодействия точечного диполя и точечного заряда, находящегося на оси диполя: во-первых, найдите силу, действующую на точечный заряд со стороны диполя; во-вторых, найдите силу, действующую на диполь со стороны точечного заряда; в-третьих, убедитесь, что эти силы равны по модулю и противоположны по направлению.

1 Направление вектора дипольного момента, в принципе можно задать и противоположным, но исторически сложилось задание направления дипольного момента от отрицательного к положительному заряду. При таком определении силовые линии как бы являются продолжением вектора дипольного момента.
  2 Очередная, абсурдная на первый взгляд, но удобная абстракция − материальная точка, имеющая два заряда, разнесенных в пространстве.

Рассмотрим, применительно к электродинамике, что такое дипольный момент. Элементарные носители заряда, протекающие по прямолинейному участку системы проводников, формируют прямой ток. Соответственно, присутствует токовый заряд указанного тока (I*L, где I - значение тока, L - длина участка). В свою очередь, рассматривает два параллельно расположенных токовых заряда при L, стремящейся к бесконечности. В замкнутом контуре две его половины обладают противоположным по формируя токовый диполь. Вокруг каждого такого диполя создается вихревое поле, для которого характерен свой собственный дипольный заряд тока, ориентированный перпендикулярно плоскости, в которой располагается контур. Он называется дипольный момент. Но так как мы рассматривает лишь токовую составляющую, то для перехода к электромагнетизму этот же термин называют иначе. Другое название - магнитный дипольный момент (Pm, иногда просто m).

Он представляет собой одну из ключевых характеристик любого вещества. Считается, что дипольный момент возникает благодаря токам (как в микромире, так и в макросистемах). Под микромиром в данном случае понимается атом: движущиеся по круговым орбитам могут рассматриваться как электрический ток. Так как вещество состоит из элементарных частиц, то каждая из них также обладает своим моментом. Обращаем внимание, что под элементарными частицами нужно понимать не только молекулы и атомы, но также протоны, нейтроны, электроны и, возможно, еще более мелкие составляющие. С точки зрения их магнитный дипольный момент обуславливается собственным механическим вращением - спином. Однако данное предположение в последнее время все чаще ставится под сомнение в свете новейшей полевой теории частиц. К примеру, общепризнано существование так называемого аномального диполя, значение которого отличается от расчетов уравнения в квантовой теории. А вот с полевой точки зрения, в которой магнитное поле любой элементарной частицы генерируется не спиновым вращением носителей заряда, а представляет собой одну из постоянных составляющих электромагнитного поля, аномальный диполь легко объясним. Величину определяют как определенный набор с корректирующей составляющей спина. Таким образом, магнитный момент для нейтрона зависит от генерирующего его электрического тока и энергии изменяющегося электромагнитного поля.

При расчете его значения для целого контура используют метод интегрального сложения дипольных моментов простейших диполей тока, создающих замкнутый круговой контур.

Дипольный момент в электродинамике определяют по формуле:

где I - значение протекающего тока; S - площадь замкнутого контура (круговой); n - вектор, направленный перпендикулярно плоскости, в которой располагается контур. Хотя вышеуказанная формула этого не показывает, величина Pm также векторная, направленность которой может быть определена известным в классической электротехнике (правого винта): если вращение воображаемого винта сопоставить с направлением протекающего тока, то движение тела винта совпадет с искомым вектором.

Электрическое поле диполя отличается от поля точечного заряда, прежде всего, конфигурацией силовых линий. Так как с точки зрения физики подобный диполь является уравновешенной системой двух модули которых равны, а полярность противоположна (+ и -), то соответствующие линии напряженности начинаются у одного заряда, а заканчиваются у другого. В случае же лишь одного точечного носителя заряда линии расходятся во все стороны, подобно свету лампы.

ДИПОЛЬНЫЙ МОМЕНТ электрический, векторная величина, характеризующая асимметрию распределения положит. и отрицат. зарядов в электрически нейтральной системе. Два одинаковых по величине заряда +q и Чq образуют электрич. диполь с Д. м. m = q l, где l- расстояние между зарядами. Для системы из пзарядов i радиусы-векторы к-рых i , В молекулах и мол. системах центры положит. зарядов q А совпадают с положениями атомных ядер (радиусы-векторы r A), а электронное распределение описывается плотностью вероятности r(r). В этом случае Д. м. Вектор Д. м. направлен от центра тяжести отрицат. зарядов к центру тяжести положительных. В хим. литературе Д. м. молекулы иногда приписывают противоположное направление. Часто вводят представление о Д. м. отдельных хим. связей, векторная сумма к-рых дает Д. м. молекулы. При этом Д. м. связи определяют двумя положит. зарядами ядер атомов, образующих связь, и распределением отрицат. (электронного) заряда. Д. м. хим. связи обусловлен смещением электронного облака в сторону одного из атомов. Связь наз. полярной, если соответствующий Д. м. существенно отличается от нуля. Возможны случаи, когда отдельные связи в молекуле полярны, а суммарный Д. м. молекулы равен нулю; такие молекулы наз. неполярными (напр., молекулы СО 2 и CCl 4). Если же Д. м. молекулы отличен от нуля, наз. полярной. Напр., молекула Н 2 О полярна; суммирование Д. м. двух полярных связей ОН также дает отличный от нуля Д. м., направленный по биссектрисе валентного угла НОН. Порядок величины Д. м. молекулы определяется произведением заряда электрона (1,6.10 - 19 Кл) на длину хим. связи (порядка 10 - 10 м), т. е. составляет 10 - 29 Кл. м. В справочной литературе Д. м. молекул приводят в дебаях (Д или D), по имени П. Дебая; 1 Д = 3,33564.10 - 30 Кл. м. Спектроскопич. методы определения Д. м. молекул основаны на эффектах расщепления и сдвига спектральных линий в электрич. поле (эффект Штарка). Для линейных молекул и молекул типа симметричного волчка известны точные выражения, связывающие Д. м. со штарковским расщеплением линий вращательных спектров. Этот метод дает наиб. точные значения величины Д. м. (до 10 - 4 Д), причем экспериментально определяется не только величина, но и направление вектора Д. м. Важно, что точность определения Д. м. почти не зависит от его абс. величины. Это позволило получить весьма точные значения очень малых Д. м. ряда молекул углеводородов, к-рые нельзя надежно определить др. методами. Так, Д. м. пропана равен 0,085 b0,001 Д, пропилена 0,364 b 0,002 Д, пропина 0,780 b 0,001 Д, толуола 0,375 b 0,01 Д, азулена 0,796 b 0,01 Д. Область применения метода микроволновой спектроскопии ограничена, однако, небольшими молекулами, не содержащими атомов тяжелых элементов. Направление вектора Д. м. молекулы м. б. определено экспериментально и по Зеемана эффекту второго порядка. Др. группа методов определения Д. м. основана на измерениях диэлектрич. проницаемости е в-ва. Этими методами измерены Д. м. молекул более 10 тыс. в-в. Переход от измеряемого значения e газа, чистой жидкости или разбавл. р-ра, т. е. макроскопич. характеристики диэлектрика, к величине Д. м. основан на теории поляризации диэлектриков. Считается, что при наложении электрич. поля на диэлектрик его полная Р (средний Д. м. единицы объема) складывается из наведенной, или индуцированной, поляризации Р м и ориентационной поляризации Р ор и связана с m ур-нием Ланжевена - Дебая:

где М - мол. масса, d - плотность, a - молекулы, N A - число Авогадро, k - постоянная Больцмана, Т - абс. т-ра. Измерения диэлектрич. проницаемости проводят в постоянном поле или при низких частотах, обеспечивающих полную ориентацию молекул по полю. При наиб. распространенном варианте метода - измерениях в разбавл. р-рах неполярных р-рителей - предполагается аддитивность поляризаций растворенного в-ва и р-рителя. Сопоставление Д. м. полярных молекул нек-рых орг. соед., полученных разными методами, показано в таблице.


Важнейшая область применения данных о Д. м. молекул -структурные исследования, установление конформации молекул, конформационного и изомерного состава в-ва, его зависимости от т-ры. Величины Д. м. молекул позволяют судить о распределении электронной плотности в молекулах и зависимости этого распределения от характера отдельных заместителей. В общем случае структурная интерпретация Д. м. требует сравнения эксперим. величин со значениями, полученными квантовомех. расчетом либо при помощи аддитивной векторной схемы с использованием Д. м. отдельных связей и атомных групп. Последние находят либо по интенсивностям колебат. полос поглощения, либо путем векторного разложения Д. м. нек-рых симметричных молекул. Расчеты с использованием векторной аддитивной схемы могут учитывать разл. проявления стереохим. нежесткости, напр., затрудненное или своб. внутр. вращение молекулы. Высокосимметричные мол. структуры, обладающие центром инверсии, двумя взаимно перпендикулярными осями вращения или осями, перпендикулярными плоскости симметрии, не должны иметь Д. м. По наличию или отсутствию Д. м. молекулы можно в отдельных случаях выбрать для нее ту или иную структуру без к.-л. теоретич. расчетов. Так, равенство нулю эксперим. Д. м. димера аминооксидибутилборана (ф-ла I) служит доказательством того, что он существует в виде устойчивой кресловидной конформации, обладающей центром инверсии. Наоборот, наличие Д. м. у тиантрена (ф-ла II, X = S) и селенантрена (II, X = Se), равных 1,57 Д и 1,41 Д соотв., исключает для них центросимметричную структуру, в частности плоскую.


Лит.: Минкин В. И., Осипов О. А., Жданов Ю. А., Дипольные моменты в органической химии. Л., 1968; Осипов О. А., Минкин В. И., Гарновский А. Д., Справочник по дипольным моментам, 3 изд.. М., 1971; Exner О., Dipole moments in organic chemistry, Stuttg., 1975. В. И. Muнкин.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .