Краткое сообщение на тему элементарные частицы. Реферат: Элементарные частицы

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения. В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение. Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию. Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода. Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной). Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался. Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения. В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин. Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2. Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный , частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9 10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. ).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Элементарные частицы

Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц – это исследование природы, свойств и взаимных превращений элементарных частиц.

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т. е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г.), а также открытиями электронов (Дж. Томсон, 1897 г.) и α-частиц (Э. Резерфорд, 1899 г.). В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах (А. Эйнштейн).

В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д. Д. Иваненко и В. Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными «кирпичиками» природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (μ-мезонами). Затем в 1947–1950 годах были открыты пионы (т. е. π-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.

В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни μ-мезона равно 2,2 10–6 с, нейтрального π-мезона – 0,87 10–16 с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10–10 с.
Существует несколько десятков частиц со временем жизни, превосходящим 10–17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10–22 –10–23 с.

Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т. е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества, ядра которых состоят из антинуклонов, а оболочка – из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. В таблице представлены некоторые сведенья о свойствах элементарных частиц со временем жизни более 10–20 с. Из многих свойств, характеризующих элементарную частицу, в таблице указаны только масса частицы (в электронных массах), электрический заряд (в единицах элементарного заряда) и момент импульса (так называемый спин) в единицах постоянной Планка ħ = h / 2π. В таблице указано также среднее время жизни частицы.

Название частицы

Масса (в электронных массах)

Электрический заряд

Время жизни (с)

Античастица

Стабилен

Нейтрино электронное

Стабильно

Нейтрино мюонное

Стабильно

Электрон

Стабилен

Пи-мезоны

≈ 10–10 –10–8

Эта-нуль-мезон

Стабилен

Лямбда-гиперон

Сигма-гипероны

Кси-гипероны

Омега-минус-гиперон

Элементарные частицы объединяются в три группы: фотоны, лептоны и адроны.
К группе фотонов относится единственная частица – фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ-мезон. К лептонам относятся еще ряд частиц, не указанных в таблице. Все лептоны имеют спин 1/2.

Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две подгруппы. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них – положительно и отрицательно заряженные, а также нейтральные π-мезоны с массами порядка 250 электронных масс. Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η0-мезон. Все мезоны имеют спин, равный нулю.
Вторая подгруппа – барионы – включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны – протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин 1/2.

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион – из трех антикварков. Мезоны состоят из пар кварк–антикварк.

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3 элементарного заряда.
Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц – адронов. Кроме лептонного и барионного зарядов известны также:

Странность s. Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K+, K- -мезоны имеют s = +l.

Очарование с. Квантовое число с может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие с = 0, +1 и -1. Например, барион Λ+c имеет с = +1.

Bottomness b. Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В+ -мезон имеет b = +1.

Topness t. Квантовое число t может принимать значения -3, -2,-1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

Изоспин I. Сильно взаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) - изотопические мультиплеты. Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет. n и р составляют изотопический дуплет I=1/2; Σ+ ,Σ- ,Σ0входят в состав изотопического триплета I = 1, Λ - изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет 2I + 1.

G-четность - это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения и изменения знака третьей компоненты Iz изоспина. G-четность сохраняется только в сильных взаимодействиях.

Фундаментальные взаимодействия. Процессы, в которых участвуют различные элементарные частицы, сильно различаются по характерным временам их протекания и энергиям. Согласно современным представлениям, в природе осуществляется четыре типа взаимодействий, которые не могут быть сведены к другим, более простым видам взаимодействий: сильное, электромагнитное, слабое и гравитационное. Эти типы взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие – это наиболее интенсивное из всех видов взаимодействий. Они обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы – адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка и менее 10–15 м. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В этом виде взаимодействия могут принимать участие любые электрически заряженные частицы, а так же фотоны – кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие – наиболее медленное из всех взаимодействий, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β-распад нейтрона:

А также безнейтринные процессы распада частиц с большим временем жизни (τ ≥ 10–10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезды, планеты и т. п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками И. Е. Таммом и Д. Д. Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.
Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами – квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π– и π0.

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W+, W– и Z0, обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом электромагнитного поля участвуют векторные бозоны.

После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой.

Физики-теоретики прилагают значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик – гипотетическая частица, названная гравитоном. Однако эта частица до сих пор не обнаружена.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел 18 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементар­ными частицами считались атомы. Их внут­ренняя структура - ядра и электроны - была обнаружена в начале XXв. в опытах Э. Резерфорда. Размер атомов - около 10 -8 см, ядер - в десятки тысяч раз меньше, а размер электронов совсем мал. Он меньше чем 10 -16 см, как это следует из современных тео­рий и экспериментов.

Таким образом, сейчас электрон - элемен­тарная частица. Что касается ядер, то их внутренняя структура обнаружилась вскоре после их открытия. Они состоят из нукло­нов - протонов и нейтронов. Ядра довольно плотные: среднее расстояние между нуклонами всего в несколько раз больше их собственного размера. Для того чтобы выяснить, из чего состоят нуклоны, понадобилось около полуве­ка, правда, при этом заодно появились и были разрешены и другие загадки природы.

Нуклоны состоят из трех кварков, которые элементарны с той же точностью, что и элек­трон, т. е. их радиус меньше 10 -16 см. Радиус нуклонов - размер области, занимаемой квар­ками, - около 10 -13 см. Нуклоны принадлежат к большому семейству частиц - барионов, составленных из трех различных (или одина­ковых) кварков. Кварки могут по-разному связываться в тройки, и это определяет раз­личия в свойствах бариона, например, он может иметь различный спин.

Кроме того, кварки могут соединяться в пары - мезоны, состоящие из кварка и антикварка. Спин мезонов принимает целые значения, в то время как для барионов он при­нимает полуцелые значения. Вместе барионы и мезоны называются адронами.

В свободном виде кварки не найдены, и сог­ласно принятым в настоящее время представ­лениям они могут существовать только в виде адронов. До открытия кварков некоторое время адроны считались элементарными частицами (и такое их название еще довольно часто встре­чается в литературе).

Первым экспериментальным указанием на составную структуру адронов были опыты по рассеянию электронов на протонах на линейном ускорителе в Станфорде (США), которые мож­но было объяснить, лишь предположив наличие внутри протона каких-то точечных объектов.

Вскоре стало ясно, что это - кварки, существо­вание которых предполагалось еще ранее тео­ретиками.

Здесь представлена таблица современных элементарных частиц. Кроме шести видов квар­ков (в опытах пока проявляются только пять, но теоретики предполагают, что есть и шестой) в этой таблице приведены лептоны - частицы, к семье которых принадлежит и электрон. Еще в этой семье обнаружены мюон и (совсем не­давно) t-лептон. У каждого из них есть свое нейтрино, так что лептоны ес­тественным образом разбиваются на три пары е, n е; m, n m ;t, n t .

Каждая из этих пар объединяется с соответ­ствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, как это видно из таблицы. Отличаются лишь массы. Второе поколение тяжелее первого, а третье по­коление тяжелее второго.

В природе встречаются в основном частицы первого поколения, а остальные создаются искусственно на ускорителях заряженных час­тиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих спин 1/2 кварков и лептонов, вместе называемых частицами ве­щества, в таблице приведены частицы со спином 1. Это кванты полей, создаваемых час­тицами вещества. Из них наиболее известная частица - фотон, квант электромагнитного поля.

Так называемые промежуточные бозоны W + иW - , обладающие очень большими массами, были недавно обнаружены в экспериментах на встречных р -пучках при энергиях в несколь­ко сотен ГэВ. Это переносчики слабых взаимо­действий между кварками и лептонами. И на­конец, глюоны - переносчики сильных взаимодействий между кварками. Как и сами квар­ки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях реакций рождения и уничтожения адронов. Недавно были зарегистрированы струи адронов, порожденные глюонами. Поскольку все пред­сказания теории кварков и глюонов - кван­товой хромодинамики - сходятся с опытом, почти нет сомнений в существовании глюонов.

Частица со спином 2 - это гравитон. Его существование вытекает из теории тяготе­ния Эйнштейна, принципов квантовой механики и теории относительности. Обнаружить грави­тон экспериментально будет чрезвычайно трудно, поскольку он очень слабо взаимодействует с веществом.

Наконец, в таблице со знаком вопроса приве­дены частицы со спином 0 (Н-мезоны) и 3/2 (гравитино); они не обнаружены на опы­те, но их существование предполагается во многих современных теоретических моделях.

Элементарные частицы

спин 0? 1/2 1 3/2 2?
название Частицы Хиггса Частицы вещества Кванты полей
кварки лептоны фотон векторные бозоны глюон гравитино гравитон
символ H u d n e e g Z W g
(масса) (?) (?) (0,5) (0) (~95Гэв) (~80Гэв) (?) (?)
символ с s n m m
(масса) (0?) (106)
символ t b n t t
(масса) (0?) (1784)
Барионный заряд 0 1/3 1/3 0 0 0 0 0 0 0 0
Электрический заряд 0, ±1 2/3 1/3 0 -1 0 0 ±1 0 0 0
цвет - 3 3 - - - - - 8 - -

Адроны - общее название для частиц, участ­вующих в сильных взаимодействиях. Название происходит от греческого слова, означающего «сильный, крупный». Все адроны делятся на две большие группы - мезоны и барионы.

Барионы (от греческого слова, означающего «тяжелый») - это адроны с полуце­лым спином . Самые известные барионы - протони нейтрон. К барионам принадлежит также ряд частиц с квантовым числом, названным когда-то странно­стью . Единицей странности обладают барион лямбда (L°) и семейство барионов сигма (S - , S+ и S°). Индексы +, - ,0 указывают на знак электрического заряда или нейтральность частицы. Двумя единицами странности обла­дают барионы кси (X - и X°). Барион W - имеет странность, равную трем. Массы перечисленных барионов примерно в полтора раза больше массы протона, а их характерное время жизни составляет около 10 -10 с. Напомним, что протон практически стабилен, а нейтрон живет более 15 мин. Казалось бы, более тяжелые барионы очень недолговечны, но по масштабам микро­мира это не так. Такая частица, даже двига­ясь относительно медленно, со скоростью, скажем, равной 10% от световой скорости, успевает пройти путь в несколько миллиметров и оста­вить свой след в детекторе элементарных час­тиц. Одним из свойств барионов, отличающих их от других видов частиц, можно считать наличие у них сохраняющегося барионного за­ряда. Эта величина введена для описания опытного факта постоянства во всех извест­ных процессах разности между числом барио­нов и антибарионов.

Протон - стабильная частица из класса адронов, ядро атома водорода. Трудно ска­зать, какое событие следует считать откры­тием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и откры­тие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906-1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона,подтвердив открытие искусственного превра­щения элементов. В этих опытах a-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атом­ный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10 -21 . Масса протона m p = (938,2796 ± 0,0027)МэВ или ~ 1,6-10 -24 г, т. е. протон в 1836 раз тяжелее электрона! С современ­ной точки зрения протон не является истин­но элементарной частицей: он состоит из двух u -кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d -кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами - глюонами, квантами поля, переносящего сильные взаимо­действия. Данные экспериментов, в которых рассматривались процессы рассеяния электро­нов на протонах, действительно свидетельству­ют о наличии внутри протонов точечных рас­сеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечныеразмеры ~ 10 -13 см, хотя, разумеется, его нель­зя представлять как твердый шарик. Скорее, протон напоминает облако с размытой грани­цей, состоящее из рождающихся и аннигили­рующих виртуальных частиц.

Протон, как и все адроны, участвует в каж­дом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимо­действия - протоны и электроны в атомах. Примерами слабых взаимодействий могут слу­жить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и ней­трино (для свободного про­тона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полу­целым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, раз­личные гипероны (L, S, X, W) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число - барионный заряд, равный 1 для барионов, - 1 - для антибарионов и О - для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохране­ния барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сох­ранение барионного заряда делает невозмож­ным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический ха­рактер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабиль­ностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

К физике атомного ядра тесно прилегает физика элементарных частиц. Эта область современной науки базируется на квантовых представлениях и в своем развитии всё дальше проникает в глубину материи, открывая загадочный мир ее первооснов. В физике элементарных частиц чрезвычайно велика роль теории. В силу невозможности прямого наблюдения таких материальных объектов их образы ассоциируются с математическими уравнениями, с наложенными на них запрещающими и разрешающими правилами.

По определению элементарные частицы — это первичные, неразложимые образования, из которых, по предположению, состоит вся материя. На самом же деле этот термин употребляется в более широком смысле — для обозначения обширной группы микрочастиц материи, структурно не объединенных в ядра и атомы. Большинство объектов исследования физики элементарных частиц не отвечают строгому определению элементарности, поскольку представляют собой составные системы. Поэтому частицы, удовлетворяющие этому требованию, принято называть истинно элементарными.

Первой элементарной частицей, открытой в процессе изучения микромира еще в конце XIX в., был электрон. Следующим был открыт протон (1919), затем пришла очередь нейтрона, открытого в 1932 г. Существование позитрона теоретически было предсказано П. Дираком в 1931 г., и в 1932 г. этот положительно заряженный «двойник» электрона был обнаружен в космических лучах Карлом Андерсоном. Предположение о существовании в природе нейтрино было выдвинуто В. Паули в 1930 г., а экспериментально оно было обнаружено только в 1953 г. В составе космических лучей в 1936 г. были найдены мю-мезоны (мюоны) — частицы обоих знаков электрического заряда с массой около 200 масс электрона. Во всем остальном свойства мюонов очень близки к свойствам электрона и позитрона. Также в космических лучах в 1947 г. были открыты положительный и отрицательный пи-мезоны, существование которых было предсказано японским физиком Хидэки Юкавой в 1935 г. В дальнейшем выяснилось, что существует также нейтральный пи-мезон.

В начале 50-х гг. была открыта большая группа частиц с весьма необычными свойствами, что побудило назвать их «странными». Первые частицы этой группы были обнаружены в космических лучах, это К-мезо- ны обоих знаков и К-гиперон (лямбда-гиперон). Отметим, что мезоны получили свое название от греч. «средний, промежуточный» в силу того, что массы первых открытых частиц этого типа (пи-мезоны, мю-мезоны) имеют массу, промежуточную между массой нуклона и электрона. Гипероны же ведут свое название от греч. «сверх, выше», поскольку их массы превышают массу нуклона. Последующие открытия странных частиц делались уже на ускорителях заряженных частиц, которые стали основным инструментом изучения элементарных частиц.

Так были открыты антипротон, антинейтрон и ряд гиперонов. В 60-е гг. было обнаружено значительное число частиц с крайне малым временем жизни, которые получили названиерезонансов. Как выяснилось, к резонансам относится большинство известных элементарных частиц. В середине 70-х гг. было открыто новое семейство элементарных частиц, получивших романтическое название «очарованных», а в начале 80-х — семейства «красивых» частиц и так называемых промежуточных векторных бозонов. Открытие этих частиц явилось блестящим подтверждением теории, основанной на кварковой модели элементарных частиц, которая предсказала существование новых частиц задолго до их обнаружения.

Таким образом, за время после открытия первой элементарной частицы — электрона — в природе выявлено множество (около 400) микрочастиц материи, и процесс открытия новых частиц продолжается. Оказалось, что мир элементарных частиц устроен весьма и весьма сложно, а их свойства разнообразны и зачастую крайне неожиданны.

Все элементарные частицы являются материальными образованиями чрезвычайно малых масс и размеров. Большинство из них имеют массы порядка массы протона (~10 -24 г) и размеры порядка 10 -13 м. Это определяет сугубо квантовую специфику их поведения. Важное квантовое свойство всех элементарных частиц (включая и относящийся к ним фотон) состоит в том, что все процессы с ними происходят в виде последовательности актов их испускания и поглощения (способность рождаться и уничтожаться при взаимодействии с другими частицами). Процессы с участием элементарных частиц относятся ко всем четырем видам фундаментального взаимодействия, сильному, электромагнитному, слабому и гравитационному. Сильным взаимодействием обусловлена связь нуклонов в атомном ядре. Электромагнитное взаимодействие обеспечивает связь электронов с ядрами в атоме, а также связь атомов в молекулах. Слабое взаимодействие вызывает, в частности, распад квазистабильных (т. е. относительно долгоживущих) частиц, имеющих время жизни в пределах 10 -12 -г 10 -14 с. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях ~10 -13 см, в силу малости их массы, имеет крайне малую интенсивность, однако может оказаться существенным на сверхмалых расстояниях. Интенсивности взаимодействий, сильного, электромагнитного, слабого и гравитационного — при умеренной энергии процессов относятся соответственно как 1 , 10 -2 , 10 -10 , 10 -38 . Вообще же с ростом энергии частиц это соотношение изменяется.

Элементарные частицы классифицируют по различным признакам, и надо сказать, что в целом принятая их классификация достаточно сложна.

В зависимости от участия в различных видах взаимодействия все известные частицы делят на две основные группы: адроны и лептоны.

Адроны участвуют во всех видах взаимодействия, включая сильное. Они получили свое название от греч. «большой, сильный».

Лептоны не участвуют в сильном взаимодействии. Их название происходит от греч. «легкий, тонкий», поскольку массы известных до середины 70-х гг. частиц этого класса были заметно меньше масс всех других частиц (кроме фотона).

К адронам относятся все барионы (группа частиц с массой не меньше массы протона, названных так от греч. «тяжелый») и мезоны. Самым легким барионом является протон.

Лептонами являются, в частности, электрон и позитрон, мюоны обоих знаков, нейтрино трех видов (легкие, электрически нейтральные частицы, участвующие только в слабом и гравитационном взаимодействиях). Предполагается, что нейтрино столь же распространены в природе, как и фотоны, к их образованию приводит множество различных процессов. Отличительной особенностью нейтрино является его огромная проникающая способность, особенно при низких энергиях. Завершая классификацию по видам взаимодействия, следует отметить, что фотон принимает участие только в электромагнитном и гравитационном взаимодействиях. Кроме того, в соответствии с теоретическими моделями, направленными на объединение всех четырех видов взаимодействия, существует гипотетическая частица, переносящая гравитационное поле, которая получила название гравитон. Особенность гравитона состоит в том, что он (согласно теории) участвует только в гравитационном взаимодействии. Заметим, что теория связывает с квантовыми процессами гравитационного взаимодействия еще две гипотетические частицы — гра- витино и гравифотон. Экспериментальное обнаружение гравитонов, т. е., по сути, гравитационного излучения, крайне затруднено из-за его чрезвычайно слабого взаимодействия с веществом.

В зависимости от времени жизни элементарные частицы разделяют на стабильные, квазистабильные и нестабильные (резонансы).

Стабильными частицами являются электрон (его время жизни t > 10 21 лет), протон (t > 10 31 лет), нейтрино и фотон. Квазистабильными считаются частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их время жизни t > 10 -20 c. Резонансы — частицы, распадающиеся в результате сильного взаимодействия, их время жизни находится в интервале 10 -22 ^10 -24 с.

Распространенным является еще один вид подразделения элементарных частиц. Системы частиц с нулевым и целым спином подчиняются статистике Бозе-Эйнштейна, поэтому такие частицы принято называть бозонами. Совокупность же частиц с полуцелым спином описывается статистикой Ферми-Дирака, отсюда и название таких частиц — фермионы.

Каждая элементарная частица характеризуется определенным набором дискретных физических величин — квантовых чисел. Общими для всех частиц характеристиками являются масса m, время жизни t, спин J и электрический заряд Q. Спин элементарных частиц принимает значения, равные целым или полуцелым кратным постоянной Планка. Электрические заряды частиц являются целыми кратными величине заряда электрона, считающегося элементарным электрическим зарядом.

Кроме того, элементарные частицы дополнительно характеризуются так называемыми внутренними квантовыми числами. Лептонам приписывается специфический лептонный заряд L = ±1, адроны с полуцелым спином несут барионный заряд В =±1 (адроны с В = 0 образуют подгруппу мезонов).

Важной квантовой характеристикой адронов является внутренняя четность Р, принимающая значение ±1 и отражающая свойство симметрии волновой функции частицы относительно пространственной инверсии (зеркального отображения). Несмотря на несохранение четности при слабом взаимодействии, частицы с хорошей точностью принимают значения внутренней четности, равные либо +1, либо -1.

Адроны, кроме того, подразделяются на обычные частицы (протон, нейтрон, пи-мезоны), странные частицы (^-мезоны, гипероны, некоторые резонансы), «очарованные» и «красивые» частицы. Им соответствуют особые квантовые числа: странность S, очарование С и красота b. Эти квантовые числа введены в соответствии с кварковой моделью для истолкования специфических процессов, характерных для этих частиц.

Среди адронов имеются группы (семейства) частиц с близкими массами, одинаковыми внутренними квантовыми числами, но различающиеся электрическим зарядом. Такие группы называются изотопическими мулътипле- тами и характеризуются общим квантовым числом — изотопическим спином, принимающим, как и обычный спин, целые и полуцелые значения.

В чем состоит уже неоднократно упоминавшаяся кварковая модель адронов?

Обнаружение закономерности группировки адронов в мультиплеты послужило основанием для предположения о существовании особых структурных образований, из которых построены адроны, — кварков. Допуская существование таких частиц, можно считать, что все адроны являются комбинациями кварков. Эта смелая и эвристически продуктивная гипотеза была выдвинута в 1964 г. американским физиком Марри Гелл-Маном. Суть ее состояла в предположении о наличии трех фундаментальных частиц с полуцелым спином, являющихся материалом для построения адронов, u-, d- и s-кварков. В дальнейшем на основе новых экспериментальных данных кварковая модель строения адронов пополнилась еще двумя кварками, «оча- рованным» (с) и «красивым» (b). Считается возможным существование и других типов кварков. Отличительная особенность кварков состоит в том, что они обладают дробными значениями электрического и барионного зарядов, не встречающимися ни у одной из известных частиц. С кварковой моделью согласуются все экспериментальные результаты по изучению элементарных частиц.

Согласно кварковой модели, барионы состоят из трех кварков, мезоны — из кварка и антикварка. Поскольку некоторые барионы являются комбинацией трех кварков в одном и том же состоянии, что запрещено принципом Паули (см. выше), каждому типу («аромату») кварка было приписано дополнительное внутреннее квантовое число «цвет». Кварк каждого типа («аромата» — u, d, s, c, b) может находиться в трех «цветовых» состояниях. В связи с использованием цветовых понятий теория сильного взаимодействия кварков получила название квантовой хромодинамики (от греч. «цвет»).

Можно считать, что кварки являются новыми элементарными частицами, причем они претендуют на роль истинно элементарных частиц для адронной формы материи. Однако остается неразрешенной проблема наблюдения свободных кварков и глюонов. Несмотря на систематические поиски в космических лучах, на ускорителях высокой энергии, обнаружить их в свободном состоянии пока так и не удалось. Имеются веские основания считать, что здесь физика столкнулась с особым явлением природы — так называемым удержанием кварков.

Дело в том, что существуют серьезные теоретические и экспери- ментальные доводы в пользу предположения о том, что силы взаимодействия кварков с расстоянием не ослабевают. Это означает, что для разделения кварков требуется бесконечно большая энергия, следовательно, появление кварков в свободном состоянии невозможно. Это обстоятельство придает кваркам статус совершенно особых структурных единиц вещества. Возможно, именно начиная с кварков принципиально невозможно опытное наблюдение ступеней дробления материи. Признание кварков в качестве реально существующих объектов материального мира не только олицетворяет собой яркий случай первичности идеи по отношению к существованию материальной сущности. Встает вопрос о пересмотре таблицы фундаментальных мировых постоянных, ибо заряд кварка втрое меньше заряда протона, а следовательно, и электрона.

Начиная с открытия позитрона наука встретилась с частицами антивещества. Сегодня очевидным является то, что для всех элементарных частиц с ненулевыми значениями хотя бы одного из квантовых чисел, таких как электрический заряд Q, лептонный заряд L, барионный заряд В, странность S, очарование С и красота b, существуют античастицы с теми же значениями массы, времени жизни, спина, но с противоположными знаками вышеуказанных квантовых чисел. Известны частицы, тождественные своим античастицам, они называются истинно нейтральными. Примерами истинно нейтральных частиц служат фотон и один из трех пи-мезонов (два других являются по отношению друг к другу частицей и античастицей).

Характерной особенностью взаимодействия частиц и античастиц является их аннигиляция при столкновении, т. е. взаимоуничтожение с образованием других частиц и выполнением законов сохранения энергии, импульса, заряда и т. п. Типичным примером аннигиляции пары является процесс превращения электрона и его античастицы — позитрона — в электромагнитное излучение (в фотоны или гамма-кванты). Аннигиляция пар происходит не только при электромагнитном взаимодействии, но и при сильном взаимодействии. При высоких энергиях легкие частицы могут аннигилировать с образованием более тяжелых частиц — при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжелых частиц (равный сумме их энергий покоя).

При сильном и электромагнитном взаимодействиях имеет место полная симметрия между частицами и их античастицами, т. е. все процессы, происходящие между первыми, возможны и для вторых. Поэтому антипротоны и антинейтроны могут образовывать ядра атомов антивещества, т. е. из античастиц в принципе вполне может быть построено антивещество. Возникает очевидный вопрос: если каждая частица имеет античастицу, то почему же в изученной области Вселенной отсутствуют скопления антивещества? Действительно, о наличии их во Вселенной, даже где-то «вблизи» Вселенной, можно было бы судить по мощному аннигиляционно- му излучению, приходящему к Земле из области соприкосновения вещества и антивещества. Однако современная астрофизика не располагает данными, которые позволили бы хотя бы предположить наличие во Вселенной областей, заполненных антивеществом.

Как же произошел во Вселенной выбор в пользу вещества и в ущерб антивеществу, хотя законы симметрии в основном выполняются? Причиной этого феномена, скорее всего, стало именно нарушение симметрии, т. е. флуктуация на уровне основ материи.

Ясно одно: если бы такой флуктуации не возникло, участь Вселенной была бы печальной — вся ее материя существовала бы в виде бесконечного облака фотонов, появившихся в результате аннигиляции частиц вещества и антивещества.

Открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10 −24 до 10 −22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц .

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии , импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: масса, спин, электрический заряд, время жизни , чётность, G-чётность, магнитный момент, барионный заряд, лептонный заряд, странность, изотопический спин, CP-чётность, зарядовая чётность.

Энциклопедичный YouTube

    1 / 5

    ✪ Элементарные частицы

    ✪ CERN: Стандартная модель физики элементарных частиц

    ✪ Урок 473. Элементарные частицы. Позитрон. Нейтрино

    ✪ Кирпичики вселенной: Элементарные частицы из которых состоит мир. Лекция профессора Дэвида Тонга.

    ✪ Мир элементарных частиц (рассказывает академик Валерий Рубаков)

    Субтитры

Классификация

По времени жизни

  • Стабильные элементарные частицы - частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон , электрон , нейтрино , фотон , гравитон и их античастицы).
  • Нестабильные элементарные частицы - частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы - частицы с нулевой массой (фотон , глюон , гравитон и их античастицы).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина

Все элементарные частицы делятся на два класса:

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

  • Адроны - частицы, участвующие во всех видах фундаментальных взаимодействий . Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны - адроны с целым спином , то есть являющиеся бозонами ;
    • барионы - адроны с полуцелым спином, то есть фермионы . К ним, в частности, относятся частицы, составляющие ядро атома , - протон и нейтрон .

Фундаментальные (бесструктурные) частицы

  • Лептоны - фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10 −18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны , мюоны , тау-лептоны) и не наблюдалось для нейтрино . Известны 6 типов лептонов.
  • Кварки - дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны - частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон - частица, переносящая электромагнитное взаимодействие ;
    • восемь глюонов - частиц, переносящих сильное взаимодействие ;
    • три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие ;
    • гравитон - гипотетическая частица, переносящая гравитационное взаимодействие . Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц .

Размеры элементарных частиц

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10 −15 м , что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц - калибровочных бозонов, кварков и лептонов - в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10 −18 м ) (см. пояснение ). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно может оказаться планковской длиной , равной 1,6·10 −35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет , представляющий частицу как суперпозицию точно локализованных квантовых состояний , всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими - например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц - фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов , которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны , которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов , ~3×10 −18 м , а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10 −15 м ), выступающего здесь как переносчик взаимодействия.

История

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи . Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков .

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные  частицы» .

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон , глюоны , W - и Z -бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса , отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью - например, такие, как гравитон (частица, переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу .

Фермионы

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них - кварки . Другие шесть - лептоны , три из которых являются нейтрино , а оставшиеся три несут единичный отрицательный заряд: электрон , мюон и тау-лептон .

Поколения частиц
Первое поколение Второе поколение Третье поколение