Вписанный четырехугольник. Радиус описанной окружности и площадь

Материал из Википедии - свободной энциклопедии

  • В евклидовой геометрии , вписанный четырехугольник - это четырехугольник, у которого все вершины лежат на одной окружности. Эта окружность называется описанной окружностью четырехугольника, а вершины, как говорят, лежат на одной окружности. Центр этой окружности и ее радиус называются соответственно центром и радиусом описанной окружности. Другие термины для этого четырехугольника: четырехугольник лежит на одной окружности , стороны последнего четырехугольника являются хордами окружности. Обычно предполагается, что выпуклый четырехугольник является выпуклым четырехугольником. Формулы и свойства, приведенные ниже, действительны в выпуклом случае.
  • Говорят, что если около четырёхугольника можно описать окружность , то четырёхугольник вписан в эту окружность , и наоборот.

Общие критерии вписанности четырехугольника

  • Около выпуклого четырёхугольника \pi радиан), то есть:
\angle A+\angle C = \angle B + \angle D = 180^\circ

или в обозначениях рисунка:

\alpha + \gamma = \beta + \delta = \pi = 180^{\circ}.

  • Можно описать окружность около любого четырехугольника, у которого пересекаются в одной точке четыре серединных перпендикуляра его сторон (или медиатрисы его сторон, то есть перпендикуляры к сторонам, проходящие через их середины).
  • Можно описать окружность около любого четырехугольника, у которого один внешний угол, смежный с данным внутренним углом , точно равен другому внутреннему углу, противолежащему данному внутреннему углу . По сути это условие есть условие антипараллельности двух противоположных сторон четырехугольника. На рис. ниже показан внешний и смежный с ним внутренний углы зеленого пятиугольника.
\displaystyle AX\cdot XC = BX\cdot XD.
  • Пересечение X может быть внутренним или внешним по отношению к кругу. В первом случае получим вписанный четырехугольник является ABCD , а в последнем случае получим вписанный четырехугольник ABDC . При пересечении внутри круга, равенство гласит, что произведение длин сегментов, в котором точка X делит одну диагональ, равна произведению длин сегментов, в котором точка X делит другую диагональ. Это условие известно, как "теорема о пересекающихся хордах". В нашем случае диагонали вписанного четырехугольника являются хордами окружности.
  • Еще один критерий вписанности. Выпуклый четырехугольник ABCD вписан круг тогда и только тогда, когда
\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}=\tan{\frac{\beta}{2}}\tan{\frac{\delta}{2}}=1.

Частные критерии вписанности четырехугольника

Вписанный простой (без самопересечений) четырёхугольник является выпуклым . Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180° (\pi радиан). Можно описать окружность около:

  • любого антипараллелограмма
  • любого прямоугольника (частный случай квадрат)
  • любой равнобедренной трапеции
  • любого четырехугольника, у которого два противоположных угла прямые.

Свойства

Формулы с диагоналями

ef=ac+bd; \frac{e}{f} = \frac{a\cdot d+b\cdot c}{a\cdot b+c\cdot d}.

В последней формуле пары смежных сторон числителя a и d , b и c опираются своими концами на диагональ длиной e . Аналогичное утверждение имеет место для знаменателя.

  • Формулы для длин диагоналей (следствия ):
e = \sqrt{\frac{(ac+bd)(ad+bc)}{ab+cd}} и f = \sqrt{\frac{(ac+bd)(ab+cd)}{ad+bc}}

Формулы с углами

Для вписанного четырехугольника с последовательностью сторон a , b , c , d , с полупериметром p и углом A между сторонами a и d , тригонометрические функции угла A даются формулами

\cos A = \frac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)}, \sin A = \frac{2\sqrt{(p-a)(p-b)(p-c)(p-d)}}{(ad+bc)}, \tan \frac{A}{2} = \sqrt{\frac{(p-a)(p-d)}{(p-b)(p-c)}}.

Угол θ между диагоналями есть :p.26

\tan \frac{\theta}{2} = \sqrt{\frac{(p-b)(p-d)}{(p-a)(p-c)}}.

  • Если противоположные стороны a и c пересекаются под углом φ , то он равен
\cos{\frac{\varphi}{2}}=\sqrt{\frac{(p-b)(p-d)(b+d)^2}{(ab+cd)(ad+bc)}},

где p есть полупериметр . :p.31

Радиус окружности, описанной около четырёхугольника

Формула Парамешвара (Parameshvara)

Если четырехугольник с последовательными сторонами a , b , c , d и полупериметром p вписан окружность, то ее радиус равен по формуле Парамешвара :p. 84

R= \frac{1}{4} \sqrt{\frac{(ab+cd)(ad+bc)(ac+bd)}{(p-a)(p-b)(p-c)(p-d)}}.

Она была получена индийским математиком Парамешваром в 15 веке (ок. 1380–1460 гг.)

  • Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля , вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF .

Критерий того, что четырехугольник, составленный из двух треугольников, вписан в некоторую окружность

f^2 = \frac{(ac+bd)(ad+bc)}{(ab+cd)}.
  • Последнее условие дает выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырех его сторон (a , b , c , d ). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея (см.выше).

Критерий того, что четырехугольник, отрезанный прямой линией от треугольника, вписан в некоторую окружность

  • Прямая, антипараллельная стороне треугольника и пересекающая его, отсекает от него четырёхугольник, около которого всегда можно описать окружность.
  • Следствие. Около антипараллелограмма , у которого две противоположные стороны антипараллельны, всегда можно описать окружность.

Площадь вписанного в окружность четырёхугольника

Варианты формулы Брахмагупты

S=\sqrt{(p-a)(p-b)(p-c)(p-d)}, где p - полупериметр четырёхугольника. S= \frac{1}{4} \sqrt{- \begin{vmatrix}

a & b & c & -d \\ b & a & -d & c \\ c & -d & a & b \\ -d & c & b & a \end{vmatrix}}

Другие формулы площади

S = \tfrac{1}{2}(ab+cd)\sin{B} S = \tfrac{1}{2}(ac+bd)\sin{\theta},

где θ любой из углов между диагоналями. При условии, что угол A не является прямым, площадь также может быть выражена как :p.26

S = \tfrac{1}{4}(a^2-b^2-c^2+d^2)\tan{A}. \displaystyle S=2R^2\sin{A}\sin{B}\sin{\theta},

где R есть радиус описанной окружности . Как прямое следствие имеем неравенство

S\le 2R^2,

где равенство возможно тогда и только тогда, когда этот четырехугольник является квадратом.

Четырехугольники Брахмагупты

Четырехугольник Брахмагупты является четырехугольником, вписанным в окружность, с целыми значениями длин сторон, целыми значениями его диагоналей и с целым значением его площади. Все возможные четырехугольники Брахмагупты со сторонами a , b , c , d , с диагоналями e , f , с площадью S , и радиусом описанной окружности R могут быть получены путем освобождения от знаменателей следующих выражений, включающих рациональные параметры t , u , и v :

a= b=(1+u^2)(v-t)(1+tv) c=t(1+u^2)(1+v^2) d=(1+v^2)(u-t)(1+tu) e=u(1+t^2)(1+v^2) f=v(1+t^2)(1+u^2) S=uv 4R=(1+u^2)(1+v^2)(1+t^2).

Примеры

  • Частными четырёхугольниками, вписанными в окружность, являются: прямоугольник , квадрат , равнобедренная или равнобочная трапеция , антипараллелограмм .

Четырехугольники, вписанные в окружность с перпендикулярными диагоналями (вписанные ортодиагональные четырехугольники)

Свойства четырехугольников, вписанных в окружность с перпендикулярными диагоналями

Радиус описанной окружности и площадь

У четырехугольника, вписанного в окружность с перпендикулярными диагоналями, предположим, что пересечение диагоналей делит одну диагональ на отрезки длины p 1 и p 2 , а другую диагональ делит на отрезки длины q 1 и q 2 . Тогда (Первое равенство является Предложением 11 у Архимеда " Книга лемм )

D^2=p_1^2+p_2^2+q_1^2+q_2^2=a^2+c^2=b^2+d^2,

где D - диаметр cокружности . Это справедливо, потому что диагонали перпендикулярны хорды окружности . Из этих уравнений следует, что радиус описанной окружности R может быть записан в виде

R=\tfrac{1}{2}\sqrt{p_1^2+p_2^2+q_1^2+q_2^2}

или в терминах сторон четырехугольника в виде

R=\tfrac{1}{2}\sqrt{a^2+c^2}=\tfrac{1}{2}\sqrt{b^2+d^2}.

Отсюда также следует, что

a^2+b^2+c^2+d^2=8R^2.

Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке M, то две пары его антимедиатрис проходят через точку M.

Замечание . В этой теореме под антимедиатрисой понимают отрезок FE четырехугольника на рисунке справа (по аналогии с серединным перпендикуляром (медиатрисой) к стороне треугольника). Он перпендикулярен одной стороне и одновременно проходит через середину противоположной ей стороны четырехугольника.

Напишите отзыв о статье "Четырехугольники, вписанные в окружность"

Примечания

  1. Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates , Highperception, с. 179, ISBN 1906338000 , OCLC
  2. . Вписанные четырёхугольники.
  3. Siddons, A. W. & Hughes, R. T. (1929), Trigonometry , Cambridge University Press, с. 202, OCLC
  4. Durell, C. V. & Robson, A. (2003), , Courier Dover, ISBN 978-0-486-43229-8 ,
  5. Alsina, Claudi & Nelsen, Roger B. (2007), "", Forum Geometricorum Т. 7: 147–9,
  6. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ., 2007 (orig. 1929).
  7. Hoehn, Larry (March 2000), "Circumradius of a cyclic quadrilateral", Mathematical Gazette Т. 84 (499): 69–70
  8. .
  9. Altshiller-Court, Nathan (2007), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, сс. 131, 137–8, ISBN 978-0-486-45805-2 , OCLC
  10. Honsberger, Ross (1995), , Episodes in Nineteenth and Twentieth Century Euclidean Geometry , vol. 37, New Mathematical Library, Cambridge University Press, сс. 35–39, ISBN 978-0-88385-639-0
  11. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  12. Bradley, Christopher (2011), ,
  13. .
  14. Coxeter, Harold Scott MacDonald & Greitzer, Samuel L. (1967), , Geometry Revisited , Mathematical Association of America, сс. 57, 60, ISBN 978-0-88385-619-2
  15. .
  16. Andreescu, Titu & Enescu, Bogdan (2004), , Mathematical Olympiad Treasures , Springer, сс. 44–46, 50, ISBN 978-0-8176-4305-8
  17. .
  18. Buchholz, R. H. & MacDougall, J. A. (1999), "", Bulletin of the Australian Mathematical Society Т. 59 (2): 263–9, DOI 10.1017/S0004972700032883
  19. .
  20. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ. Co., 2007
  21. , с. 74.
  22. .
  23. .
  24. .
  25. Peter, Thomas (September 2003), "Maximizing the area of a quadrilateral", The College Mathematics Journal Т. 34 (4): 315–6
  26. Prasolov, Viktor, ,
  27. Alsina, Claudi & Nelsen, Roger (2009), , , Mathematical Association of America, с. 64, ISBN 978-0-88385-342-9 ,
  28. Sastry, K.R.S. (2002). «» (PDF). Forum Geometricorum 2 : 167–173.
  29. Posamentier, Alfred S. & Salkind, Charles T. (1970), , Challenging Problems in Geometry (2nd ed.), Courier Dover, сс. 104–5, ISBN 978-0-486-69154-1
  30. .
  31. .
  32. .

См. также

«Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:

Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?

Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность . Есть очень важное условие:

На нашем рисунке:

.

Посмотри, углы и лежат друг напротив друга, значит, они противоположные. А что же тогда с углами и? Они вроде бы тоже противоположные? Можно ли вместо углов и взять углы и?

Конечно, можно! Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет. Оставшиеся два угла тогда сами собой тоже дадут в сумме. Не веришь? Давай убедимся. Смотри:

Пусть. Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, . То есть - всегда! . Но, → .

Волшебство прямо!

Так что запомни крепко-накрепко:

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна.

Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».

Вот как-то не получается.

Теперь применим знание:

предположим, что нам как-то удалось посадить на параллелограмм окружность. Тогда непременно должно быть: , то есть.

А теперь вспомним о свойствах параллелограмма:

у всякого параллелограмма противоположные углы равны.

У нас получилось, что

А что же углы и? Ну, то же самое конечно.

Вписанный → →

Параллелограмм→ →

Потрясающе, правда?

Получилось, что если параллелограмм вписан в окружность, то все его углы равны, то есть это прямоугольник!

И ещё при этом - центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника . Это, так сказать, в качестве бонуса прилагается.

Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность - прямоугольник .

А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция . Почему?

Вот пусть трапеция вписана в окружность. Тогда опять, но из-за параллельности прямых и.

Значит, имеем: → → трапеция равнобокая.

Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо - пригодиться:

Давай ещё раз перечислим самые главные утверждения , касающиеся четырехугольника, вписанного в окружность:

  1. Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна
  2. Параллелограмм, вписанный в окружность - непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
  3. Трапеция, вписанная в окружность - равнобокая.

Вписанный четырехугольник. Средний уровень

Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике? Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность , а есть такая теорема:

Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна .

На нашем рисунке -

Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.

Расшифровываем:

  1. «Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна.
  2. «Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна, то такой четырехугольник можно вписать в окружность.

Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».

А теперь разбираемся, отчего же верно и 1, и 2?

Сначала 1.

Пусть четырехугольник вписан в окружность. Отметим её центр и проведём радиусы и. Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального? Если помнишь - сейчас применим, а если не очень - загляни в тему «Окружность. Вписанный угол» .

Вписанный

Вписанный

Но посмотри: .

Получаем, что если - вписанный, то

Ну, и ясно, что и тоже в сумме составляет. (нужно так же рассмотреть и).

Теперь и «наоборот», то есть 2.

Пусть оказалось так, что у четырехугольника сумма каких - то двух противоположных углов равна. Скажем, пусть

Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.

Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.

Рассмотрим оба случая.

Пусть сначала точка - снаружи. Тогда отрезок пересекает окружность в какой-то точке. Соединим и. Получился вписанный (!) четырехугольник.

Про него уже знаем, что сумма его противоположных углов равна, то есть, а по условию у нас.

Получается, что должно бы быть так, что.

Но это никак не может быть поскольку - внешний угол для и значит, .

А внутри? Проделаем похожие действия. Пусть точка внутри.

Тогда продолжение отрезка пересекает окружность в точке. Снова - вписанный четырехугольник, а по условию должно выполняться, но - внешний угол для и значит, то есть опять никак не может быть так, что.

То есть точка не может оказаться ни снаружи, ни внутри окружности - значит, она на окружности!

Доказали всю-всю теорему!

Теперь посмотрим, какие же хорошие следствия даёт эта теорема.

Следствие 1

Параллелограмм, вписанный в окружность, может быть только прямоугольником.

Давай-ка поймём, почему так. Пусть параллелограмм вписан в окружность. Тогда должно выполняться.

Но из свойств параллелограмма мы знаем, что.

И то же самое, естественно, касательно углов и.

Вот и получился прямоугольник - все углы по.

Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.

Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр - прямой.

Диаметр,

Диаметр

а значит, - центр. Вот и всё.

Следствие 2

Трапеция, вписанная в окружность - равнобедренная.

Пусть трапеция вписана в окружность. Тогда.

И так же.

Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.

Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону из точек и, равны), то такой четырехугольник - вписанный.

Это очень важный рисунок - в задачах часто бывает легче найти равные углы, чем сумму углов и.

Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:

« - вписанный» - и всё будет отлично!

Не забывай этот важный признак - запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.

Вписанный четырехугольник. Краткое описание и основные формулы

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна.

Параллелограмм, вписанный в окружность - непременно прямоугольник , и центр окружности совпадает с точкой пересечения диагоналей.

Трапеция , вписанная в окружность - равнобокая .

Окружность называется вписанной в четырехугольник, если все стороны четырехугольника являются касательными к окружности.

Центром этой окружности является точка пересечения биссектрис углов четырехугольника. В этом случае радиусы, проведенные в точки касания являются перпендикулярами к сторонам четырехугольника

Окружность называется описанной около четырехугольника, если она проходит через все его вершины.

Центром этой окружности является точка пересечения серединных перпендикуляров к сторонам четырехугольника

Не во всякий четырехугольник можно вписать окружность и не около всякого четырехугольника можно описать окружность

СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЕХУГОЛЬНИКОВ

ТЕОРЕМА В выпуклом вписанном четырехугольнике суммы противолежащих углов равны между собой и равны 180°.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих углов равны, то около четырехугольника можно описать окружность. Ее центр - точка пересечения серединных перпендикуляров к сторонам.

ТЕОРЕМА Если в четырехугольник вписана окружность, то суммы противолежащих сторон его равны.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность. Ее центр - точка пересечения биссектрис.

Следствия: из всех параллелограммов только около прямоугольника (в частности около квадрата) можно описать окружность.

Из всех параллелограммов только в ромб (в частности в квадрат) можно вписать окружность (центр - точка пересечения диагоналей, радиус - равен половине высоты).

Если около трапеции можно описать окружность, то она равнобедренная. Около любой равнобедренной трапеции можно описать окружность.

Если в трапецию вписана окружность, то радиус ее равен половине высоты.

Задания с решениями

1. Найти диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.

Центром окружности, описанной около прямоугольника является точка пересечения его диагоналей. Следовательно, диагональ АС равна 2R . То есть АС =10
Ответ: 10.

2. Около трапеции, основания которой 6 см и 8 см, а высота 7см, описан круг Найти площадь этого круга.

Пусть DC =6, AB =8. Так как около трапеции описана окружность, то она равнобедренная.

Проведем две высоты DM и CN .Так как трапеция равнобедренная, то AM=NB =

Тогда AN =6+1=7

Из треугольника ANС по теореме Пифагора найдем АС .

Из треугольника CВN по теореме Пифагора найдем ВС .

Окружность, описанная около трапеции, является и окружностью, описанной около треугольника АСВ.

Найдем площадь этого треугольника двумя способами по формулам

Гдe h - высота и - основание треугольника

Где R- радиус описанной окружности.

Из этих выражений получаем уравнение . Откуда

Площадь круга будет равна

3. Углы , и четырехугольника относятся как . Найдите угол , если около данного четырехугольника можно описать окружность. Ответ дайте в градусах

Из условия следует, что .Так как около четырехугольника можно описать окружность, то

Получаем уравнение . Тогда . Сумма всех углов четырехугольника равна 360º. Тогда

. откуда получаем, что

4.Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

Тогда средняя линия равна

5. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

В трапеции радиус вписанной окружности равен половине высоты. Проведем высоту СК.

Тогда .

Так как в трапецию вписана окружность, то суммы длин противоположных сторон равны. Тогда

Тогда периметр

Получаем уравнение

6. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

Пусть О центр описанной около трапеции окружности. Тогда .

Проведем высоту КН через точку О

Тогда , где КО и ОН высоты и одновременно медианы равнобедренных треугольников DOC и АОВ. Тогда

По теореме Пифагора.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.