Что такое доказательство теоремы. Учимся доказывать теорему

Как мы уже отмечали выше, структура доказательства как логическая конструкция состоит из тезиса, аргументов и демонстрации.

В демонстрации отражается характер логических связей между тезисом и аргументами. В зависимости от вида демонстрации в методической литературе часто употребляются термины «способ доказательства» и «метод доказательства». Покажем, в чем состоит их отличие.

Если доказательство утверждения отличается от другого доказательства того же самого утверждения не логической основой, а последовательностью умозаключений, то будем говорить, что утверждение доказывается двумя различными способами. Если же одно доказательство отличается от другого логической основой, то будем говорить о различных методах доказательства.

Покажем отличие метода от способа доказательства (или решения) на задачах, приведенных ниже.

На рисунке 2 KM LN, ∠POM + ∠LOR = 75° и ∠KOR = 58°. Вычислить ∠РОМ и ∠LOP.

Дано: KM LN, ∠РОМ + ∠LOR = 75°, ∠KOR = 58°.

Найти: ∠РОМ и ∠LOP.

1) ∠ROL = 90° - ∠KOR = 90° - 58° = 32°.

2) ∠РОМ = 75° - ∠ROL = 75° - 32° = 43°.

3) ∠POL = ∠LOM + ∠MOP = 90°+ 43° = 133°.

1) ∠ROL = 90° - 58° = 32°.

2) ∠РОМ = 75° - 32° = 43°.

3) ∠NOP = 90°- 43° = 47°.

4) ∠POL = 180° - ∠NOP = 180°- 43° = 133°.

1) ∠NOР = 360° - 90° - 90° - 58° - 75° = 47°.

2) ∠POL = 180° - ∠NОР = 180° - 47° = 133°.

3) ∠РОМ = 90° - ∠NОР = 90° - 47° = 43°.

Как мы видим, в этих способах решения отличными являются лишь последовательности умозаключений.

Задача 2. Дан квадрат ABCD (рис. 3). Вершина квадрата D соединена с точками М и Р, которые соответственно являются серединами сторон АВ и ВС. Точка М соединена с точкой N, являющейся серединой стороны DC. Докажите, что .

Из чертежа имеем . Отнимем от обеих частей равенства . Получим - = - , откуда имеем .

Из чертежа имеем

Вычтем из равенства (1) равенство (2). Получим - = - - - + +

Учитывая, что = , последнее равенство будет иметь вид: - = - . Прямоугольник AMND разделен диагональю DM на два равных треугольника: ∆ADM=∆DMN, тогда - . Учитывая это, получим - = 0, откуда окончательно имеем = .

Задача 3. К плоскости прямоугольника ABCD через точку А проведен перпендикуляр, на котором взята точка К, соединенная с точками В, С и D (рис. 4). Найти АК, если KB = 6 м, КС = 7 м, KD = 5 м.


Дано: ABCD - прямоугольник; AK ⊥ (АВС)

Найти: АК.

1) Рассмотрим прямоугольный треугольник КDC (∠KDC = 90° по теореме о трех перпендикулярах). По теореме Пифагора имеем DC = (м).

2) По свойству прямоугольника имеем AB = DC = (м).

3) Из прямоугольного треугольника АВК имеем AK = (м).

Введем обозначения: АВ = х, AC = z, AD = y.

1) Из прямоугольного треугольника АКВ .

2) Из прямоугольного треугольника КАС .

3) Из прямоугольного треугольника KAD .

4) Получим систему уравнений:

5) Учитывая, что , система примет вид:

Решив систему, получим - = -12, откуда AK (м).

Мы видим, что в основе этих двух решений лежат совершенно разные логические основы, а значит, речь должна идти о двух разных методах решения: геометрическом и алгебраическом.

Задача 4. Доказать, что если в выпуклом четырехугольнике каждая из его диагоналей делит его площадь пополам, то он является параллелограммом.

В четырехугольнике ABCD (рис. 5), в котором АС и BD - диагонали, проведем BN ⊥ AC и DM АС.

По условию . Учитывая, что = AC BN, а =

AC DM, имеем AC BN = AC DM , откуда следует, что BN = DM. ∠MOD = ∠NOB как вертикальные, следовательно, прямоугольные треугольники BON и MOD равны по катету и острому углу, откуда имеем

Аналогично доказывается равенство OC = OA. Следовательно, мы получили, что в выпуклом четырехугольнике его диагонали в точке пересечения делятся пополам, а это и означает, что четырехугольник – параллелограмм.

Обозначим площадь четырехугольника буквой S. Тогда по условию задачи и , откуда . И так как площади треугольников BCD и ACD равны и основанием у них является один и тот же отрезок CD, то и высоты этих треугольников будут равными. То есть мы доказали, что все точки отрезка АВ отстоят на одинаковом расстоянии от отрезка CD, а значит, АВ ∥ CD. Аналогично доказывается параллельность отрезков AD и ВС. Из того что в четырехугольнике противоположные стороны оказались попарно параллельны, мы заключаем, что он является параллелограммом.

Построим к предложенной задаче новый чертеж (рис. 6). Проведем через точки В и D прямые , параллельные АС, через точки А л С - прямые и , параллельные BD.

Так как по условию задачи и АС - общее основание треугольников AВС и ADC, то высоты этих треугольников равны и прямые находятся на равных расстояниях от прямой . Аналогично рассуждение о прямых и .

При центральной симметрии с центром О прямая переходит в прямую , прямая переходит в прямую , а прямые и перходят сами в себя как прямые, проходящие через центр симметрии. Тогда эта центральная симметрия переведет точку В в точку D, а точка А в точку С. В силу свойства центральной симметрии AB = CD и BC = DA, а значит, по признаку параллелограмма четырехугольник ABCD - параллелограмм.

Доказательство в математике и других дедуктивных науках есть цепочка правильных умозаключений, идущих от исходных для данной теории посылок, признанных истинными, к доказываемому утверждению.

Основным инструментом доказательства теорем являются умозаключения. Умозаключение - рассуждение, в ходе которого из одного или нескольких суждений (называемых посылками умозаключения) выводится новое суждение (называемое заключением или следствием), логически вытекающее из посылок.

Формой дедуктивных умозаключений, используемых при доказательстве теоремы, является силлогизм. В силлогизме содержится три понятия, а состоит он из двух посылок и вывода. Его структуру можно представить в таком виде:

Все М есть Р - большая посылка (БП);

К есть М - меньшая посылка (МП);

К есть Р - вывод (В).

Приведем пример силлогизма: «Все ромбы (М) есть параллелограммы (Р). Квадрат (К) есть ромб (М). Следовательно, квадрат (К) есть параллелограмм (Р)».

Цепочка последовательно связанных силлогизмов, устанавливающая истинность теоремы, называется доказательством теоремы. В качестве примера такой цепочки силлогизмов рассмотрим доказательство теоремы из курса 8 класса: «Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды».

Дано: АВ, CD - хорды, Е - точка пересечения хорд.

Доказать: AE BE = CE DE (рис. 7).

Доказательство

Силлогизм 1

БП: Вписанные углы, опирающиеся на одну и ту же дугу окружности, равны.

МП: Вписанные углы (∠1 и ∠2) опираются на одну и ту же дугу BMD.

В: ∠1 = ∠2.

Силлогизм 2

БП: Вертикальные углы равны.

МП: ∠3 и ∠4- вертикальные.

В: ∠3 = ∠4.

Силлогизм 3

БП: Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.

МП: Два угла (∠1 = ∠3) треугольника AED соответственно равны двум углам (∠2 = ∠4) треугольника СЕВ.

В: ∆AED ∆СЕВ.

Силлогизм 4

БП: В подобных треугольниках сходственные стороны пропорциональны.

МП: Стороны АЕ, DE и СЕ, BE - сходственные стороны подобных треугольников AED и СЕВ.

Силлогизм 5

БП: Произведение крайних членов пропорции равно произведению средних членов пропорции.

МП: АЕ и BE - крайние члены, a DE и СЕ - средние члены одной и той же пропорции.

В: AE BE = DE CE.

Проведение любого доказательства опирается на три блока знаний и умений: содержательный, структурный, логический.

В содержательный блок входят элементы, связанные с ранее изученными математическими понятиями и фактами, которые использованы или в формулировке утверждения, или в качестве аргументов при проведении рассуждений. Эти элементы существенно зависят от логической структуры курса, от его аксиоматики, от методических особенностей изложения и т. д., а поэтому для одной и той же теоремы в различных учебниках содержательный блок может оказаться различным.

В структурный блок входят знания и умения, связанные со структурой утверждения и возможностями ее преобразования. В этот блок входят умения выделять условие и заключение теоремы, преобразовывать логическую форму теоремы с целью получения более простых под теорем и т. д.

Логический блок содержит знания и умения, связанные с правилами логических рассуждений.

Значительно труднее научиться доказывать теоремы. При этом речь идет не о запоминании доказательства той или иной теоремы, которая была рассмотрена на уроке. Специально запоминать доказательство не нужно, нужно научиться самому доказывать теоремы.

Что значит доказать теорему, что такое доказательство? Доказательство в широком смысле - это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений. Поэтому, когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело - это уже другой вопрос). В жизни все время, каждодневно в общении с другими людьми, приходится доказывать те или иные мысли, утверждения, приходится убеждать в чем-то, т. е. доказывать.

Доказательство математических теорем есть частный случай доказательства вообще. Оно отличается от доказательства в житейских условиях или в других науках тем, что оно совершается по возможности чисто дедуктивным способом (от латинского слова дедукция - выведение), т. е. выведением новой доказываемой мысли (утверждения, суждения) из ранее доказанных или принятых без доказательства мыслей (аксиом) по правилам логики без каких-либо ссылок на примеры или опыт. В других науках, в житейских обстоятельствах мы для доказательства часто прибегаем к примерам, к опыту. Мы говорим: "Смотри" - и это может служить доказательством. В математике такой способ доказательства недопустим, ссылаться, например, на очевидные отношения, иллюстрируемые чертежом, не разрешается. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т. д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемую теорему к исходным определениям и принятым без доказательства аксиомам.

Следовательно, аксиомы служат не только для косвенного определения первичных понятий, но и в качестве оснований для доказательства всех теорем математики. Вот почему в числе аксиом встречаются и такие, которые указывают особые свойства понятий, имеющих логические определения. Так, например, параллельные прямые в курсе геометрии являются не первичным понятием, а определяемым. Однако одно из свойств параллельных прямых, а именно что через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной, мы вынуждены принять за аксиому, ибо, как было установлено великим русским геометром Н. И. Лобачевским (1792-1856), а также немецким математиком К. Ф. Гауссом (1777-1855) и венгерским математиком Я. Больяй (1802- 1860), доказать это свойство параллельных прямых на основе лишь остальных аксиом геометрии невозможно.

Всякий шаг доказательства состоит из трех частей: 1)предложение (аксиома, теорема, определение), на основе которого производится этот шаг доказательства; это основание шага доказательства называется посылкой или аргументом ; 2) логическое рассуждение, в процессе которого посылка применяется к условиям теоремы или к ранее полученным следствиям; 3) логическое следствие применения посылки к условиям или ранее полученным следствиям.

В последнем шаге доказательства теоремы в качестве следствия получаем утверждение, которое необходимо было доказать.

Покажем процесс доказательства на примере такой теоремы: "Диагонали прямоугольника равны".

В этой теореме нам дан произвольный (любой) прямоугольник. Для того чтобы легче было рассуждать в процессе доказательства, поступают следующим образом. Начертим вполне определенный прямоугольник ABCD (рис. 6), но при доказательстве не будем использовать какие-либо частные особенности этого прямоугольника (например, что его сторона АВ примерно в 2 раза больше стороны AD и т. д.). Поэтому наши рассуждения относительно этого определенного прямоугольника будут верны и для любого другого прямоугольника, т. е. они будут иметь общий характер для всех прямоугольников.

Проведем диагонали АС и BD . Рассмотрим полученные треугольники ABC и ABD . У этих треугольников углы ABC и BAD равны как прямые, катет АВ - общий, а катетыВС и AD равны как противоположные стороны прямоугольника. Следовательно, эти треугольники равны. Отсюда следует, что стороны АС и BD также равны, что и требовалось доказать.

Все доказательство этой теоремы можно изобразить в виде следующей схемы.


Самое трудное в доказательстве - это найти последовательность посылок (аксиом, теорем, определений), применяя которые к условиям теоремы или промежуточным результатам (следствиям) в конечном итоге можно получить нужное следствие - доказываемое положение.

Какими правилами нужно руководствоваться при поиске этой последовательности? Очевидно, что эти правила не могут носить обязательный характер, они лишь указывают возможные пути поиска. Поэтому они называются эвристическими правилами или просто эвристиками (от греческого слова эврика - нахожу, нашел). Многие выдающиеся математики, такие, как Папп (древнегреческий математик, живший в III в.), Блез Паскаль (1623- 1662), Рене Декарт (1596-1650), Жак Адамар (1865-1963), Дьердь Пойя (1887) и многие другие, занимались разработкой эвристик для поиска доказательства теорем и решения задач. Вот некоторые эвристические правила, которые полезно помнить:

  1. Полезно заменять названия объектов, о которых идет речь в теореме (задаче), их определениями или признаками. Например, в рассмотренной выше теореме шла речь о прямоугольнике, и мы для доказательства использовали определение прямоугольника.
  2. Если можно, то нужно доказываемое положение раздробить на части и доказывать каждую часть в отдельности. Так, например, доказательство теоремы: "Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм" - можно разделить на две части: сначала доказать, что одна пара противоположных сторон данного четырехугольника параллельна, а затем доказать, что и вторая пара противоположных сторон также параллельна. Так следует поступать всегда, когда есть возможность доказываемое утверждение разбить на несколько частей более простых утверждений.
  3. В поисках доказательства теоремы полезно идти с двух сторон: от условий теоремы к заключению и от заключения к условиям.

Например, нужно доказать такую теорему: "Если некоторая последовательность такова, что любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, то эта последовательность - арифметическая прогрессия".

Пойдем от условия теоремы. Что нам дано? Дано, что каждый член последовательности, начиная со второго (обозначим его а n , n>2 ), есть среднее арифметическое предшествующего и последующего членов, т. е. а n-1 и а n+1 . Значит, верно такое равенство:

(1)

Теперь пойдем от заключения. А что нам нужно доказать? Нужно доказать, что эта последовательность - арифметическая прогрессия. А какая последовательность называется арифметической прогрессией? Вспоминаем определение:

Сопоставляем данное нам условие (1) с заключением (2). Чтобы условие приняло форму заключения, надо преобразовать так:

Отсюда a n -a n-1 =a n+1 -a n . (4)

Левая и правая части (4) обозначают одно н то же, а именно разность между двумя последовательными членами заданной последовательности. Если в равенстве (4) п давать последовательно значения 2, 3 и т. д., то получим: a 2 -a 1 =a 3 -a 2 , затем а 3 - а 2 = а 4 - а 3 . и т. д. Следовательно, все эти разности равны между собой, а это значит, что разность a n -a n-1 есть постоянное число, которое можно обозначить буквой d :

Отсюда получаем: а n = а n-1 + d , а это значит, что согласно определению (2) данная последовательность есть арифметическая прогрессия, что нам и надо было доказать.

Эту эвристику можно и так сформулировать: надо стараться сблизить условие и заключение теоремы, преобразуя их или заменяя их следствиями.

Известен и ряд более частных эвристических правил, которые применяются при поиске лишь некоторых теорем. Например, такая эвристика: для того чтобы доказать равенство каких-либо отрезков, надо найти или построить фигуры, соответствующими сторонами которых являются эти отрезки; если фигуры окажутся равными, то будут равны и соответствующие отрезки.

Изучая теоремы, нужно не просто запоминать их доказательство, а каждый раз думать и устанавливать, какими методами они доказываются, какими эвристическими правилами руководствовались при нахождении этих доказательств, как догадались (додумались) до этих доказательств.

В ряде случаев для доказательства теорем используется особый прием, называемый "доказательством от противного" или "приведением к нелепости".

Сущность этого приема заключается в том, что предполагают несправедливость (ложность) заключения данной теоремы и доказывают, что такое предположение приводит к противоречию с условием или с ранее доказанными теоремами или аксиомами. А так как любое утверждение может быть либо верным, либо неверным (ничего другого быть не может), то полученное противоречие показывает, что допущение о ложности заключения теоремы неверно и, следовательно, заключение верно, тем самым теорема доказана.

Приведем пример.

Теорема. Две прямые, порознь параллельные третьей, параллельны между собой.

Дано: а||с, b||с.

Доказать: а||b (рис. 7).

Прямого (непосредственного)доказательства этой теоремы мы не знаем. Тогда докажем ее методом от противного.

Допустим, что заключение теоремы неверно, т. е. а не параллельна b . Тогда они пересекаются в некоторой точке М . А так как по условию каждая из этих прямых параллельна прямой с , то получается, что через точку М проведены две прямые а и b , параллельные одной и той же прямой с . А мы знаем по аксиоме параллельности, что через точку вне прямой можно провести не более одной прямой, параллельной данной. Пришли к противоречию с аксиомой. Это показывает, что наше предположение о не параллельности прямых а и b неверно, следовательно, а||b , что и требовалось доказать.

Другой пример.

Теорема. Среднее арифметическое двух положительных чисел не меньше (значит: больше или равно) среднего геометрического этих чисел.

Эту теорему можно так записать: (1), где а >0, b >0. Ее можно доказать как прямым способом, так и способом от противного. Докажем ее способом от противного.

Для этого допустим, что она неверна, т. е. среднее арифметическое меньше среднего геометрического двух положительных чисел:

(2)

Умножим обе части (2) на 2 и, возвысив их в квадрат, получим: a 2 +2ab+b 2 или a 2 -2ab+b 2 По формуле квадрата разности двух чисел получаем: (a-b) 2 .

В результате получили явную нелепость: квадрат некоторого числа (а-b) отрицателен, чего быть не может. Следовательно, предположение о неверности теоремы привело к противоречию, что доказывает справедливость теоремы.

Таким образом, доказательство от противного некоторой теоремы состоит в том, что мы делаем допущение о неверности заключения теоремы. Затем делаем ряд логических умозаключений на основе этого допущения, в результате которых приходим к явно нелепому положению (к противоречию с условием или ранее доказанными теоремами, аксиомами). Далее рассуждаем так: если бы наше предположение было бы верным, то мы могли бы прийти лишь к верному выводу, а так как мы пришли к неверному выводу, то это означает, что наше предположение было ложным, следовательно, тем самым мы убедились, что заключение теоремы верно.

Заметим, что если в результате рассуждений мы не получили бы нелепости (противоречия), то это еще не означало бы, что предположение верно. Иными словами, если исходить из верности (справедливости) заключения теоремы и из этого предположения получить верное (очевидное) следствие, то это еще не значит, что предположение верно: может случиться, что исходная теорема как раз неверна.

На этом построены многие софизмы (умышленно ложно построенные умозаключения, кажущиеся лишь правильными), этим объясняются многие ошибки, допускаемые, при решении задач.

Рассмотрим, например, такое равенство: a-b=b-a (1), где а и b - произвольные числа. Допустим, что (1) верно, тогда возвысим обе части (1) в квадрат, получим:

Перенеся все члены в одну сторону и сделав приведение подобных, придем к совершенно верному равенству: 0 = 0.

Но отсюда нельзя делать вывод, что и исходное равенство (1) верно. Если бы мы такой вывод сделали, то пришли бы к такому софизму: 2а = 2b или а = 6, т. е. любые произвольные числа равны между собой. Ошибка состоит в том, что из равенства квадратов двух чисел не следует равенство самих этих чисел. Например, (- 2) 2 = 2 2 , но -2≠2.

Вот пример ошибочного решения задачи.

Задача. Решить уравнение

(1)

Допустим, что (1) имеет решение и, следовательно, равенство (1) верно. Тогда получим:

Возвысим обе части в квадрат: 9х = х + 4х + 4 или х 2 - 5х + 4 = 0 , отсюда x 1 =4, x 2 =1.

Можно ли найденные значения х считать корнями уравнения (1)? Некоторые ученики отвечают на этот вопрос утвердительно, ибо ведь все преобразования уравнения верные. И все же ни одно из найденных значений х не является корнем (1). Это подтверждает проверка. Подставляя найденные значения х в (1), получаем явно нелепые равенства: 12 = 0 и 6 = 0.

Таким образом вы должны учиться доказывать теоремы (формулы), тождества и т. д., овладевать общими способами поиска доказательства теорем (эвристическими правилами).

Задание 6

6.1. Составьте схему шагов доказательства следующих теорем, указывая посылки, условия и следствия каждого шага:

а) В равнобедренном треугольнике медиана, проведенная к основанию, является и высотой.

б) (а + b) 2 = а 2 + 2аb+b 2 .

в) Середины сторон выпуклого четырех-угольника являются вершинами параллелограмма.

6.2. Найдите ошибку в доказательстве следующей заведомо ложной теоремы: "Катет прямоугольного треугольника равен его гипотенузе". (Рис. 8, на рисунке должен быть отрезок СМ .)

Проведем в прямоугольном треугольнике ABC (∠ С = 90°) биссектрису угла В и восставим в середине катета АС точке D перпендикуляр к нему. Очевидно, что они пересекутся в Рис. 8 некоторой точке М . Из точки М проведем MF⊥BC и ME ⊥АВ (рис. 8).

Рассмотрим треугольники ВМЕ и BMF , они оба прямоугольные по построению, гипотенуза MB у них общая, а углы MBF и МВЕ равны, ибо ВМ - биссектриса угла В. Следовательно, ΔMFB = ΔМЕВ . Отсюда BE = BF (1) и МЕ =MF (2). ΔCMD=ΔAMD как прямоугольные, у которых CD =AD и MD - общая. Тогда АМ = СМ (3). ΔAME=ΔCMF как прямоугольные в силу равенства (2) и (3). Отсюда AE = FC (4). Складывая равенства (1) и (4), получим АВ =ВС , что и требовалось доказать.

6.3. Докажите теорему: "Два треугольника равны, если две стороны и медианы к одной из них одного треугольника равны двум сторонам и медиане к соответствующей стороне другого треугольника" - и установите, какими эвристиками вы пользовались при поиске доказательства.

6.4. Какая ошибка допущена в доказательстве следующей теоремы: "Если длины сторон треугольника пропорциональны числам 3, 4 и 5, то треугольник прямоугольный"?

Доказательство: обозначим стороны этого треугольника а, b и с . По условию a=3k, b=4k и c = 5k . Тогда a 2 +b 2 =9k 2 +16k 2 =25k 2 =c 2 . Следовательно, по теореме Пифагора этот треугольник прямоугольный.

6.5. Докажите методом от противного теорему: "Во всяком треугольнике против большего угла лежит большая сторона".

6.6. Разберитесь в следующем софизме: "Хорда, не проходящая через центр окружности, равна диаметру".

Проведем в окружности диаметр АВ и возьмем на окружности произвольную точку С , отличную от A и B (рис. 9). Соединим С с А . Обозначим середину АС через М и проведем через нее и точку В прямую до пересечения с окружностью в точке D . Соединим D с С . Рассмотрим треугольники АВМ и CDM . У них АМ = СМ по построению, ∠ABM= ∠DCM как вписанные опирающиеся на одну и ту же дугу AD , ∠AMB =∠CMD как вертикальные, следовательно, по второму признаку равенства треугольников эти треугольники равны. А в равных треугольниках против равных углов лежат равные стороны, следовательно, AB = CD .

6.7. В чем ошибка в следующих рассуждениях:

4:4 = 5:5 (1). Выносим за скобки общие множители:

4-(1:1) = 5-(1:1), а так как 1:1 = 1 и 4 = 2*2, то получаем (2*2)*1=5-1, или 2*2 = 5.

6.8. Разберитесь в следующем софизме: "Положительное число меньше нуля".

Действительно, пусть a>b (1), где а и b - положительные числа. Умножим обе части (1) на b - а , получим: а(b - а)>b(b-a); ab -a 2 >b 2 - ab; 0>a 2 -2ab+b 2 ; 0>(a - b) 2 . Ho (a-b) 2 есть положительное число, ибо а≠b , следовательно, получили, что нуль больше положительного числа.

6.9. Как доказать предложение: "Средней линией трапеции называется отрезок, соединяющий середины боковых ее сторон".

Как мы уже говорили, цель нашей книги - подробное изложение математических основ системы шифрования RSA. Разработка ее математического хребта была завершена к концу девятнадцатого века усилиями древнегреческих математиков, Ферма, Эйлера и Гаусса. Однако еще 20 лет назад большинство приложений оставалось неизвестными, а некоторые теоремы, которые мы будем упоминать, появились лишь в последние годы.

Многие из приводимых здесь результатов не будут для Вас новыми. К их числу относятся, например, способ вычисления наибольшего общего делителя, основанный на последовательных делениях, а также простейшие процедуры разложения на простые множители. Новизна может заключаться, однако, в самом подходе, поскольку мы доказываем каждое утверждение, включая и корректность вычислительных процедур, исходя из первичных принципов.

Математика древнего Египта и Месопотамии представляла собой набор правил для решения практических задач. Только ее объединение с греческой философией превратило ее в современную теоретическую науку. Первые греческие математики - Фалес (Thales) и Пифагор (Pythagoras) - были также знаменитыми философами. Представление о том, что математический факт можно доказывать, произросло из взаимодействия с философией. Помимо всего прочего, доказательство - это просто рассуждение, которое выводит некоторое утверждение из других, уже известных. А рассуждать греческие философы любили!

Около 400 года до н. э. греческие математики почувствовали необходимость в более или менее точной формулировке

предположений, лежащих в основе их работы. Поэтому и Эвклид открывает свои «Начала» со строгих определений и аксиом, на которых базируются его доказательства. Например, в начале первой книги он определяет точку, прямую, плоскость, поверхность и т.д. Затем он формулирует аксиомы, истинность которых он считает самоочевидной. Аксиомы объясняют связи между ранее введенными объектами. Затем он показывает, каким образом гораздо более сложные факты об изучаемых объектах сводятся, путем логических рассуждений, к аксиомам. Главное достоинство его подхода состоит в придании основательности всему зданию. Если фундамент достаточно прочный, то и все здание может возноситься высоко без опасения, что оно рухнет под собственным весом.

Математический факт обычно называется теоремой. Это греческое слово исходно означало «наблюдение, теория». Его современное значение «доказываемое утверждение» восходит по меньшей мере к эвклидовым «Началам». Утверждение теоремы часто принимает вид условного утверждения:

если выполняется некоторое предположение, то справедливо некоторое заключение.

Доказательство такой теоремы представляет собой логическое рассуждение, которое показывает, как заключение вытекает из предположения. Приведем пример:

Теорема 1. Если а - четное целое число, то число тоже четное.

Предположение данной теоремы состоит в том, что - четное число, а заключение - в том, что тоже четное. Разумеется, чтобы показать, что заключение вытекает из предположения, мы должны пользоваться базисными свойствами целых чисел. Для придания доказательствам незыблемости, все эти свойства следовало бы подробно перечислить. Нет необходимости говорить, что в элементарной книге, подобной нашей, это невозможно. Вместо этого мы просто делаем вид,

что «базисные свойства» действительно элементарны и Вы их хорошо знаете. Сюда входят, например, правила сложения и умножения целых чисел, а также утверждение о том, что между любыми двумя целыми числами есть лишь конечное множество целых чисел. Воспользуемся этими свойствами для доказательства приведенной выше теоремы.

Доказательство теоремы 1. Предположение теоремы о четности а означает, что а делится на 2, см. § 3.1. Поэтому должно существовать такое число что Возводя в квадрат последнее равенство, получаем

Поэтому число также делится на 2. Другими словами, число четное, что и является заключением теоремы.

Теорема 1 показывает, что из факта четности числа о вытекает, факт четности его квадрата. Обратным к условному утверждению «из А следует В» является условное утверждение «из В следует А». Значит утверждение, обратное к теореме 1, звучит так: если целое число четное, то и а - четное целое число. Заметим, что если само утверждение истинно, то это ничего не говорит нам об истинности обратного утверждения. Например, для истинного утверждения если целое число делится на 4, то оно четное, обратное утверждение ложно: число 6 четное, однако на 4 оно не делится. Если оба утверждения «из А следует В» и «из В следует А» истинны, то мы говорим, что эквивалентны. Эквивалентность обычно записывается в виде: «А выполняется, если и только если выполняется В». Таким образом, мы приходим к следующей теореме.

Теорема 2. Целое число а четное, если и только если тоже четное.

Мы уже доказали, что если о четное, то и тоже четное. Теперь мы должны доказать обратное утверждение. Прежде

Перейти к доказательству, обсудим еще один логический момент. Обозначим отрицание утверждения через не Например, отрицание не утверждения Р: «число а четное» имеет вид «число нечетное». Пусть теперь два утверждения. Утверждение: «из не следует не называется противоположным к утверждению из следует Любое утверждение истинно, если и только если его противоположное тоже истинно. Подобное высказывание выглядит сомнительно только потому, что оно выражено на непривычном языке. Но представим себе следующую историю. Друг, приглашенный Вами на вечеринку, говорит: «Моя машина сломана, однако если ее вовремя починят, то я приеду». Если теперь Ваш друг не приезжает на вечеринку, то Вы заключаете, что его машину вовремя не починили, а это и есть противоположное к утверждению Вашего друга.

Вернемся к доказательству теоремы 2.

Доказательство теоремы 2. Мы уже видели, что если число о четное, то и число четное. Осталось доказать, что если четное, то и о будет четным. Вместо последнего утверждения мы будем доказывать противоположное ему, т.е. утверждение «если число о нечетное, то и нечетное». Однако целое число, не являющееся четным, нечетно. Более того, всякое нечетное целое число представимо в виде «четное . Поэтому для нечетного о существует целое число при котором Возводя в квадрат обе части последней формулы, мы получаем

т.е. тоже нечетное число. Таким образом, утверждение, противоположное к исходному, истинно, а значит, истинно и исходное утверждение, и мы доказали, что если четно, то и о четно.

Теорема 1 была сформулирована в виде «если о четно, то и четно». Это означает, на самом деле, что квадрат любого четного числа четен. Другими словами, мы доказываем

справедливость утверждения для всех четных чисел. Рассмотрим теперь утверждение «всякое четное число делится на 4». Мы снова указываем на общее свойство всех четных чисел, однако на сей раз утверждение оказывается ложным. Почему? Например, потому, что число 6 четное, однако на 4 оно не делится. Таким образом, утверждение о том, что какое-то свойство присуще всем элементам некоторого множества, можно опровергнуть, предъявив элемент, для которого оно не выполняется. Такой элемент называется контрпримером к утверждению.

Не всегда утверждение теоремы записывается в приведенном выше условном виде. Иногда, например, утверждается, что объект с заданными свойствами существует. Так, для любого вещественного числа х существует такое целое число что Самый естественный способ доказательства подобных теорем состоит в предъявлении явного метода для нахождения такого объекта. Если в приведенном выше примере обозначить целую часть числа х через то является целым числом, большим х, и мы можем положить Предположив теперь, что десятичное представление числа х известно, мы легко найдем с помощью описанного метода. Однако подобные утверждения можно доказывать и не указывая способа построения объекта. Такое доказательство называется неконструктивным доказательством существования. Оно не настолько таинственно, как может показаться. Мы знаем, например, что в любой компании из 400 человек есть двое с совпадающим днем рождения, поскольку Хотя такое рассуждение и верно, оно не дает нам способа найти таких двух человек; значит это неконструктивное доказательство существования.

Большинство книг по теории чисел широко используют неконструктивные доказательства даже при наличии

конструктивных. Это не просто вопрос вкуса: часто конструктивные доказательства выглядят гораздо более неуклюже, чем аналогичные доказательства чистого существования, а для математиков элегантность значит не меньше, чем для художников. В этой книге мы будем, однако, по мере сил избегать неконструктивных доказательств. Такой подход объясняется, в первую очередь, тем, что нас интересуют приложения в криптографии. Поэтому не достаточно просто знать, что у составного числа есть нетривиальный множитель, нужно уметь его отыскивать.

Эти краткие заметки должны позволить Вам приступить к чтению. Методы доказательств будут подробнее разобраны ниже, прежде всего в § 3.7 и § 6.2. Однако необходимо с самого начала понять, что искусство доказательства теорем следует заботливо взращивать, и лучший способ выращивания - частое упражнение. Когда Птолемей, царь египетский, спросил Эвклида, нет ли более простого способа изучения геометрии, чем штудирование «Начал», ответ математика гласил: «В геометрии нет царской дороги». Истинное во времена Эвклида, это утверждение сохраняет свою справедливость и по сей день.

Индукция - форма мышления, посредством которой мысль наводится на какое-либо общее правило, общее положение, присущее всем конкретным объектам какого либо класса.
Дедукция - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью либо аксиомой, либо гипотезой.
Дедуктивное доказательство - одна из форм доказательств, когда тезис, являющийся каким-либо единичным или частным суждением, подводится под общее правило.
Всякое доказательство состоит из трех частей:
тезис, доводов, демонстраций.
Правила доказательства:
1. Тезис и аргументы должны быть суждениями ясными и определенными.
2. Тезис должен оставаться одним и тем же на продолжении всего доказательства.
3. Тезис не должен содержать в себе логического противоречия.
4. Тезис, который нужно доказать, не должен находиться в логическом противооречии с высказанными ранее суждениями.
5. Доводы приводимые в подтверждение тезиса, не должны противоречить друг другу.
6. Приведение к абсурду. Истинность того или иного тезиса можно обосновать, доказав ложность пртивоположного тезиса.
7. Тезис и доводы должны быть обоснованны фактами.
8. Доказательство должно быть полным.
9. Доводы приводимые в подверждение истинности тезиса, должны являться достаточными для данного тезиса.
10. Доводы приводимые в доказательстве истинности тезиса сами должны быть истинными.
11. Доводы должны быть суждениями, истинность которых доказана самостоятельно независимо от тезиса.
ПРИМЕЧАНИЕ: Тезис - мысль или положение, истинность которого требуется доказать.

Учимся доказывать теорему.

Усвоить содержание теорем (правил, формул, тождеств и т. д.), которые изучаются в школе, не так уж трудно. Для этого необходимо систематически пытаться понять смысл теоремы (правил, формул, тождеств и т. д., как можно чаще применять их при решении задач, при доказательстве других теорем. Такая работа, как показывает практика, приводит к непроизвольному усвоению их содержания, запоминанию их формулировок. Значительно труднее научиться доказывать теоремы. При этом речь идет не о запоминании доказательства той или иной теоремы, которая была рассмотрена на уроке. Специально запоминать доказательство не нужно, нужно научиться самому доказывать теоремы. Доказательства теорем в учебнике следует рассматривать как образец (эталон) рассуждений при доказательстве какого-либо утверждения.

Что значит доказать теорему, что такое доказательство?

Доказательство в широком смысле - это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений.

Поэтому, когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело - это уже другой вопрос) . В жизни все время, каждодневно в общении с другими людьми, приходится доказывать те или иные мысли, утверждения, приходится убеждать в чем-то, т. е. доказывать.

Доказательство математических теорем есть частный случай доказательства вообще. Оно отличается от доказательства в житейских условиях или в других науках тем, что оно совершается по возможности чисто дедуктивным способом (от латинского слова дедукция - выведение), т. е. выведением новой доказываемой мысли (утверждения, суждения) из ранее доказанных или принятых без доказательства мыслей (аксиом) по правилам логики без каких-либо ссылок на примеры или опыт. В других науках, в житейских обстоятельствах мы для доказательства часто прибегаем к примерам, к опыту. Мы говорим: «Смотри» - и это может служить доказательством. В математике такой способ доказательства недопустим, ссылаться, например, на очевидные отношения, иллюстрируемые чертежом, не разрешается. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т. д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемую теорему к исходным определениям и принятым без доказательства аксиомам.

Следовательно, аксиомы служат не только для косвенного определения первичных понятий, но и в качестве оснований для доказательства всех теорем математики. Вот почему в числе аксиом встречаются и такие, которые указывают особые свойства понятий, имеющих логические определения. Так, например, параллельные прямые в курсе геометрии являются не первичным понятием, а определяемым. Однако одно из свойств параллельных прямых, а именно что ч ерез точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной , мы вынуждены принять за аксиому, ибо, как было установлено великим русским геометром Н. И. Лобачевским (1792-1856), а также немецким математиком К. Ф. Гауссом (1777-1855) и венгерским математиком Я. Больяй (1802-1860), доказать это свойство параллельных прямых на основе лишь остальных аксиом геометрии невозможно.

Всякий шаг доказательства состоит из трех частей:

1) предложение (аксиома, теорема, определение), на основе которого производится этот шаг доказательства; это основание шага доказательства называется посылкой или аргументом;

2) логическое рассуждение, в процессе которого посылка применяется к условиям теоремы или к ранее полученным следствиям;

3) логическое следствие применения посылки к условиям или ранее полученным следствиям.

В последнем шаге доказательства теоремы в качестве следствия получаем утверждение, которое необходимо было доказать. Покажем процесс доказательства на примере такой теоремы: «Диагонали прямоугольника равны».

В этой теореме нам дан произвольный (любой) прямоугольник,Для того чтобы легче было рассуждать в процессе доказательства, поступают следующим образом. Начертим вполне определенный прямоугольник ABCD, но при доказательстве не будем использовать какие-либо частные особенности этого прямоугольника (например, что его сторона АВ примерно в 2 раза больше стороны AD и т. д.). Поэтому наши рассуждения относительно этого определенного прямоугольника будут верны и для любого другого прямоугольника, т. е. они будут иметь общий характер для всех прямоугольников.

Проведем диагонали АС и BD. Рассмотрим полученные треугольники ABC и ABD. У этих треугольников углы ABC и BAD равны как прямые, катет АВ - общий, а катеты ВС и AD равны как противоположные стороны прямоугольника. Следовательно, эти треугольники равны. Отсюда следует, что стороны АС и BD также равны, что и требовалось доказать.

Все доказательство этой теоремы можно изобразить в виде следующей схемы.


№ шага Посылки (аргументы) Условия Следствия
1. Определение: прямоугольник - это четырехугольугольник, у которого все углы прямые ABCD - прямоугольник A - прямой
B> - прямой.
2. Теорема: Прямые углы равны. A - прямой
B - прямой.
A =B.
3. Теорема: Противоположные стороны прямоугольника равны. ABCD - прямоугольник BC=AD
4. Первый признак равенства двух треугольников. ВС=AD, AB=AB,B =A ABC=BAD.
5. Определение равенства треугольников. ABC =BAD,
AC и BD соответственные стороны
AC=BD.

Самое трудное в доказательстве - это найти последовательность посылок (аксиом, теорем, определений), применяя которые к условиям теоремы или промежуточным результатам (следствиям) в конечном итоге можно получить нужное следствие - доказываемое положение.

Какими правилами нужно руководствоваться при поиске этой последовательности? Очевидно, что эти правила не могут носить обязательный характер, они лишь указывают возможные пути поиска. Поэтому они называются эвристическими правилами или просто эвристиками (от греческого слова эврика - нахожу, нашел). Многие выдающиеся математики, такие, как Папп (древнегреческий математик, живший в III в.), Блез Паскаль (1623-1662), Рене Декарт (1596-1650), Жак Адамар (1865-1963), Дьердж Пойя (1887) и многие другие, занимались разработкой эвристик для поиска доказательства теорем и решения задач. Вот некоторые эвристические правила, которые полезно помнить:

1.Полезно заменять названия объектов, о которых идет речь в теореме (задаче), их определениями или признаками.

Например, в рассмотренной выше теореме шла речь о прямоугольнике, и мы для доказательства использовали определение прямоугольника.

2.Если можно, то нужно доказываемое положение раздробить на части и доказывать каждую часть в отдельности.

Так, например, доказательство теоремы: «Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм» - можно разделить на две части: сначала доказать, что одна пара противоположных сторон данного четырехугольника параллельна, а затем доказать, что и вторая пара противоположных сторон также параллельна.

Так следует поступать всегда, когда есть возможность доказываемое утверждение разбить на несколько частей более простых утверждений.

3.В поисках доказательства теоремы полезно идти с двух сторон: от условий теоремы к заключению и от заключения к условиям.

Например, нужно доказать такую теорему: «Если некоторая последовательность такова, что любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, то эта последовательность - арифметическая прогрессия».

Пойдем от условия теоремы. Что нам дано? Дано, что каждый член последовательности, начиная со второго (обозначим его a n , где n³ 2), есть среднее арифметическое предшествующего и последующего членов, т.

a n- 1 и a n+1 . Значит, верно такое равенство:
(1)

Теперь пойдем от заключения. А что нам нужно доказать? Нужно доказать, что эта последовательность - арифметическая прогрессия. А какая последовательность называется арифметической прогрессией? Вспоминаем определение:

a n = a n-1 + d, где n2, d - постоянное число. (2)

Сопоставляем данное нам условие (1) с заключением (2). Чтобы условие приняло форму заключения, надо преобразовать так:

2a n = a n-1 + a n+1 , (3)

Отсюда a n - a n-1 = a n+1 - a n . (4)

Левая и правая части (4) обозначают одно и то же, а именно разность между двумя последовательными членами заданной последовательности. Если в равенстве (4) п давать последовательно значения 2, 3 и т. д., то получим: а 2 -a 1 = а 3 - a 2 , затем а 3 - a 2 = a 4 - a 3 и т. д. Следовательно, все эти разности равны между собой, а это значит, что разность а п - а п -1 есть постоянное число, которое можно обозначить буквой, например, буквой d:

а п - а п-1 = d.

Отсюда получаем: a n = a n-1 + d, а это значит, что согласно определению (2) данная последовательность есть арифметическая прогрессия, что нам и надо было доказать.

Эту эвристику можно и так сформулировать: надо стараться сблизить условие и заключение теоремы, преобразуя их или заменяя их следствиями.

Известен и ряд более частных эвристических правил, которые применяются при поиске лишь некоторых теорем. Например, такая эвристика: для того чтобы доказать равенство каких-либо отрезков, надо найти или построить фигуры, соответствующими сторонами которых являются эти отрезки; если фигуры окажутся равными, то будут равны и соответствующие отрезки.

Изучая теоремы, нужно не просто запоминать их доказательство, а каждый раз думать и устанавливать, какими методами они доказываются, какими эвристическими правилами руководствовались при нахождении этих доказательств, как догадались (додумались) до этих доказательств.

В ряде случаев для доказательства теорем используется особый прием, называемый «доказательством от противного» или «приведением к нелепости».

Сущность этого приема заключается в том, что предполагают несправедливость (ложность) заключения данной теоремы и доказывают, что такое предположение приводит к противоречию с условием или с ранее доказанными теоремами или аксиомами. А так как любое утверждение может быть либо верным, либо неверным (ничего другого быть не может), то полученное противоречие показывает, что допущение о ложности заключения теоремы неверно и, следовательно, заключение верно, тем самым теорема доказана.

Приведем пример.


Теорема. Две прямые, порознь параллельные третьей, параллельны между собой.

Дано: а||с, b||с.
Доказать: а||b.

Докажем эту теорему методом от противного. Допустим, что заключение теомы неверно, т. е. прямая а непараллельна прямой b. Тогда они пересекаются в некоторой точке М. А так как по условию каждая из этих прямых параллельна прямой с, то получается, что через точку М проведены две прямые а и b, параллельные одной и той же прямой с. А мы знаем по аксиоме параллельности, что через точку вне прямой можно провести не более одной прямой, параллельной данной. Пришли к противоречию с аксиомой. Это показывает, что наше предположение о непараллельности прямых а и b неверно, следовательно, а||b, что и требовалось доказать.

Другой пример.

Теорема. Среднее арифметическое двух положительных чисел не меньше {значит: больше или равно) среднего геометрического этих чисел.

Эту теорему можно так записать:

Где а>0, b>0, (1)

Ее можно доказать как прямым способом, так и способом от противного. Докажем ее способом от противного.

Для этого допустим, что она неверна, т. е. среднее арифметическое меньше среднего геометрического двух положительных чисел:; (2)

Умножим обе части (2) на 2 и возведем их в квадрат, получим: a 2 + 2ab + b 2 <.4ab или a 2 - 2ab + b 2 < 0. По формуле квадрата разности двух чисел получаем: (а - b) 2 < 0.

В результате получили явную нелепость: квадрат некоторого числа (а - b) отрицателен, чего быть не может. Следовательно, предположение о неверности теоремы привело к противоречию, что доказывает справедливость теоремы.

Таким образом, доказательство от противного некоторой теоремы состоит в том, что мы делаем допущение о неверности заключения теоремы. Затем делаем ряд логических умозаключений на основе этого допущения, в результате которых приходим к явно нелепому положению (к противоречию с условием или ранее доказанными теоремами, аксиомами). Далее рассуждаем так: если бы наше предположение было бы верным, то мы могли бы прийти лишь к верному выводу, а так как мы пришли к неверному выводу, то это означает, что наше предположение было ложным, следовательно, тем самым мы убедились, что заключение теоремы верно.

Заметим, что если в результате рассуждений мы не получили бы нелепости (противоречия), то это еще не означало бы, что предположение верно. Иными словами, если исходить из верности (справедливости) заключения теоремы и из этого предположения получить верное (очевидное) следствие, то это еще не значит, что предположение верно: может случиться, что исходная теорема как раз неверна.

На этом построены многие софизмы (умышленно ложно построенные умозаключения, кажущиеся лишь правильными), этим объясняются многие ошибки, допускаемые, при решении задач.

Рассмотрим, например, такое равенство: а - b = b - a (1), где а и b - произвольные числа. Допустим, что (1) верно, тогда возвысим обе части (1) в квадрат, получим:

a 2 - 2ab + b 2 = b 2 - 2ab + a 2

Перенеся все члены в одну сторону и сделав приведение подобных, придем к совершенно верному равенству: 0 = 0. Но отсюда нельзя делать вывод, что и исходное равенство (1) верно. Если бы мы такой вывод сделали, то пришли бы к такому софизму: 2а = 2b или а = b, т. е. любые произвольные числа равны между собой. Ошибка состоит в том, что из равенства квадратов двух чисел не следует равенство самих этих чисел. Например, (-2) 2 = 2 2 , но -22.

Вот пример ошибочного решения задачи.

Задача. Решить уравнение 3+ x + 2 = 0 (1).

Допустим, что уравнение (1) имеет решение и, следовательно, равенство (1) верно. Тогда получим: З= - х - 2. Возведем обе части равенства в квадрат: 9х = х 2 + 4х + 4 или х 2 -5x + 4 = 0, отсюда x 1 =4, х 2 =1. Можно ли найденные значения х считать корнями уравнения (1)? Некоторые ученики отвечают на этот вопрос утвердительно, ибо ведь все преобразования уравнения верные. И все же ни одно из найденных значений х не является корнем (1). Это подтверждает проверка. Подставляя найденные значения х в (1), получаем явно нелепые равенства: 12 = 0 и 6 = 0.

А как все же решить это уравнение. Заметим, что выражение в левой части уравнения имеет смысл, если x0. Тогда левая часть уравнения при любых допустимых значениях х принимает только положительные значения и ни как не может быть равной 0, следовательно, данное уравнение корней не имеет.

Таким образом вы должны учиться доказывать теоремы (формулы, тождества и т. д.), овладевать общими способами поиска доказательства теорем.

Алгебре периодически приходится доказывать теоремы. В доказанная теорема поможет вам при решении . Поэтому крайне важно не механически зазубрить доказательство, а вникнуть в суть теоремы, чтобы потом руководствоваться ею на практике.

Сначала изобразите четкий и аккуратный чертеж к теореме. Отметьте на нем латинскими буквами то, что вам изначально известно. Запишите все известные величины в графу «Дано». Далее в графе «Доказать» сформулируйте то, что доказать. Теперь можно приступать к доказательству. Оно цепочку логических мыслей, в результате чего показывается истинность -либо утверждения. При доказательстве теоремы можно (а порой – даже нужно) пользоваться различными положениями, аксиомами, от противного и даже другими, ранее доказанными, теоремами.

Таким образом, доказательство – это последовательность действий, в результате которого вы получите неоспоримое . Наибольшую трудность при доказательстве теоремы представляет нахождение именно той последовательности логических рассуждений, которые приведут к поиску того, что требовалось доказать.

Разбейте теорему на части и, доказывая, по отдельности, в итоге вы придете к искомому результату. Полезно овладеть навыком «доказательства от противного», в ряде случаев именно таким способом проще всего доказать теорему. Т.е. начните доказательство со слов «предположим обратное», и постепенно докажите, этого не может быть. Закончите доказательство словами «следовательно, первоначальное утверждение верно. Теорема доказана».

Франсуа Виет - известный французский математик. Теорема Виета позволяет решать квадратные уравнения по упрощенной схеме, которая в результате экономит время, затраченное на расчет. Но чтобы лучше понимать суть теоремы, следует проникнуть в суть формулировки и доказать ее.

Теорема Виета

Суть данного приема состоит в том, чтобы находить корни без помощи дискриминанта. Для уравнения вида x2 + bx + c = 0, где имеется два действительных разных корня, верно два утверждения.

Первое утверждение гласит, что сумма корней данного уравнения приравнивается значению коэффициента при переменной x (в данном случае это b), но с противоположным знаком. Наглядно это выглядит так: x1 + x2 = −b.

Второе утверждение уже связано не с суммой, а с произведением этих же двух корней. Приравнивается же это произведение к свободному коэффициенту, т.е. c. Или, x1 * x2 = c. Оба этих примера решаются в системе.

Теорема Виета значительно упрощает решение, но имеет одно ограничение. Квадратное уравнение, корни которого можно найти, используя этот прием, должно быть приведенным. В приведенном уравнении коэффициента a, тот, что стоит перед x2, равен единице. Любое уравнение можно привести к подобному виду, разделив выражение первый коэффициент, но не всегда данная операция рациональна.

Доказательство теоремы

Для начала следует вспомнить, как по традиции принято искать корни квадратного уравнения. Первый и второй корни находятся , а именно: x1 = (-b-√D)/2, x2 = (-b+√D)/2. Вообще делится на 2a, но, как уже говорилось, теорему можно применять только когда a=1.

Из теоремы Виета известно, что сумма корней равна второму коэффициенту со знаком минус. Это значит, что x1 + x2 = (-b-√D)/2 + (-b+√D)/2 = −2b/2 = −b.

То же справедливо и для произведения неизвестных корней: x1 * x2 = (-b-√D)/2 * (-b+√D)/2 = (b2-D)/4. В свою очередь D = b2-4c (опять же при a=1). Получается, что итог таков: x1 * x2 = (b2- b2)/4+c = c.

Из приведенного простого доказательства можно сделать только один вывод: теорема Виета полностью подтверждена.

Вторая формулировка и доказательство

Теорема Виета имеет и другое толкование. Если говорить точнее, то не толкование, а формулировку. Дело в том, что если соблюдаются те же условия, что и в первом случае: имеется два различных действительных корня, то теорему можно записать другой формулой.

Эта равенство выглядит следующим образом: x2 + bx + c = (x - x1)(x - x2). Если функция P(x) пересекается в двух точка x1 и x2, то ее можно записать в виде P(x) = (x - x1)(x - x2) * R(x). В случае, когда P имеет вторую степень, а именно так и выглядит первоначальное выражение, то R является простым числом, а именно 1. Это утверждение верно по той причине, что в ином случае равенство выполняться не будет. Коэффициент x2 при раскрытии скобок не должен быть больше единицы, а выражение должно оставаться квадратным.