Уравнение реакции полного сгорания этилена. Этилен и горение

«Диеновые углеводороды» - Состав и строение натурального каучука. Экологические проблемы. Мало хотеть, надо и делать.» И.В.Гёте. Содержат цепочку сопряжённых двойных связей апельсин, базилик. Паренхимные - гваюла. Цис -. Оао балаковорезинотехника. К каучуку синтетическому. Диеновые углеводороды. Эластичен. Х.Колумб Южная Америка Сок дерева гевея – латекс.

«Класс Алкины» - Строение ацетилена. Гибридная орбиталь. Гидратация. Окисление. Ацетиленовые углеводороды. Вопросы и ответы по химии. Кислотные свойства. Алкины. Негибридные p-орбитали. Руководство по химии. Химические свойства. Применение. Галогенирование. Номенклатура. Получение. Физические свойства. Уксусный альдегид.

«Химия Алкины» - 1.Исследование присоединения полярных молекул по правилу Марковникова 2. Алкины. Углеродные атомы стягиваются тройной связью до 0,120 нм, валентный угол = 180о. На катализаторе CuCl атому углерода». образуется винилацетилен СН = С – С=СН2. Дополнение к элективному курсу. Форма молекулы меняется из линейной в плоскостную и затем - в тетраэдрическую.

«Свойства алкинов» - Физические свойства. Горение ацетилена. Алкины. Изомерия алкинов. Окисление. Гомологический ряд алкинов. Гидрогалогенирование. Характеристика тройной связи. Получение алкинов. Реакции замещения. Схема образования sp -гибридных орбиталей. Реакция полимеризации. Выполните упражнение. Применение алкинов.

«Алкины» - Пентин-1. Сnн2n-2. 3-метилбутин-1. Алкины. 2-метилпентен-1-ин-4. Присоединение к альдегидам и кетонам. Дегидрогалогенирование. Этинил. Бутин-2 (диметилацетилен). Галогенирование. Присоединение воды (реакция М.Г.Кучерова, 1881). Гидрирование. Строение алкинов. Пропаргил. Химические свойства. Ацетилен (этин).

«Класс Алкены» - Реакции окисления. Способы получения алкенов. Четыре изомера. Алкан. Гидрогалогенирование. Задача. Физические свойства. Применение пропилена. Алканы. Межклассовая изомерия. Знания об углеводородах. Все познается в сравнении. Применение этилена. Структурная изомерия. Физкультминутка. Дегидрогалогенирование галогеналканов.

Всего в теме 18 презентаций

НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ

При изучении непредельных углеводородов эксперимент ставится преимущественно лишь с двумя веществами - этиленом и ацетиленом.

Многие опыты с этими веществами напоминают работы, выполненные с метаном (горение, взрыв и др.); такие опыты здесь не составляют уже основного содержания эксперимента. Наибольшее значение в этой теме приобретает эксперимент, развивающий представление учащихся о строении вещества, способствующий углублению их понятия о теории строения органических соединений. Сюда относятся опыты, устанавливающие связь строения молекул со свойствами вещества, т.е. иллюстрирующие специфические свойства непредельных соединений.

Этилен

Опыты с этиленом даются здесь в иной последовательности, чем опыты с метаном. Учитель может поставить их, пользуясь заранее


собранным этиленом, и лишь затем показать получение этого вещества на уроке. Если, однако, изучение этилена учитель начинает с получения его, то он без труда сможет изменить предлагаемый ниже порядок опытов.

Горение этилена . Горение этилена и другие опыты с ним могут быть поставлены в нескольких вариантах. Так, например, при изучении нового материала сжигание этилена, а также реакции его с бромом и с раствором перманганата калия можно провести в цилиндрах; при опросе же учащихся и повторении эти опыты можно провести путем поджигания газа у отводной трубки газометра и пропускания газа через соответствующие растворы.

1. Открывают стоящий на столе цилиндр с этиленом и поджигают газ. Газ горит светящим пламенем. По мере сгорания газа пламя уходит в цилиндр и становится малозаметным для учащихся. Чтобы получить большой факел пламени, как и в аналогичном опыте с метаном (рис. 4), в цилиндр вливают воду с целью вытеснения из него этилена. На воздухе горение этилена происходит более интенсивно.

Для доказательства наличия углерода в составе этилена можно держать над пламенем опрокинутый стакан, сполоснутый баритовой или известковой водой. Очевидно, доказательство наличия водорода по образованию воды при горении в данном случае было бы неубедительным, так как учащиеся могут прийти к выводу о том, что появление влаги на стенках стакана обусловливается испарением воды, вливаемой в цилиндр.

2. Если демонстрация опытов начинается с получения этилена, то газ поджигают у отводной трубки прибора (после проверки на полноту вытеснения воздуха). Чтобы газ горел ровным пламенем, в сгибе отводной трубки при вынимании ее из ванны не должна оставаться вода. Если газ был пропущен через осушитель (концентрированную серную кислоту), то в этом опыте легко доказать наличие водорода в составе этилена. Для этого держат над пламенем перевернутый сухой стакан: он покрывается каплями влаги.

При демонстрации горения этилена следует разъяснить учащимся, почему этилен, в отличие от метана, горит светящим пламенем.

Взрыв смеси этилена с кислородом . После демонстрации горения этилена учащиеся иногда спрашивают, образует ли этилен взрывчатую смесь с кислородом и воздухом подобно метану. Для взрыва этилена согласно уравнению реакции берут другие объемные соотношения газов, нежели при взрыве метана. При взрыве с кислородом теоретическое соотношение должно быть 1 ; 3, при взрыве с воздухом -1:15.

С 2 Н 4 + ЗО 2 à 2СO 2 + 2Н 2 О


Производят взрыв в склянке так же, как с метаном. Склянка, разделенная метками по одной стороне (для опыта с метаном) на 3 части, с другой стороны должна быть разделена для данного опыта на 4 части. В склянку по способу вытеснения воды набирают вначале кислород, затем этилен. В опыте соблюдают те же предосторожности, что и при взрыве метана! Взрыв получается более сильный, чем у метана.

Опыты горения этилена показали, что в состав его входят водород и углерод. Вес 1 л газа при нормальных условиях равен 1,25 г. Молекулярный вес этилена, следовательно, 22, 4 1,25 = 28.

Уже простые соображения показывают, что в молекуле газа должно содержаться 2 атома углерода (12 2 = 24) и, следовательно, 4 атома водорода (28 - 24 = 4).

Реакция этилена с бромом . Ознакомлению учащихся с этой реакцией должно быть уделено особое внимание, так как она наиболее типична для непредельных углеводородов и вместе с тем сравнительно легко осуществима в школьных условиях. Выполнение опыта облегчается тем, что реакция идет как с чистым бромом, так и с бромной водой.

Опыт может ставиться с различными целями: в связи с обоснованием структурной формулы этилена; для показа химических свойств вещества; для открытия непредельного соединения; для получения дибромэтана.

1. После того как установлена молекулярная формула этилена, может быть поставлен опыт, на базе которого можно сделать заключение о структурной формуле этого вещества. Учащимся сообщается, что опыт будет заключаться в исследовании реакции этилена с бромом, которая является для изучаемого вещества наиболее характерной.

Собирают прибор, как показано на рис. 10. Колбу (из прочного стекла) предварительно заполняют этиленом по способу вытеснения воды и сначала закрывают ее в ванне обычной пробкой, а затем быстро заменяют эту пробку на пробку с двумя отверстиями для канальной воронки и отводной трубки. В стакан наливают воду с таким расчетом, чтобы объем ее был не меньше емкости колбы.

В колбу с этиленом постепенно при охлаждении (водяная баня) прикалывают бром и встряхивают ее содержи-


мое. Прибавление брома продолжают до тех пор, пока с ним не прореагирует весь этилен, т.е. пока новые капли брома не будут оставаться без изменений. Наблюдают образование на стенках колбы маслянистых капель нового вещества. Отмечают по делениям объем вступившего в реакцию брома и вычисляют его весовое количество. Затем опускают трубку в сосуд с водой и, если колба достаточно охладилась, открывают зажим. Вода с силой устремляется в колбу и заполняет ее почти целиком.

Учитель сообщает, что, как показывает опыт, в результате этой реакции образуется одно вещество, которое учащиеся видят на стенках колбы, других веществ не найдено. Поэтому, когда этилен вступит в реакцию, в колбе образуется разреженное пространство, куда и устремляется вода под давлением атмосферного воздуха.

Каков же состав нового вещества, получившегося при соединении этилена с бромом? Учащиеся сравнивают количество прореагировавших этилена и брома (в молях) и находят, что на каждую молекулу этилена расходовалась молекула брома. В таком случае уравнение реакции должно быть написано в следующем виде:



С 2 Н 4 + Вг 2 à С 2 Н 4 Вг 2

Если полученное вещество, сообщает преподаватель, собрать и подвергнуть анализу, то формула его С 2 Н 4 Вг 2 подтверждается. Это вещество - дибромэтан, структурная формула которого

Чтобы представить себе строение этилена, надо, следовательно, убрать из молекулы два атома брома. Тогда освободившиеся от атомов брома валентности углерода смыкаются друг с другом и образуют двойную связь

Это и будет структурная формула этилена.

2. Если постановка предыдущего опыта затрудняет учителя, опыт может быть показан в упрощенном виде как иллюстрация химических свойств этилена.

В цилиндр с этиленом наливают бромной воды, закрывают его пробкой или стеклянной притертой пластинкой (не рукой!) и взбалтывают. Окраска брома очень быстро исчезает. Обращают внимание на звук врывающегося в цилиндр воздуха при открывании пробки, что говорит об израсходовании газа на реакцию.


Учитель сообщает, что полученное вещество изучено и оказалось известным учащимся (теоретически) галогенопроизводным этана - дибромэтаном. Составляют уравнение реакции в обычном и в структурном виде и делают заключение о структурной формуле этилена, как описано выше.

Чтобы сделать опыт хорошо видимым, следует пользоваться по возможности концентрированной бромной водой и цилиндрами большого диаметра, тогда изменение окраски воды будет разительным.

Учителя нередко задают вопрос: сколько бромной воды следует приливать в цилиндр с газом? Точного ответа здесь дать нельзя, так как цилиндры могут быть взяты разных объемов, и бромная вода обычно готовится неопределенной концентрации. Большой точности опыт, однако, и не требует. Если бромной воды будет взято меньше, чем полагается по стехиометрическому соотношению, она полностью обесцветится, а остаток этилена на результат наблюдения не повлияет. Если же бромной воды будет взято несколько больше, чем полагается, и бром вступит в реакцию не полностью, все же концентрация его снижается настолько, что вода кажется бесцветной или значительно обесцветившейся. Разумеется, до занятия надо проверить опыт, чтобы установить нужное количество бромной воды.

3. Реакция этилена с бромом может быть использована для проведения внешне эффектного опыта. Он основан на том, что при реакции этилена с бромом в замкнутом сосуде образуется разреженное пространство.

Толстостенный сосуд емкостью 0,5-1 л наполняют этиленом, в него осторожно помещают 1-2 ампулы с бромом в зависимости от объема склянки и величины ампул и закрывают пробкой, через которую проходит стеклянная трубка с краном. Встряхивают склянку так, чтобы обломились концы ампул. Склянка заполняется парами брома, окраска которых, однако, постепенно исчезает, так как бром вступает в реакцию с этиленом. В сосуде образуется разреженное пространство. Конец стеклянной трубки опускают в чашку с подкрашенной водой и открывают кран (рис. 11). Вода с силой устремляется в склянку и бьет фонтаном.

Этилен является простейшим из органических соединений, известных как алкены. Это бесцветный имеющий сладковатый вкус и запах. Природные источники включают природный газ и нефть, он также является естественным гормоном в растениях, в которых он ингибирует рост и способствует созреванию плодов. Применение этилена является распространенным явлением в промышленной органической химии. Он производится путем нагревания природного газа, температура плавления составляет 169,4 °С, кипения - 103, 9 °С.

Этилен: особенности структуры и свойства

Углеводороды представляют собой молекулы, содержащие водород и углерод. Они сильно различаются с точки зрения количества одинарных и двойных связей и структурной ориентации каждого компонента. Одним из простейших, но биологически и экономически выгодных углеводородов является этилен. Он поставляется в газообразном виде, является бесцветным и легковоспламеняющимся. Он состоит из двух двойных скрепленных атомов углерода с атомами водорода. Химическая формула имеет вид C 2 H 4 . Структурная форма молекулы является линейной из-за наличия двойной связи в центре.
Этилен имеет сладковатый мускусный запах, который позволяет легко идентифицировать вещество в воздухе. Это касается газа в чистом виде: запах может исчезать при смешивании с другими химическими веществами.

Схема применения этилена

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации - это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен - это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт), (антифриз, и пленки), ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

Коммерческое использование

Свойства этилена дают хорошую коммерческую основу для большого количества органических (содержащих углерод и водород) материалов. Одиночные молекулы этилена могут быть соединены вместе для получения полиэтилена (что означает много молекул этилена). Полиэтилен используется для изготовления пластмасс. Кроме того, он может быть использован для изготовления моющих средств и синтетических смазочных материалов, которые представляют собой химические вещества, используемые для уменьшения трения. Применение этилена для получения стиролов актуально в процессе создания резины и защитной упаковки. Кроме того, он используется в обувной промышленности, особенно это касается спортивной обуви, а также при производстве автомобильных покрышек. Применение этилена является коммерчески важным, а сам газ является одним из наиболее часто производимых углеводородов в глобальном масштабе.

Опасность для здоровья

Этилен представляет опасность для здоровья прежде всего потому, что он является легковоспламеняющимся и взрывоопасным. Он также может действовать как наркотик при низких концентрациях, вызывая тошноту, головокружение, головные боли и потерю координации движения. При более высоких концентрациях он действует как анестетик, вызывая потерю сознания, и другим раздражителям. Все эти негативные моменты могут быть причиной для беспокойства в первую очередь для людей, непосредственно работающих с газом. Количество этилена, с которым большинство людей сталкивается в повседневной жизни, как правило, сравнительно небольшое.

Реакции этилена

1) Окисление. Это добавление кислорода, например, при окислении этилена до окиси этилена. Он используется в производстве этиленгликоля (1,2-этандиола), который применяется в качестве незамерзающей жидкости и в производстве полиэфиров путем конденсационной полимеризации.

2) Галогенирование - реакции с этиленом фтора, хлора, брома, йода.

3) Хлорирование этилена в виде 1,2-дихлорэтана и последующая конверсия 1,2-дихлорэтана в винилхлорид мономер. 1,2-дихлорэтан является полезным органическим растворителем, а также является ценным предшественником в синтезе винилхлорида.

4) Алкилирование - добавление углеводородов по двойной связи, например, синтез этилбензола из этилена и бензола с последующим преобразованием в стирол. Этилбензол является промежуточным для производства стирола, одного из наиболее широко используемых виниловых мономеров. Стирол - мономер, используемый для производства полистирола.

5) Горение этилена. Газ получается путем нагревания и концентрированной серной кислоты.

6) Гидратация - реакция с добавлением воды к двойной связи. Наиболее важным промышленным применением этой реакции является превращение этилена в этанол.

Этилен и горение

Этилен - это газ без цвета, который плохо растворяется в воде. Горение этилена в воздухе сопровождается образованием углекислого газа и воды. В чистом виде газ горит световым диффузионным пламенем. Смешанный с небольшим количеством воздуха, он дает пламя, состоящее из трех отдельных слоев - внутреннего сердечника - несгоревшего газа, сине-зеленого слоя и внешнего конуса, где частично окисленный продукт из предварительно перемешанного слоя сгорают в диффузионном пламени. Результирующее пламя показывает сложную серию реакций, а если к газовой смеси добавляется больше воздуха, постепенно диффузионный слой исчезает.

Полезные факты

1) Этилен является природным растительным гормоном, он влияет на рост, развитие, созревание и старение всех растений.

2) Газ не вреден и не токсичен для человека в определенной концентрации (100-150 мг).

3) Он используется в медицине в качестве обезболивающего средства.

4) Действие этилена замедляется при низких температурах.

5) Характерным свойством является хорошая проникающая способность через большинство веществ, например через картонные упаковочные коробки, деревянные и даже бетонные стены.

6) В то время как он имеет неоценимое значение благодаря своей способности инициировать процесс созревания, он также может быть очень вредным для многих фруктов, овощей, цветов и растений, ускоряя процесс старения и снижая качество продукта и его срок годности. Степень повреждения зависит от концентрации, продолжительности воздействия и температуры.

7) Этилен взрывоопасен при высоких концентрациях.

8) Этилен используется в производстве стекла специального назначения для автомобильной промышленности.

9) Изготовление металлоконструкций: газ используется в качестве кислородно-топливного газа для резки металла, сварки и высокой скорости термического напыления.

10) Нефтепереработка: этилен используется в качестве хладагента, особенно на производстве по сжижению природного газа.

11) Как уже говорилось ранее, этилен является очень реактивным веществом, кроме того, он еще и очень легко воспламеняется. Из соображений безопасности, его обычно транспортируют по специальному отдельному газопроводу.

12) Одним из самых распространенных продуктов, изготовленных непосредственно из этилена, является пластмасса.

В сухую пробирку помещают несколько крупинок песка, 2 капли этилового спирта и 4 капли концентрированной серной кислоты. Закрывают пробирку пробкой с газоотводной трубкой и осторожно нагревают смесь на пламени горелки. Выделяющийся газ поджигают у конца газоотводной трубки - он горит светящимся пламенем.

Химизм процесса:

CНз-СН 2 ОН + НОSОзН СНз-СН 2 -OSОзН + Н 2 О

этилсерная кислота

Этилсерная кислота - моноэфир неорганической двухосновной кислоты - при нагревании разлагается:

СНз-СН 2 -OSOзН СН 2 =СН 2 + H 2 SO 4

Таким образом, при взаимодействии этилового спирта с серной кислотой происходит дегидратация спирта:

Выделяющийся этилен горит светящимся пламенем:

C 2 H 4 + ЗO 2 2СO 2 + 2Н 2 О

Концентрированная серная кислота является окислителем. При нагревании смеси спирта с концентрированной серной кислотой образуется, кроме этилена и следов диэтилового эфира (СзН 5) 2 О , ряд продуктов окисления органических соединений, например СО 2 , уголь С (обычно смесь в пробирке чернеет). Серная кислота при этом восстанавливается углеродом до сернистого ангидрида:

2H 2 SO 4 + С СО 2 + 2SO 2 + 2H 2 O

Сернистый ангидрид также может обесцвечивать растворы брома и марганцевокислого калия подобно этилену. Поэтому образующийся этилен промывают раствором щелочи для очистки от SO 2 . Если реакцию вести в присутствии песка, сульфата алюминия (катализаторы, ускоряющие дегидратацию спирта), почернения смеси не происходит, следовательно, сернистый ангидрид не образуется.

Дегидратация спиртов является общим способом получения непредельных углеводородов.

Присоединение к этилену брома

Не прекращая нагревания пробирки со смесью спирта и серной кислоты (см. опыт 1), опускают конец газоотводной трубки в пробирку с 5 каплями бромной воды. Бромная вода быстро обесцвечивается вследствие присоединения атомов брома по месту двойной связи.

Химизм процесса:

СН 2 =СН 2 + Вг 2 СН 2 -СН 2

1,2-дибромэтан

Для алкенов характерны реакции присоединения по месту двойной связи.

Реакция обесцвечивания водного раствора брома служит качественной реакцией на двойную связь.

Отношение этилена к окислителям

Не прекращая нагревания пробирки со смесью спирта и серной кислоты (см. опыт 3.2.1), опускают конец газоотводной трубки в пробирку с 1 каплей раствора марганцевокислого калия и 4 каплями воды. Раствор марганцевокислого калия быстро обесцвечивается. При этом алкен окисляется в двухатомный спирт. Химизм процесса:

СН 2 =СН 2 + [О] + Н-ОН СН 2 -СН 2

│ │

ОН ОН

этиленгликоль

Эта реакция является качественной реакцией на двойную связь.


Похожая информация:

  1. ПОЛУЧЕНИЕ ЭТОГО", ИЛИ ДЕЙСТВИТЕЛЬНО ЛИ НИЧТО - ЭТО КОЕ-ЧТО?
  2. Алкины, их общая формула. Этин (ацетилен), строение молекулы, химические свойства (горение, реакции присоединения), получение и применение