Действия над рациональными числами. арифметические действия над рациональными числами

Урок4
СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Цели : способствовать формированию вычислительных умений и навыков, накоплению знаний о степенях на основе вычислительного опыта; познакомить с записью больших и маленьких чисел с помощью степеней числа 10.

Ход урока

I. Актуализация опорных знаний.

Учитель проводит анализ результатов проверочной работы, каждый ученик получает рекомендации по разработке индивидуального плана коррекции вычислительных умений и навыков.

Затем учащимся предлагается выполнить вычисления и прочитать имена известных математиков, внесших вклад в построение теории степеней:

0,3 2 ; 5 3 ; (– 12) 2 ; ; ; –7 3 ; (–0,2) 3 ; –13 2 ; 1,7 2 ; ; 1,1 2 ; 1 3 .

Ключ:

С помощью компьютера или эпипроектора на экран проецируются портреты ученых Диофанта, Рене Декарта, Симона Стевина. Учащимся предлагается подготовить по желанию исторические справки о жизни и деятельности этих ученых-математиков.

II. Формирование новых понятий и способов действия.

Учащиеся записывают в тетради следующие выражения:

1. 2 + 2 + 2 + 2 + 2;

2. 2 + 2 + 2 + … + 2;

а слагаемых

3. 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5;

4. 5 ∙ 5 … ∙ 5;

n множителей

5. а а а ;

n множителей

Учащимся предлагается ответить на вопрос: «Как можно представить эти записи более компактно, чтобы они стали "обозримыми"»?

Затем учитель проводит беседу по новой теме, знакомит учащихся с понятием первой степени числа. Учащиеся могут подготовить инсценировку древней индийской легенды об изобретателе шахмат Сете и царе Шераме. Закончить беседу необходимо рассказом об употреблении при записи больших и малых величин степеней числа 10 и, предложив учащимся к рассмотрению несколько справочников по физике, технике, астрономии, дать им самим возможность найти в книгах примеры таких величин.

III. Формирование умений и навыков.

1. Решение упражнений № 40 г), д), е); 51.

В ходе решения учащиеся делают заключение о том, что полезно помнить: степень с отрицательным основанием положительна, если показатель степени четный, и отрицательна, если показатель степени нечетный.

2. Решение упражнений № 41, 47.

IV. Подведение итогов.

Учитель комментирует и оценивает работу учащихся на уроке.

Домашнее задание: п. 1.3, № 42, 43, 52; по желанию: подготовить сообщения о Диофанте, Декарте, Стевине.

Историческая справка

Диофант древнегреческий математик из Александрии (III в.). Сохранилась часть его математического трактата «Арифметика» (6 книг из 13), где дается решение задач, в большинстве приводящихся к так называемым «диофантовым уравнениям», решение которых ищется в рациональных положительных числах (отрицательных чисел у Диофанта нет).

Для обозначения неизвестного и его степеней (до шестой), знака равенства Диофант употреблял сокращенную запись соответствующих слов. Обнаружен учеными также арабский текст еще 4 книг «Арифметики» Диофанта. Сочинения Диофанта явились отправной точкой для исследований П. Ферма, Л. Эйлера, К. Гаусса и других.

Декарт Рене (31. 03. 159 6 –11. 02. 1650) – французский философ и математик, происходил из старинного дворянского рода. Образование получил в иезуитской школе Ла Флеш в Анжу. В начале Тридцатилетней войны служил в армии, которую оставил в 1621 году; после нескольких лет путешествий переселился в Нидерланды (1629), где провел двадцать лет в уединенных научных занятиях. В 1649 году по приглашению шведской королевы переселился в Стокгольм, но вскоре умер.

Декарт заложил основы аналитической геометрии, ввел многие современные алгебраические обозначения. Декарт значительно улучшил систему обозначений, введя общепринятые знаки для переменных величин
(х , у , z …) и коэффициентов (а , b , с …), а также обозначения степеней (х 4 , а 5 …). Запись формул у Декарта почти ничем не отличается от современной.

В аналитической геометрии основным достижением Декарта явился созданный им метод координат.

Стевин Симон (1548–1620) – нидерландский ученый и инженер. С 1583 года преподавал в Лейденском университете, в 1600 году организовал инженерную школу при Лейденском университете, где читал лекции по математике. Работа Стевина «Десятина» (1585) посвящена десятичной системе мер и десятичным дробям, которые Симон Стевин ввел в употребление в Европе.

)- это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n , где числитель m — целые числа, а знаменатель n натуральные числа, к примеру 2/3 .

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

a/b , где a Z (a принадлежит целым числам), b N (b принадлежит натуральным числам).

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например , тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: «<», «>» либо «=». Это правило - правило упорядочения и формулируют его вот так:

  • 2 положительных числа a=m a /n a и b=m b /n b связаны тем же отношением, что и 2 целых числа m a n b и m b n a ;
  • 2 отрицательных числа a и b связаны одним отношением, что и 2 положительных числа |b| и |a| ;
  • когда a положительно, а b — отрицательно, то a>b .

a,b Q (aa>b a=b)

2. Операция сложения . Для всех рациональных чисел a и b есть правило суммирования , которое ставит им в соответствие определенное рациональное число c . При этом само число c - это сумма чисел a и b и ее обозначают как (a+b) суммирование .

Правило суммирования выглядит так:

m a /n a +m b /n b =(m a n b +m b n a) /(n a n b).

a,b Q !(a+b) Q

3. Операция умножения . Для всяких рациональных чисел a и b есть правило умножения , оно ставит им в соответствие определенное рациональное число c . Число c называют произведением чисел a и b и обозначают (a⋅b) , а процесс нахождения этого числа называют умножение .

Правило умножения выглядит так: m a n a m b n b =m a m b n a n b .

∀a,b∈Q ∃(a⋅b)∈Q

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c .

a,b,c Q (aba(a = b b = c a = c)

5. Коммутативность сложения . От перемены мест рациональных слагаемых сумма не изменяется.

a,b Q a+b=b+a

6. Ассоциативность сложения . Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

a,b,c Q (a+b)+c=a+(b+c)

7. Наличие нуля . Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

0 Q a Q a+0=a

8. Наличие противоположных чисел . У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

a Q (−a) Q a+(−a)=0

9. Коммутативность умножения . От перемены мест рациональных множителей произведение не изменяется.

a,b Q a b=b a

10. Ассоциативность умножения . Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

a,b,c Q (a b) c=a (b c)

11. Наличие единицы . Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

1 Q a Q a 1=a

12. Наличие обратных чисел . Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

a Q a−1 Q a a−1=1

13. Дистрибутивность умножения относительно сложения . Операция умножения связана со сложением при помощи распределительного закона:

a,b,c Q (a+b) c=a c+b c

14. Связь отношения порядка с операцией сложения . К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

a,b,c Q aa+c

15. Связь отношения порядка с операцией умножения . Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

a,b,c Q c>0 aa cc

16. Аксиома Архимеда . Каким бы ни было рациональное число a , легко взять столько единиц, что их сумма будет больше a .

Бадамшинская средняя школа №2

Методическая разработка

по математике
в 6 классе

«Действия с рациональными числами»

подготовила

учитель математики

Бабенко Лариса Григорьевна

с. Бадамша
2014

Тема урока: « Действия с рациональными числами ».

Тип урока :

Урок обобщения и систематизации знаний.

Цели урока:

образовательные:

Обобщить и систематизировать знания учащихся о правилах действий над положительными и отрицательными числами;

Закрепить умение применять правила в процессе выполнения упражнений;

Формировать навыки самостоятельной работы;

развивающие:

Развивать логическое мышление, математическую речь, вычислительные навыки; - развивать умение применять полученные знания к решению прикладных задач; - расширение кругозора;

воспитывающие:

Воспитание познавательного интереса к предмету.

Оборудование:

Листы с текстами задач, заданий для каждого ученика;

Математика. Учебник для 6 класса общеобразовательных учреждений/

Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С. И. Щварцбурд. – М., 2010.

План урока:

    Организационный момент.

    Работа устно

    Повторение правил сложения и вычитания чисел с разными знаками. Актуализация знаний.

    Решение заданий по учебнику

    Выполнение теста

    Подведение итогов урока. Постановка домашнего задания

Рефлексия

Ход урока

    Организационный момент.

Приветствие учителя и учащихся.

Сообщение темы урока, плана работы на уроке.

Сегодня у нас необычный урок. На этом уроке мы вспомним все правила действий с рациональными числами и умения выполнять операции сложения, вычитания, умножения и деления.

Девизом нашего урока будет китайская притча:

«Скажи мне - и я забуду;

Покажи мне – и я запомню;

Дай сделать – и я пойму»

Я хочу вас пригласить в путешествие.

Среди пространства, где ясно виден восход солнца, тянулась узкая, необитаемая страна – числовая прямая. Неведомо где она начиналась и неведомо где она заканчивалась. И первыми, кто заселил эту страну, были натуральные числа. Какие числа называются натуральными и как они обозначаются?

Ответ:

Числа 1, 2, 3, 4,…..использующиеся для счета предметов или для указания порядкового номера того или иного предмета среди однородных предметов, называются натуральными ( N ).

Устный счет

88-19 72:8 200-60

Ответы: 134; 61; 2180.

Их было бесконечно много, но и страна была хоть и небольшой в ширину, зато бесконечной в длину, так что поместились все от единицы до бесконечности и образовали первое государство множество натуральных чисел.

Работа над задачей.

Страна была необычайно красивой. Великолепные сады располагались на всей ее территории. Это вишневые, яблочные, персиковые. В один из которых мы сейчас заглянем.

На вишне каждые три дня становится на 20 процентов больше спелых вишенок. Сколько спелых плодов будет на этой вишне через 9 дней, если в начале наблюдения на ней было 250 спелых вишенок?

Ответ: 432 спелых плода будет на этой вишне через 9 дней(300;360;432).

Самостоятельная работа.

На территории первого государства стали поселяться какие то новые числа и эти числа, вместе с натуральными, образовали новое государство, узнаем какое, решив задание.

На столах у учеников два листа:

1. Вычислите:

1)-48+53 2)45-(-23) 3)-7,5:(-0,5) 4)-4х(-15)

1)56:(-8) 2)-3,3-4,7 3)-5,6:(-0,1) 4)9-12

1)48-54 2)37-(-37) 3)-52,7+42,7 4)-6х1/3

1)-12х(-6) 2)-90:(-15) 3)-25+45 4)6-(-10)

Задание: соедините последовательно не отрывая руки все натуральные числа и назовите получившуюся букву.

Ответы к тесту:

5 68 15 60

72 6 20 16

Вопрос: Что означает этот символ? Какие числа называются целыми?

Ответы:1) Слева, от территории первого государства поселилось число 0, левее его -1, еще левее -2 и т.д. до бесконечности. Эти числа образовали вместе с натуральными числами новое расширенное государство множество целых чисел.

2) Натуральные числа, противоположные им числа и нуль называют целыми числами ( Z ).

Повторение изученного .

1) Следующая страничка нашей сказки заколдована. Расколдуем ее, исправляя ошибки.

27 · 4 0 -27 = 27 0 · (-27) = 0

63 3 0 · 40 (-6) · (-6) -625 124

50 · 8 27 -18: (-2)

Ответы:

-27 · 4 27 0 · (-27) = 0

-50 · 8 4 -36: 6

2) Продолжаем слушать сказку.

На свободных местах числовой прямой к ним подселялись дроби 2/5; −4/5; 3,6; −2,2;… Дроби вместе с первопоселенцами образовали очередное расширенное государство множество рациональных чисел. (Q )

1)Какие числа называются рациональными?

2)Является ли любое целое число, десятичная дробь рациональным числом?

3)Покажите, что любое целое число, любая десятичная дробь является рациональным числом.

Задание на доске: 8; 3 ; -6; - ; - 4,2; – 7,36; 0; .

Ответы:

1)Число, которое можно записать в виде отношения , где а – целое число, а п – натуральное число, называют рациональным числом .

2) Да.

3) .

Вам известны теперь целые и дробные, положительные и отрицательные числа, да ещё – число нуль. Все эти числа называют рациональными , что в переводе на русский язык значит «подвластные уму».

Рациональные числа

положительные нуль отрицательные

целые дробные целые дробные

Чтобы в дальнейшем успешно учиться математике (и не только математике), надо хорошо знать правила арифметических действий с рациональными числами, в том числе и правила знаков. А они такие разные! Запутаться недолго.

Физкультминутка.

Динамическая пауза.

Учитель: Любая работа требует перерыва. Отдохнем!

Выполним восстановительные упражнения:

1)Раз, два, три, четыре, пять -

Раз! Подняться, подтянуться,

Два! Согнуться, разогнуться,

Три! В ладоши три хлопка,

Головою три кивка.

На четыре - руки шире.

Пять - руками помахать. Шесть - за парту тихо сесть.

(Дети выполняют движения за учителем по содержанию текста.)

2) Быстро поморгайте, закройте глаза и посидите так, считая до пяти. Повторите 5 раз.

3) Крепко зажмурьте глаза, досчитайте до трех, откройте их и посмотрите вдаль, считая до пяти. Повторите 5 раз.

Историческая страничка.

В жизни, как и в сказке, люди « открывали» рациональные числа постепенно. Вначале при счете предметов возникли натуральные числа. На первых порах их было немного. Сначала возникли только числа 1 и 2. Слова «солист», «солнце», «солидарность» происходят от латинского «солюс» (один). Во многих племенах не было других числительных. Вместо «3» они говорили «один-два», вместо «4»- «два-два». И так до шести. А затем шло «много». С дробями люди столкнулись при разделе добычи, при измерении величин. Чтобы облегчить действия с дробями, были придуманы десятичные дроби. В Европе их ввел в 1585 году голландский математик.

Работа над уравнениями

Фамилию математика узнаете, решив уравнения, и по координатной прямой найдя букву соответствующую данной координате.

1) -2,5 + х = 3,5 2) -0,3 · х = 0,6 3) у – 3,4= -7,4

4) – 0,8: х = -0,4 5)а · (-8) =0 6) m + (- )=

Е А Т М И О В Р Н У С

-4 -3 -2 -1 0 1 2 3 4 5 6

Ответы:

    6 (С) 4)2 (В)

    -2 (Т) 5) 0 (И)

    -4(Е) 6)4 (Н)

СТЕВИН – голландский математик и инженер (Симон Стевин)

Историческая страничка.

Учитель:

Не зная прошлого в развитии науки, нельзя понять её настоящее. Выполнять действия с отрицательными числами люди научились еще до нашей эры. Индийские математики представляли себе положительные числа как «имущества», а отрицательные числа как «долги». Вот как индийский математик Брахмагупта (VII в.) излагал некоторые правила выполнения действий с положительными и отрицательными числами:

«Сумма двух имуществ есть имущество»,

«Сумма двух долгов есть долг»,

«Сумма имущества и долга равна их разности»,

«Произведение двух имуществ или двух долгов есть имущество», «Произведение имущества и долга есть долг».

Ребята, переведите, пожалуйста, древнеиндийские правила на современный язык.

Сообщение учителя:

Как нет на свете без солнца тепла,

Без снега зимы и без листьев цветов,

Так нет в математике действий без знаков!

Ребятам предлагается отгадать, какой знак действия пропущен.

Задание. Вставьте пропущенный знак.

    − 1,3 2,8 = 1,5

  1. − 1,2 1,4 = − 2,6

    3,2 (− 8) = − 0,4

    1 (− 1,7) = 2,7

    − 4,5 (− 0,5) = 9

Ответы: 1) + 2) ∙ 3) − 4) : 5) − 6) :

Самостоятельная работа (на листе записывают ответы к заданиям):

    Сравнить числа

    найти их модули

    сравнить с нулем

    найти их сумму

    найти их разность

    найти произведение

    найти частное

    написать числа, противоположные им

    найти расстояние между этими числами

10) сколько целых чисел расположено между ними

11) найти сумму всех целых чисел, расположенных между ними.

Критерии оценок: решено все верно – «5»

1-2 ошибки - «4»

3-4 ошибки - «3»

более 4 ошибок - «2»

Индивидуальная работа по карточкам (дополнительно).

Карточка 1. Решите уравнение: 8,4 – (х – 3,6)=18

Карточка 2. Решите уравнение: -0,2х · (-4) = -0,8

Карточка 3. Решите уравнение: =

Ответы к карточкам :

1) 6; 2) -1; 3) 4/15.

Игра «Экзамен» .

Жители страны жили весело, играли в игры, решали задачи, уравнения и предлагают нам поиграть с целью подведения итогов.

Учащиеся подходят к доске берут карточку и отвечают на вопрос, записанный с обратной стороны.

Вопросы:

1. Какое из двух отрицательных чисел считают большим?

2.Сформулируйте правило деления отрицательных чисел.

3.Сформулируйте правило умножения отрицательных чисел.

4. Сформулируйте правило умножения чисел, имеющих разные знаки.

5. Сформулируйте правило деления чисел, имеющих разные знаки.

6.Сформулируйте правило сложения отрицательных чисел.

7. Сформулируйте правило сложения чисел с разными знаками.

8.Как найти длину отрезка на координатной прямой?

9.Какие числа называются целыми?

10. Какие числа называются рациональными?

Подведение итогов.

Учитель: Сегодня домашнее задание будет творческим:

Подготовить сообщение «Положительные и отрицательные числа вокруг нас» или сочинить сказку.

« Спасибо за урок!!!»


В этой статье дан обзор свойств действий с рациональными числами . Сначала озвучены основные свойства, на которых базируются все остальные свойства. После этого даны некоторые другие часто используемые свойства действий с рациональными числами.

Навигация по странице.

Перечислим основные свойства действий с рациональными числами (a , b и c – произвольные рациональные числа):

  • Переместительное свойство сложения a+b=b+a .
  • Сочетательное свойство сложения (a+b)+c=a+(b+c) .
  • Существование нейтрального элемента по сложению – нуля, сложение которого с любым числом не изменяет это число, то есть, a+0=a .
  • Для каждого рационального числа a существует противоположное число −a такое, что a+(−a)=0 .
  • Переместительное свойство умножения рациональных чисел a·b=b·a .
  • Сочетательное свойство умножения (a·b)·c=a·(b·c) .
  • Существование нейтрального элемента по умножению – единицы, умножение на которую любого числа не изменяет это число, то есть, a·1=a.
  • Для каждого отличного от нуля рационального числа a существует обратное число a −1 такое, что a·a −1 =1 .
  • Наконец, сложение и умножение рациональных чисел связаны распределительным свойством умножения относительно сложения: a·(b+c)=a·b+a·c .

Перечисленные свойства действий с рациональными числами являются основными, так как все остальные свойства могут быть получены из них.

Другие важные свойства

Помимо девяти перечисленных основных свойств действий с рациональными числами существует еще ряд очень широко используемых свойств. Дадим их краткий обзор.

Начнем со свойства, которое с помощью букв записывается как a·(−b)=−(a·b) или в силу переместительного свойства умножения как (−a)·b=−(a·b) . Из этого свойства напрямую следует правило умножения рациональных чисел с разными знаками , в указанной статье приведено и его доказательство. Указанное свойство объясняет правило «плюс умножить на минус есть минус, и минус умножить на плюс есть минус».

Вот следующее свойство: (−a)·(−b)=a·b . Из него следует правило умножения отрицательных рациональных чисел , в этой статье Вы найдете и доказательство приведенного равенства. Этому свойству отвечает правило умножения «минус умножить на минус есть плюс».

Несомненно, стоит остановиться на умножении произвольного рационального числа a на нуль: a·0=0 или 0·a=0 . Докажем это свойство. Мы знаем, что 0=d+(−d) для любого рационального d , тогда a·0=a·(d+(−d)) . Распределительное свойство позволяет полученное выражение переписать как a·d+a·(−d) , а так как a·(−d)=−(a·d) , то a·d+a·(−d)=a·d+(−(a·d)) . Так мы пришли к сумме двух противоположных чисел, равных a·d и −(a·d) , их сумма дает нуль, что и доказывает равенство a·0=0 .

Легко заметить, что выше мы перечислили только свойства сложения и умножения, при этом ни слова не сказали о свойствах вычитания и деления. Это связано с тем, что на множестве рациональных чисел действия вычитание и деление задаются как обратные к сложению и умножению соответственно. То есть, разность a−b – это есть сумма a+(−b) , а частное a:b – это есть произведение a·b −1 (b≠0 ).

Учитывая эти определения вычитания и деления, а также основные свойства сложения и умножения, можно доказать любые свойства действий с рациональными числами.

Для примера докажем распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c . Имеет место следующая цепочка равенств a·(b−c)=a·(b+(−c))= a·b+a·(−c)=a·b+(−(a·c))=a·b−a·c , которая и является доказательством.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Действия с десятичными дробями.
 Сложение и вычитание десятичных дробей.
1. Уравнять количество цифр после запятой.
2. Сложить или вычесть десятичные дроби запятая под запятой по разрядам.
 Умножение десятичных дробей.
1. Умножить, не обращая внимания на запятые.
2. В произведении запятой отделить справа столько цифр, сколько их во всех множителях
вместе после запятой.
 Деление десятичных дробей.
1. В делимом и делителе перенести запятые вправо на столько цифр, сколько их после запятой
в делителе.
2. Разделить целую часть, поставить в частном запятую. (Если целая часть меньше делителя, то
частное начинается с нуля целых)
3. Продолжить деление.
Действия с положительными и отрицательными числами.
Сложение и вычитание положительных и отрицательных чисел.
а – (– в) = а + в
Все остальные случаи рассматриваются как сложение чисел.
 Сложение двух отрицательных чисел:
1. результат записываем со знаком «–»;
2. модули складываем.
 Сложение чисел с разными знаками:
1. ставим знак большего модуля;
2. вычитаем из большего модуля меньший.
 Умножение и деление положительных и отрицательных чисел.
1. При умножении и делении чисел с разными знаками результат записывается со знаком
минус.
2. При умножении и делении чисел с одинаковыми знаками результат записывается со знаком
плюс.
Действия с обыкновенными дробями.
Сложение и вычитание.
1. Привести дроби к общему знаменателю.
2. Сложить или вычесть числители, а знаменатель оставить без изменения.
Умножить числитель на числитель, а знаменатель на знаменатель (по возможности – сократить).
Делитель (вторую дробь) «перевернуть» и выполнить умножение.
Деление.
Умножение.
Выделение целой части из неправильной дроби.
38
5 = 38: 5 = 7(ост.3) = 7
3
5
Перевод смешанного числа в неправильную дробь.
2
7 + =
4
4·7+2
7
30
7
=

1
.
+
Сокращение дроби.
Сократить дробь – разделить числитель и знаменатель на одно и то же число.
6
7
6
7 . Можно короче:
30:5
35:5 =
30
35 =
Например:
30
35 =
.
1.
Разложить знаменатели дробей на простые
множители.
Приведение дробей к общему знаменателю.
5 4
7
16 +

36
80 =
71
80
2. Вычеркнуть одинаковые множители.
3. Оставшиеся множители от знаменателя первой
дроби перемножить и записать как
дополнительный множитель для второй дроби, а
от второй дроби – к первой дроби.
2∙2∙2∙2 2∙2∙5
4. Умножить числитель и знаменатель каждой дроби
на её дополнительный множитель.
9
20 =
35
80 +
Сложение и вычитание смешанных чисел.
Сложить или вычесть отдельно целые части, отдельно ­ дробные.
«Особые» случаи:
«Превратить» 1 в дробь, у которой числитель и

2
2
5
6
3
5 =
3
5 = 2
1
1
Занять 1 и «превратить» её в дробь, у которой числитель и
знаменатель равны знаменателю данной дроби.
Занять 1 и прибавить знаменатель к числителю.
3
5 =
3
5 = 2
5
5 ‒
5
5 ‒

1

3
2
5
1 ‒
3
3
5 = 2
5
5 1 ‒
3
5 = 1
2
5
1
5
1 ‒
3
5 = 2
6
5 1‒
3
3
5 = 1
3
5
Перевести смешанные числа в неправильные дроби и выполнить умножение или деление.
Умножение и деление смешанных чисел.

2
7 + ∙ 2
4
4
5 + =
30
7 ∙
14
5 =
30·14
7·5
6·2
1·1 =
12
1 = 12
=
∙ ∙
6
7