Для каких реакций нужен катализатор. Портал интересных увлечений

При попытке поджечь сахар он будет плавиться и обугливаться Положите на сахар горку пепла, который будет служить катализатором С пеплом сахар загорится! Сахар горит, если на него посыпать пеплом! При отсутствии пепла (катализатора) - сахар только обугливается Окисление спирта в присутствии медного катализатора

Вы когда-нибудь пробовали поджечь сахар? Казалось бы, сильно экзотермическая реакция С 12 Н 22 О 11 +12О 2 →12СО 2 +11Н 2 О должна идти легко. Не тут-то было - при сильном нагреве сахар плавится, приобретает коричневую окраску и запах карамели, но не загорается. И всё же сжечь сахар можно. Для этого надо посыпать его табачным пеплом и внести в пламя - тогда сахар загорится. Такое же воздействие на эту реакцию оказывают и некоторые другие вещества, например соли лития или оксид хрома (III).

Химические реакции, которые «не желают» протекать сами по себе или идут с очень малой скоростью и требуют дополнительного «стимула» - присутствия веществ, которые в результате реакции остаются неизменными, - происходят повсеместно. Это, во-первых, абсолютно все химические процессы, лежащие в основе жизнедеятельности клеток. Они протекают только в присутствии ферментов , а отсутствие в организме хотя бы одного из них нарушает обмен веществ и чревато тяжёлой болезнью или же просто несовместимо с жизнью.

Кроме того, к таким реакциям относится большинство крупнотоннажных процессов, используемых в химической промышленности. Получение серной кислоты , переработка нефти , синтез аммиака немыслимы без участия «посторонних веществ», называемых катализаторами . Как выглядел бы наш мир без катализаторов? Он был бы гораздо статичнее, ведь многие химические реакции просто не происходили бы. Впрочем, изучать химию всё равно было бы некому: жизнь в таком мире появиться не может.

Катализаторы позволяют проводить химические процессы при гораздо более мягких условиях. А кроме того, в присутствии катализаторов идут реакции, которые вообще невозможны без их участия ни в каких условиях.

При этом количество катализатора, необходимое для превращения огромной массы реагентов в продукты реакции, несоизмеримо мало. Одна молекула фермента катализирует разложение 5 млн. молекул сахара за 1 с!

Катализ и его секреты

Но в чём скрыта тайна веществ - катализаторов ? Давайте разберёмся, почему сахар и другие органические вещества самопроизвольно не превращаются в углекислый газ и воду - гораздо более энергетически выгодные (говорят ещё «термодинамически устойчивые») соединения. Разве это не удивительно? Ведь если положить, скажем, шарик на вершину горки, он тут же займёт более энергетически выгодное положение - скатится вниз. Если же его оградить барьером, он скатиться не сможет. Чтобы оказаться внизу и тем самым уменьшить свою потенциальную энергию, шарику нужно преодолеть барьер, а для этого ему нужно подвести дополнительную энергию.

Все существующие химические вещества, даже весьма термодинамически неустойчивые, окружены на своих энергетических «вершинах» подобными барьерами. Порой энергия, необходимая для их преодоления, сравнима с кинетической энергией теплового движения молекул. Тогда достаточно простого смешения реагентов - и реакция происходит при комнатной температуре. Нагревая реакционную смесь, можно преодолеть барьер чуть повыше. Но иногда он слишком высок, и в этом случае придётся или искать способы доставки необходимой энергии молекулам реагентов, или попытаться обойти энергетический барьер.

Как это сделать? Оказывается, катализатор может, подобно опытному проводнику, хорошо знающему местность, повести реакцию по совершенно иному пути. При этом её механизм претерпевает сильные изменения. Существует масса способов обойти энергетическую «гору». Каждый катализатор , работающий в конкретной реакции, выбирает для процесса свой путь. При этом новый маршрут может быть гораздо длиннее изначального: число промежуточных стадий и продуктов реакции иногда возрастает в несколько раз. Но зато количество энергии, требуемое на каждой стадии, оказывается существенно меньше, чем в отсутствие «проводника». В итоге, пройдя более длинный путь при помощи катализатора, реакция даёт желаемый результат значительно быстрее.

Однако «постороннее вещество» может воздействовать на ход реакции и противоположным образом: привести её к труднопреодолимому энергетическому барьеру. Тогда процесс замедляется. Такой «отрицательный» катализ называется ингибированием (от лат. inhibeo - «останавливаю», «сдерживаю»), а «катализаторы, действующие наоборот» - ингибиторами .

Зачем нужно замедлять скорость реакции? Существуют процессы, которые необходимы человеку, а также существуют такие процессы, проведение которых может пагубно сказаться как на человека, так и на предметах его обихода и окружающей среде. например появление ржавчины - коррозия металлов , гниение продуктов питания. Такими реакциями могут быть взрывы различных химических веществ, которые чувствительны к движению или сотрясению. Нужно учитывать, что химические реакции, в результате которых образуется лишь одно вещество - достаточно редкие. В основном при реакциях образуется более одного вещества. Особенно ярко такое явление наблюдается в органической химии.

В организмах живых существ и множестве других процессах, протекающих в нашей среде обитания часто необходимо, чтобы в процессе реакции получалось только одно нужное нам вещество или продукт реакции. Именно в этом случае применяется катализ . Грамотный подбор катализатора позволяет проводить химические процессы только в нужном для нас направлении и с получением требуемого нам вещества, при этом исключая выход других побочных эффектов реакции.

Скорости химических реакций могут резко увеличиваться в присутствии различных веществ, не являющихся реагентами и не входящих в состав продуктов реакции. Это замечательное явление получило название катализ (от греч. «katalysis» - разрушение). Вещество, при наличии которого в смеси увеличивается скорость реакции, называется катализатором. Его количество до и после реакции остается неизменным. Катализаторы не представляют собой какой-то особый класс веществ. В разных реакциях каталитическое действие могут проявить металлы, оксиды, кислоты, соли, комплексные соединения. Химические реакции в живых клетках протекают под контролем каталитических белков, называемых ферментами. Катализ следует рассматривать как истинно химический фактор увеличения скоростей химических реакций, так как катализатор непосредственно участвует в реакции. Катализ часто оказывается более мощным и менее рискованным средством ускорения реакции, чем повышение температуры. Это ярко проявляется на примере химических реакций в живых организмах. Реакции, например гидролиз белков, которые в лабораториях приходится проводить при длительном нагревании до температуры кипения, в процессе пищеварения протекают без нагревания при температуре тела.

Впервые явление катализа наблюдал французский химик Л. Ж. Тенар (1777-1857) в 1818 г. Он обнаружил, что оксиды некоторых металлов при внесении в раствор перекиси водорода вызывают ее разложение. Такой опыт легко воспроизвести, внеся кристаллы перманганата калия в 3%-ный раствор перекиси водорода. Соль КМп0 4 превращается в Мп0 2 , и из раствора под действием оксида быстро выделяется кислород:

Непосредственно действие катализатора на скорость реакции связано с понижением энергии активации. При обычной температуре понижение? а на 20 кДж/моль увеличивает константу скорости приблизительно в 3000 раз. Понижение Е Л может быть и значительно более сильным. Однако понижение энергии активации является внешним проявлением действия катализатора. Реакция характеризуется определенным значением E. v которое может измениться только при изменении самой реакции. Давая те же самые продукты, реакция при участии добавленного вещества идет по иному пути, через другие стадии и с другой энергией активации. Если на этом новом пути энергия активации оказывается ниже и реакция соответственно идет быстрее, то мы говорим, что эго вещество является катализатором.

Катализатор взаимодействует с одним из реагентов, образуя некоторое промежуточное соединение. На одной из последующих стадий реакции катализатор регенерируется - выходит из реакции в первоначальном виде. Реагенты, участвуя в каталитической реакции, продолжают взаимодействовать между собой и по медленному пути без участия катализатора. Поэтому каталитические реакции относятся к разновидности сложных реакций, называемых последовательно-параллельными. На рис. 11.8 показана зависимость константы скорости от концентрации катализатора. График зависимости не проходит через ноль, так как при отсутствии катализатора протекание реакции не прекращается.

Рис. 11.8.

наблюдаемая константа k выражается суммой k u + & к с(К)

Пример 11.5. При температуре -500 °С реакция окисления оксида серы(1У)

являющаяся одной из стадий промышленного получения серной кислоты, идет очень медленно. Дальнейшее повышение температуры неприемлемо, так как равновесие смещается влево (реакция экзотермическая) и выход продукта слишком сильно понижается. Но эта реакция ускоряется различными катализаторами, одним из которых может быть оксид азота(П). Сначала катализатор реагирует с кислородом:

а потом передает атом кислорода оксиду серы(1У):

Так образуется конечный продукт реакции и регенерируется катализатор. Для реакции открылась возможность течения по новому пути, на котором константы скорости значительно возросли:

На приведенной схеме показаны оба пути процесса окисления S0 2 . При отсутствии катализатора реакция идет только по медленному пути, а в присутствии катализатора- по обоим.

Различают два вида катализа - гомогенный и гетерогенный. В первом случае катализатор и реагенты образуют гомогенную систему в виде газовой смеси или раствора. Пример окисления оксида серы - это гомогенный катализ. Скорость гомогенной каталитической реакции зависит как от концентраций реагентов, так и от концентрации катализатора.

При гетерогенном катализе катализатор представляет собой твердое вещество в чистом виде или нанесенное на носитель. Например, платина в качестве катализатора может быть закреплена на асбесте, оксиде алюминия и т.д. Молекулы реагента адсорбируются (поглощаются) из газа или раствора на особых точках поверхности катализатора - активных центрах и при этом активируются. После химического превращения образовавшиеся молекулы продукта десорбируются с поверхности катализатора. На активных центрах повторяются акты превращения частиц. Кроме прочих факторов, скорость гетерогенной каталитической реакции зависит от площади поверхности каталитического материала.

Гетерогенный катализ особенно широко применяется в промышленности. Это объясняется легкостью осуществления непрерывного каталитического процесса при прохождении смеси реагентов через контактный аппарат с катализатором.

Катализаторы действуют избирательно, ускоряя вполне определенный вид реакций или даже отдельную реакцию и не влияя на другие. Это позволяет использовать катализаторы не только для ускорения реакций, но и для целенаправленного превращения исходных веществ в желаемые продукты. Метан и вода при 450 °С на катализаторе Fe 2 0 3 превращаются в углекислый газ и водород:

Те же вещества при 850 °С на поверхности никеля реагируют с образованием оксида углерода(П) и водорода:

Катализ относится к тем областям химии, в которых пока невозможно делать точные теоретические прогнозы. Все промышленные катализаторы для переработки нефтяных продуктов, природного газа, производства аммиака и многие другие разработаны на основе трудоемких и длительных экспериментальных исследований.

Умение управлять скоростями химических процессов имеет неоценимое значение в хозяйственной деятельности человека. При промышленном получении химических продуктов обычно необходимо увеличивать скорости технологических химических процессов, а при хранении продукции требуется уменьшать скорость разложения или воздействия кислорода, воды и т.д. Известны вещества, которые могут замедлять химические реакции. Они называются ингибиторами , или отрицательными катализаторами. Ингибиторы принципиально отличаются от настоящих катализаторов тем, что реагируют с активными частицами (свободными радикалами), которые по тем или иным причинам возникают в веществе или окружающей его среде и вызывают ценные реакции разложения и окисления. Ингибиторы постепенно расходуются, прекращая свое защитное действие. Наиболее важной разновидностью ингибиторов являются антиоксиданты, предохраняющие различные материалы от воздействия кислорода.

Следует напомнить и о том, чего нельзя добиться с помощью катализаторов. Они способны ускорять только самопроизвольные реакции. Если реакция самопроизвольно не идет, то катализатор не сможет ее ускорить. Например, никакой катализатор не может вызвать разложение воды на водород и кислород. Этот процесс можно осуществить только электролизом, затрачивая при этом электрическую работу.

Катализаторы могут активизировать и нежелательные процессы. В последние десятилетия наблюдается постепенное разрушение озонового слоя атмосферы на высоте 20-25 км. Предполагается, что в распаде озона участвуют некоторые вещества, например галогенированные углеводороды, выбрасываемые в атмосферу промышленными предприятиями, а также используемые в бытовых целях.

В каждом автотранспортном средстве присутствуют детали и устройства, которые не попадаются на глаза автолюбителям, но при этом они отвечают за полноценную работу «жизненно необходимых» узлов АТС.

Каталитический нейтрализатор выхлопных газов или катализатор, известный также как нейтрализатор довольно часто становится причиной споров между автомобилистами. Одни из них считают, что эта деталь играет немаловажную роль в системе очистки выхлопных газов, другие придерживаются мнения, что использовать этот элемент необязательно и даже противопоказано.

Чтобы разобраться в необходимости или «ненужности» катализатора, в первую очередь стоит понять, что он из себя представляет и по какому принципу работает этот элемент.

Принцип работы каталитического нейтрализатора

Нейтрализатор - это составная часть выхлопной системы автомобиля, благодаря которой снижается концентрация вредных веществ, содержащихся в отработанных выхлопных газах. Среди них окись углерода, оксиды азота, а также углеводороды.

Современный катализатор автомобильный, фото которого представлены в статье, содержит в своем составе благородные металлы, которые нагреваются от выхлопных газов и провоцируют процесс «дожигания» вредных веществ до нормы, предусмотренной экологическими требованиями.

Конструкция нейтрализатора включает в себя корпус, внутри которого располагается керамическая или металлическая основа в виде сот. Сверху она покрыта тонким слоем специального платиноиридиевого сплава. Сотообразная конструкция позволяет значительно увеличить площадь соприкосновения выхлопов газа и поверхности, покрытой каталитическим слоем. В результате этого происходит окислительная реакция окиси углерода и углеводорода и на выходе в атмосферу попадают только практически «безобидные» вещества: азот (N2) и углекислый газ (СО2).

Устанавливать катализатор на автомобиль не обязательно, но желательно, особенно если:

  • вашей машине менее 5 лет;
  • вы сами проходите ТО;
  • вы собираетесь на автомобиле за границу (обязательно);
  • вы не желаете загрязнять окружающую среду.

Каталитические нейтрализаторы выполняют немного разные функции, в зависимости от типа изделия.

Виды катализаторов

Разделяют несколько типов катализаторов, в зависимости от их назначения:

Двусторонние

Устройство катализатора выхлопных газов двустороннего типа позволяет выполнять сразу несколько задач:

  1. Запустить процесс окисления угарного газа в углекислый;
  2. Окислить несгоревшие углеводороды (частично сгоревшее или несгоревшее топливо) в воду и углекислый газ благодаря реакции горения.

Такие катализаторы чаще всего применяются для дизельных двигателей.

Трехсторонние

Трехсторонний катализатор авто появился еще в 1981 году в целях снизить объемы вредных веществ, попадающих в атмосферу. Этот тип нейтрализатора позволяет выполнять более обширный спектр задач, а именно:

  1. Превращать окиси азота в кислород и азот.
  2. Окислять угарный газ в углекислый газ.
  3. Окислять несгоревшие углеводороды в воду и углекислый газ.

Также существуют дизельные катализаторы и нейтрализаторы для моторов, работающих на бедных смесях.

Помимо этого катализаторы отличают по материалу, из которого изготавливается картридж устройства. Исходя из этого, выделяют:

Керамические нейтрализаторы

Это стандартные модели оснащенные конструкцией в виде сот. Сам керамический элемент в этом случае покрыт платиноиридиевым сплавом.

Если говорить о недостатках таких моделей, то практически все автолюбители выделяют хрупкость керамического устройства, которое достаточно ударить об камень, чтобы соты рассыпались. Также изделие может повредиться если на прогретом авто заехать в лужу, капли воды попавшие на раскаленный нейтрализатор приведут к его поломке.

Помимо этого соты могут распасться в случае неполадок в системе зажигания машины. Например, если топливо воспламеняется не сразу после запуска двигателя, а с небольшой задержкой. В этом случае несгоревшее топливо будет собираться в резервуаре выпускного тракта (то есть в катализаторе) и как только скопившийся бензин взорвется, все соты разрушатся.

Также в таких катализаторах накапливается керамическая пыль, которая попадает в камеру сгорания, а в некоторых случаях даже в цилиндры двигателя.

Единственное преимущество керамического нейтрализатора - это его низкая стоимость.

Металлические нейтрализаторы

Конструкция этого типа отличается повышенной надежностью и прочностью, благодаря чему такой катализатор может выдерживать механические нагрузки на протяжении довольно долгого времени. Соты, установленные в изделии, отличаются своей упругостью, добиться этого удалось благодаря их спиралевидной форме и металлу.

Однако, несмотря на надежность такого нейтрализатора, он также как и керамический «боится»:

  • Некачественного или этилированного топлива.
  • Масел или антифриза, которые попадают в камеру сгорания.
  • Некачественных технических жидкостей для промывки систем, купленных «с рук» или от непроверенного производителя.
  • Переобогащенных топливных смесей.
  • Долгой работы на холостом ходу.

Спортивные

Такие катализаторы также выполнены из металла, однако их пропускная способность намного выше стандартных металлических и керамических изделий. Благодаря этому нейтрализаторы этого типа придают автомобилю дополнительную мощность (от 7% до 20%). Правда, такого результата можно достигнуть только при условии, что в машине установлена прямоточная система выхлопа. При этом катализаторы отвечают экологическим требованиям Евро 4 и 5.

Спортивные модели самые надежные, но их стоимость самая большая.

Исходя из такого большого количества недостатков стандартных моделей, и появились теории о том, что нейтрализаторы приносят больше вреда для самого автомобиля, нежели пользы для экологии. Однако избежать большинства неприятностей можно, если своевременно менять изделие. К слову, катализатор автомобильный ремонт не предполагает, поэтому вышедший из строя элемент необходимо менять.

Варианты замены нейтрализаторов

Существует несколько вариантов замены нейтрализатора:

  • На оригинальный. Такая замена логична, если вы эксплуатируете автомобиль, у которого еще не вышел срок гарантии. Это самый дорогостоящий вариант.
  • На универсальный. В этом случае вы заплатите в два раза меньше и получите прибор, который позволит значительно снизить объем токсичных выхлопов.
  • На пламегаситель (своего рода резонатор). Это самый дешевый вариант замены, однако, такое устройство нельзя устанавливать в машины с нормами токсичности Евро 4, это означает, что пламегаситель не снижает уровень токсичности газов.

Как определить, что катализатор нуждается в замене

Как правило, катализатор считается вышедшим из строя, если его каталитический слой сгорел в процессе эксплуатации. В автомобилях с современной бортовой системой при поломке нейтрализатора загорается ошибка. Если же автомобиль не новый, то определить приближающийся выход из строя нейтрализатора можно по следующим признакам:

  • Тяга на больших оборотах временно или постоянно пропадает.
  • Автомобиль стал хуже заводиться «на горячую». По утрам, при этом, мотор долго не заводится.
  • Начали пропадать обороты. Например, когда вы давите на газ, а тахометр еле-еле доходит до 2 - 4 тысяч оборотов, но выше стрелка не идет. При этом автомобиль начал потреблять больше топлива.

Эти признаки свидетельствуют о том, что катализатор находится в «полурабочем» состоянии, то есть еще работает, но уже пора менять. А если нейтрализатор вовсе «приказал долго жить», то вы заметите, что машина начала слишком долго заводиться, но даже если мотор и начинает работать, но почти сразу он глохнет. Либо автомобиль и вовсе не заводится. Убедиться что причина в этом случае именно в катализаторе довольно просто: нужно завести мотор и подойти к выхлопной трубе, если выхлопные газы не идут (вы их не чувствуете рукой), значит пришло время менять составную часть выхлопной системы.

В заключении

Устанавливать катализатор или нет - дело каждого автовладельца. Пока что в России не предусмотрено строгих требований к объему вредных веществ в выхлопных газах. Однако если вы решите отправиться на автомобиле в путешествие по Европе, вам обязательно придется установить каталитический нейтрализатор.

Одно из наиболее эффективных воздействий на химические реакции – это применение катализатора. Катализаторы – это вещества, ускоряющие химические реакции. Присутствие катализаторов изменяет скорость реакции в тысячи и даже миллионы раз. Катализаторы активно участвуют в химической реакции, но в отличие от реагентов в конце ее остаются неизменными.

– это вещества, которые изменяют скорость протекания реакции, но сами не расходуются в ходе реакции и не входят в состав конечных продуктов.

Важной характеристикой каталитической реакции (катализа) является однородность или неоднородность катализатора и реагирующих веществ. Различают гомогенные и гетерогенные каталитические процессы. При гомогенном (однородном) катализе между реагирующими веществами и катализатором отсутствует поверхность раздела. В данном случае катализ осуществляется через образование неустойчивых промежуточных продуктов.

Например, вещество A должно вступить в реакцию с веществом B. Однако для начала реакции необходимо сильное нагревание, и реакция далее протекает медленно. Тогда подбирают катализатор с таким расчетом, чтобы он с веществом A образовал активное промежуточное соединение, способное потом энергично реагировать с веществом B:

A + Кат. = A ∙ Кат.
A ∙ Кат. + B = AB ∙ Кат.
Кат.
A + B = AB

Процессы, в которых катализатор и катализируемые вещества находятся в разных агрегатных состояниях, относятся к гетерогенному (неоднородному) катализу. При адсорбции на поверхности катализатора газообразных или жидких реагентов ослабляются химические связи, возрастает способность этих веществ к взаимодействию.

Ускоряющее действие катализатора заключается в понижении энергии активации основной реакции. Каждый из промежуточных процессов с участием катализатора протекает с меньшей энергией активации, чем некатализируемая реакция. Катализ открывает иной пут протекания химической реакции от исходных веществ к продуктам реакции.

Опыт показывает, что катализаторы строго специфичны для конкретных реакций. Например, в реакции:

N 2 +3H 2 = Fe 2NH 3

Катализатором является металлическое железо, а в реакции окисления оксида серы(IV) в оксид серы(VI) катализатор – оксид ванадия(V) V 2 O 5 . Часто в качестве катализаторов используют платину, никель, палладий, оксид алюминия. Для ускорения процесса разложения пероксида водорода в качестве катализатора применяют оксид марганца(IV). Если в стакан с раствором пероксида водорода добавить немного оксида марганца(IV), сразу происходит бурное вспенивание жидкости в результате выделения кислорода.

Катализатором реакции взаимодействия алюминия и йода является обычная вода. Если к смеси алюминия и йода прилить воду, то вещества в смеси бурно реагируют.

Существуют вещества, способные замедлять химическую реакцию – осуществлять так называемый отрицательный катализ. Их называют ингибиторами. Такие вещества применяют при необходимости замедлит некоторые процессы, например коррозию металлов, окисление сульфидов при хранении и др.

Вам необходимо включить JavaScript, чтобы проголосовать

Катализаторы обеспечивают более быстрый исход любой химической реакции. Реагируя с исходными веществами реакции, катализатор образует с ними промежуточное соединение, после чего это соединение подвергается преобразованию и в итоге распадается на необходимый конечный продукт реакции, а также на неподвергшийся изменениям катализатор. После распада и образования необходимого продукта катализатор снова вступает в реакцию с исходными реагентами, образуя все большее количество исходного вещества. Данный цикл может повторяться миллионы раз, и если извлечь катализатор из группы реагентов, реакция может длиться в сотни и тысячи раз медленнее.

Катализаторы гетерогенными и гомогенными. Гетерогенные катализаторы в ходе химической реакции образуют самостоятельную фазу, которая отделена разделяющей границей от фазы исходных реагентов. Гомогенные катализаторы, напротив, являются частью одной и той же фазы с исходными реагентами.

Существуют катализаторы органического происхождения, которые участвуют в брожении и созревании, они называются ферментами. Без их непосредственного участия человечество не смогло бы получать большую часть спиртных напитков, молочнокислых продуктов, продуктов из теста, а также мед и . Без участия ферментов был бы невозможен обмен веществ у живых организмов.

Требования к веществам катализаторам

Катализаторы, которые широко применяются в промышленном производстве, должны обладать целым рядом свойств, необходимых для успешного завершения реакции. Катализаторы должны быть высокоактивными, селективными, механически прочными и термоустойчивыми. Они должны обладать продолжительным действием, легкой регенерацией, устойчивостью к каталитическим ядам, гидродинамическими свойствами, а также небольшой ценой.

Современное применение промышленных катализаторов

В нынешнем высокотехнологическом производстве катализаторы применяются при крекинге нефтепродуктов, получении ароматических углеводородов и высокооктанового , получении чистого водорода, кислорода или инертных газов, синтезе аммиака, получении и серной кислоты без дополнительных затрат. Также катализаторы широко применяются для получения азотной кислоты, фталевого ангидрида, метилового и спирта и ацетальдегида. Наиболее широко применяемые катализаторы – это металлическая платина, ванадий, никель, хром, железо, цинк, серебро, алюминий и палладий. Также довольно часто применяются некоторые соли этих металлов.