Касательная к сфере и шару. Касательная плоскость

Плоскость , проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания (рис. 457).

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

53) Обем та площина поверхні призми.

Призмой называется многогранник, две грани которого n-угольники, а остальные n граней - параллелограммы.

Площадь поверхности и объём призмы

Пусть H - высота призмы, - боковое ребро призмы, - периметр основания призмы, площадь основания призмы, - площадь боковой поверхности призмы, - площадь полной поверхности призмы, - объем призмы, - периметр перпендикулярного сечения призмы, - площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

Для прямой призмы , у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:

54) Обем та плошина поверхні піраміди.

Пирамидой называется многогранник одна из граней которого является произвольным многоугольником, а остальные грани - треугольники, имеющие общую вершину.

Площадь поверхности и объём пирамиды

Пусть - высота пирамиды, - периметр основания пирамиды, - площадь основания пирамиды, - площадь боковой поверхности пирамиды, - площадь полной поверхности пирамиды, - объем пирамиды. Тогда имеют место следующие соотношения:

Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то

55) Обем та плошина поверхні зрізаної піраміди.

Усеченной пирамидой называется многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.

Площадь поверхности и объём усеченной пирамиды

Пусть - высота усеченной пирамиды, и - периметры оснований усеченной пирамиды, и - площади оснований усеченной пирамиды, - площадь боковой поверхности усеченной пирамиды, - площадь полной поверхности усеченной пирамиды, - объем усеченной пирамиды. Тогда имеют место следующие соотношения:

Если все двугранные углы при основании усеченной пирамиды равны , а высоты всех боковых граней пирамиды равны , то

56) Обем та площа обема циліндра.

Цилиндр – тело которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом и всех отрезков соединяющиеся соответственные точки кругов.

Площадь боковой поверхности круглого цилиндра равна произведению длины окружности основания на высоту:

Полная площадь поверхности круглого цилиндра равна сумме площадей боковой поверхности круглого цилиндра и удвоенной площади основания. Основание круглого цилиндра есть круг и его площадь вычисляется по формуле площади круга:

2. S= 2 π rh+ 2 π r2= 2 π r(h+ r)

Формулы для расчета объема цилиндра:

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

57) Обем та площа обема конуса, зрізаного конуса.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом. См. также Площадь поверхности усеченного конуса

58) Обем кулі та її частин. Площа сфери

1) Объем шара вычисляется по приведенной ниже формуле.

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.

Соглашение

Правила регистрации пользователей на сайте "ЗНАК КАЧЕСТВА":

Запрещается регистрация пользователей с никами подобными: 111111, 123456, йцукенб, lox и.т.п;

Запрещается повторно регистрироваться на сайте (создавать дубль-аккаунты);

Запрещается использовать чужие данные;

Запрещается использовать чужие e-mail адреса;

Правила поведения на сайте, форуме и в комментариях:

1.2. Публикация в анкете личных данных других пользователей.

1.3. Любые деструктивные действия по отношению к данному ресурсу (деструктивные скрипты, подбор паролей, нарушение системы безопасности и т.д.).

1.4. Использование в качестве никнейма нецензурных слов и выражений; выражений, нарушающие законы Российской Федерации, нормы этики и морали; слов и фраз, похожих на никнеймы администрации и модераторов.

4. Нарушения 2-й категории: Наказываются полным запретом на отправления любых видов сообщений сроком до 7 суток. 4.1.Размещение информации, подпадающей под действие Уголовного Кодекса РФ, Административного Кодекса РФ и противоречащей Конституции РФ.

4.2. Пропаганда в любой форме экстремизма, насилия, жестокости, фашизма, нацизма, терроризма, расизма; разжигание межнациональной, межрелигиозной и социальной розни.

4.3. Некорректное обсуждение работы и оскорбления в адрес авторов текстов и заметок, опубликованных на страницах "ЗНАК КАЧЕСТВА".

4.4. Угрозы в адрес участников форума.

4.5. Размещение заведомо ложной информации, клеветы и прочих сведений, порочащих честь и достоинство как пользователей, так и других людей.

4.6. Порнография в аватарах, сообщениях и цитатах, а также ссылки на порнографические изображения и ресурсы.

4.7. Открытое обсуждение действий администрации и модераторов.

4.8. Публичное обсуждение и оценка действующих правил в любой форме.

5.1. Мат и ненормативная лексика.

5.2. Провокации (личные выпады, личная дискредитация, формирование негативной эмоциональной реакции) и травля участников обсуждений (систематическое использование провокаций по отношению к одному или нескольким участникам).

5.3. Провоцирование пользователей на конфликт друг с другом.

5.4. Грубость и хамство по отношению к собеседникам.

5.5. Переход на личности и выяснение личных отношений на ветках форума.

5.6. Флуд (идентичные или бессодержательные сообщения).

5.7. Преднамеренное неправильное написание псевдонимов и имен других пользователей в оскорбительной форме.

5.8. Редактирование цитируемых сообщений, искажающее их смысл.

5.9. Публикация личной переписки без явно выраженного согласия собеседника.

5.11. Деструктивный троллинг - целенаправленное превращение обсуждения в перепалку.

6.1. Оверквотинг (избыточное цитирование) сообщений.

6.2. Использование шрифта красного цвета, предназначенного для корректировок и замечаний модераторов.

6.3. Продолжение обсуждения тем, закрытых модератором или администратором.

6.4. Создание тем, не несущих смыслового наполнения или являющихся провокационными по содержанию.

6.5. Создание заголовка темы или сообщения целиком или частично заглавными буквами или на иностранном языке. Исключение делается для заголовков постоянных тем и тем, открытых модераторами.

6.6. Создание подписи шрифтом большим, чем шрифт поста, и использование в подписи больше одного цвета палитры.

7. Санкции, применяемые к нарушителям Правил Форума

7.1. Временный или постоянный запрет на доступ к Форуму.

7.4. Удаление учетной записи.

7.5. Блокировка IP.

8. Примечания

8.1.Применение санкций модераторами и администрацией может производиться без объяснения причин.

8.2. В данные правила могут быть внесены изменения, о чем будет сообщено всем участникам сайта.

8.3. Пользователям запрещается использовать клонов в период времени, когда заблокирован основной ник. В данном случае клон блокируется бессрочно, а основной ник получит дополнительные сутки.

8.4 Сообщение, содержащее нецензурную лексику, может быть отредактировано модератором или администратором.

9. Администрация Администрация сайта "ЗНАК КАЧЕСТВА" оставляет за собой право удаления любых сообщений и тем без объяснения причин. Администрация сайта оставляет за собой право редактировать сообщения и профиль пользователя, если информация в них лишь частично нарушает правила форумов. Данные полномочия распространяются на модераторов и администраторов. Администрация сохраняет за собой право изменять или дополнять данные Правила по мере необходимости. Незнание правил не освобождает пользователя от ответственности за их нарушение. Администрация сайта не в состоянии проверять всю информацию, публикуемую пользователями. Все сообщения отображают лишь мнение автора и не могут быть использованы для оценки мнения всех участников форума в целом. Сообщения сотрудников сайта и модераторов являются выражением их личного мнения и могут не совпадать с мнением редакции и руководства сайта.

««Сфера и шар» 11 класс» - Координаты центра. Сфера. Площадь поверхности сферы. Исторические сведения о сфере и шаре. Уравнение сферы. Шар. Физкультминутка. Определение сферы. Сфера и плоскость. Взаимное расположение сферы и плоскости. Окружность и круг. Как изобразить сферу. Радиус сечения. Определение сферы, шара. Площадь сферы.

«Касательная плоскость к сфере» - Уравнение сферы. Касательная плоскость к сфере обладает свойством, аналогичным свойству касательной к окружности. Сфера и шар. В отличие от боковой поверхности конуса или цилиндра, сферу невозможно развернуть на плоскость. Площадь сферы. Касательная плоскость к сфере. Взаимное расположение прямой и плоскости.

«Задачи на шар и сферу» - Шар вписан в цилиндр. Решение задач по готовым чертежам. Устный тест: «Тела вращения». Конус. Угол при вершине осевого сечения конуса равен 60 градусов. Шар и сфера. Работа у доски. Площадь сферы. Цилиндр, осевым сечением которого является квадрат, вписан в один шар. Установите соответствие. Цели и задачи.

«Чем отличается сфера от шара» - Координаты центра. Представление о сфере. Уравнение сферы радиуса R. Сфера и шар. Шар. Понятие сферы. Окружность. Предметы окружающей обстановки. Сфера. Определение сферы. Круг. Вывести уравнение сферы. Центр сферы. Уравнение сферы.

«Сфера и шар» - Данная точка называется центром сферы, а данное расстояние – радиусом сферы. Тело, ограниченное сферой, называется шаром. Сечение шара плоскостью. Сфера всегда широко применялось в различных областях науки и техники. Касательная плоскость к сфере. Сечение, проходящее через центр шара, - большой круг. (диаметральное сечение).

«Шар» - Повторение теоретических положений. В своей работе мы: В любой конус (прямой круговой) можно вписать шар. Организация исследовательской деятельности учащихся во внеурочное время. Конус. Найти объем призмы. Исследовательская деятельность во внеурочное время. В правильную четырехугольную пирамиду вписан шар.

Всего в теме 12 презентаций

Поверхность определяется как множество точек , координаты которых удовлетворяют определённому виду уравнений:

F (x , y , z) = 0 (1) {\displaystyle F(x,\,y,\,z)=0\qquad (1)}

Если функция F (x , y , z) {\displaystyle F(x,\,y,\,z)} непрерывна в некоторой точке и имеет в ней непрерывные частные производные, по крайней мере одна из которых не обращается в нуль, то в окрестности этой точки поверхность, заданная уравнением (1), будет правильной поверхностью .

Помимо указанного выше неявного способа задания , поверхность может быть определена явно , если одну из переменных, например, z, можно выразить через остальные:

z = f (x , y) (1 ′) {\displaystyle z=f(x,y)\qquad (1")}

Более строго, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.

Пусть на плоскости с прямоугольной системой координат u и v задан квадрат , координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) (параметрическое задание поверхности). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u", v") были различными соответствующие точки (x, у, z) и (x", у", z").

Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью . Это вызывает необходимость дальнейшего обобщения понятия поверхности.

Подмножество пространства, у каждой точки которого есть окрестность, являющаяся простой поверхностью , называется правильной поверхностью .

Поверхность в дифференциальной геометрии

Геликоид

Катеноид

Метрика не определяет однозначно форму поверхности. Например, метрики геликоида и катеноида , параметризованных соответствующим образом, совпадают, то есть между их областями существует соответствие, сохраняющее все длины (изометрия). Свойства, сохраняющиеся при изометрических преобразованиях, называются внутренней геометрией поверхности. Внутренняя геометрия не зависит от положения поверхности в пространстве и не меняется при её изгибании без растяжения и сжатия (например, при изгибании цилиндра в конус) .

Метрические коэффициенты E , F , G {\displaystyle E,\ F,\ G} определяют не только длины всех кривых, но и вообще результаты всех измерений внутри поверхности (углы, площади, кривизна и др.). Поэтому всё, что зависит только от метрики, относится к внутренней геометрии.

Нормаль и нормальное сечение

Векторы нормали в точках поверхности

Одной из основных характеристик поверхности является её нормаль - единичный вектор, перпендикулярный касательной плоскости в заданной точке:

m = [ r u ′ , r v ′ ] | [ r u ′ , r v ′ ] | {\displaystyle \mathbf {m} ={\frac {[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]}{|[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]|}}} .

Знак нормали зависит от выбора координат.

Сечение поверхности плоскостью, содержащей нормаль поверхности в заданной точке, образует некоторую кривую, которая называется нормальным сечением поверхности. Главная нормаль для нормального сечения совпадает с нормалью к поверхности (с точностью до знака).

Если же кривая на поверхности не является нормальным сечением, то её главная нормаль образует с нормалью поверхности некоторый угол θ {\displaystyle \theta } . Тогда кривизна k {\displaystyle k} кривой связана с кривизной k n {\displaystyle k_{n}} нормального сечения (с той же касательной) формулой Мёнье :

k n = ± k cos θ {\displaystyle k_{n}=\pm k\,\cos \,\theta }

Координаты орта нормали для разных способов задания поверхности приведены в таблице:

Координаты нормали в точке поверхности
неявное задание (∂ F ∂ x ; ∂ F ∂ y ; ∂ F ∂ z) (∂ F ∂ x) 2 + (∂ F ∂ y) 2 + (∂ F ∂ z) 2 {\displaystyle {\frac {\left({\frac {\partial F}{\partial x}};\,{\frac {\partial F}{\partial y}};\,{\frac {\partial F}{\partial z}}\right)}{\sqrt {\left({\frac {\partial F}{\partial x}}\right)^{2}+\left({\frac {\partial F}{\partial y}}\right)^{2}+\left({\frac {\partial F}{\partial z}}\right)^{2}}}}}
явное задание (− ∂ f ∂ x ; − ∂ f ∂ y ; 1) (∂ f ∂ x) 2 + (∂ f ∂ y) 2 + 1 {\displaystyle {\frac {\left(-{\frac {\partial f}{\partial x}};\,-{\frac {\partial f}{\partial y}};\,1\right)}{\sqrt {\left({\frac {\partial f}{\partial x}}\right)^{2}+\left({\frac {\partial f}{\partial y}}\right)^{2}+1}}}}
параметрическое задание (D (y , z) D (u , v) ; D (z , x) D (u , v) ; D (x , y) D (u , v)) (D (y , z) D (u , v)) 2 + (D (z , x) D (u , v)) 2 + (D (x , y) D (u , v)) 2 {\displaystyle {\frac {\left({\frac {D(y,z)}{D(u,v)}};\,{\frac {D(z,x)}{D(u,v)}};\,{\frac {D(x,y)}{D(u,v)}}\right)}{\sqrt {\left({\frac {D(y,z)}{D(u,v)}}\right)^{2}+\left({\frac {D(z,x)}{D(u,v)}}\right)^{2}+\left({\frac {D(x,y)}{D(u,v)}}\right)^{2}}}}}

Здесь D (y , z) D (u , v) = | y u ′ y v ′ z u ′ z v ′ | , D (z , x) D (u , v) = | z u ′ z v ′ x u ′ x v ′ | , D (x , y) D (u , v) = | x u ′ x v ′ y u ′ y v ′ | {\displaystyle {\frac {D(y,z)}{D(u,v)}}={\begin{vmatrix}y"_{u}&y"_{v}\\z"_{u}&z"_{v}\end{vmatrix}},\quad {\frac {D(z,x)}{D(u,v)}}={\begin{vmatrix}z"_{u}&z"_{v}\\x"_{u}&x"_{v}\end{vmatrix}},\quad {\frac {D(x,y)}{D(u,v)}}={\begin{vmatrix}x"_{u}&x"_{v}\\y"_{u}&y"_{v}\end{vmatrix}}} .

Все производные берутся в точке (x 0 , y 0 , z 0) {\displaystyle (x_{0},y_{0},z_{0})} .

Кривизна

Для разных направлений в заданной точке поверхности получается разная кривизна нормального сечения, которая называется нормальной кривизной ; ей приписывается знак плюс, если главная нормаль кривой идёт в том же направлении, что и нормаль к поверхности, или минус, если направления нормалей противоположны.

Вообще говоря, в каждой точке поверхности существуют два перпендикулярных направления e 1 {\displaystyle e_{1}} и e 2 {\displaystyle e_{2}} , в которых нормальная кривизна принимает минимальное и максимальное значения; эти направления называются главными . Исключение составляет случай, когда нормальная кривизна по всем направлениям одинакова (например, у сферы или на торце эллипсоида вращения), тогда все направления в точке - главные.

Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.

Нормальные кривизны в главных направлениях называются главными кривизнами ; обозначим их κ 1 {\displaystyle \kappa _{1}} и κ 2 {\displaystyle \kappa _{2}} . Величина:

K = κ 1 κ 2 {\displaystyle K=\kappa _{1}\kappa _{2}}

называется гауссовой кривизной , полной кривизной или просто кривизной поверхности. Встречается также термин скаляр кривизны , который подразумевает результат свёртки тензора кривизны ; при этом скаляр кривизны вдвое больше, чем гауссова кривизна.

Гауссова кривизна может быть вычислена через метрику, и поэтому она является объектом внутренней геометрии поверхностей (отметим, что главные кривизны к внутренней геометрии не относятся). По знаку кривизны можно классифицировать точки поверхности (см. рисунок). Кривизна плоскости равна нулю. Кривизна сферы радиуса R всюду равна 1 R 2 {\displaystyle {\frac {1}{R^{2}}}} . Существует и поверхность постоянной отрицательной кривизны -