Определение платформы как структуры земной коры. Строение, состав и структура земной коры

Внутреннее строение Земли

В настоящее время преобладающим большинством геологов, геохимиков, геофизиков и планетологов принимается, что Земля имеет условно сферическое строение с нечёткими границами раздела (или перехода), а сферы – условно мозаично-блоковое. Основные сферы – земная кора, трёхслойная мантия и двухслойное ядро Земли.

Земная кора

Земная кора составляет самую верхнюю оболочку твёрдой Земли. Мощность её колеблется от 0 на некоторых участках срединно-океанических хребтов и океанских разломов до 70-75 км под горными сооружениями Анд, Гималаев и Тибета. Земная кора обладает латеральной неоднородностью , т.е. состав и строение земной коры различны под океанами и континентами. На основании этого выделяются два главных типа коры – океаническая и континентальная и один тип промежуточной коры.

Океаническая кора занимает на Земле около 56% земной поверхности. Мощность её обычно не превышает 5-6 км и максимальна у подножия континентов. В её строении выделяются три слоя.

Первый слой представлен осадочными породами. В основном это глинистые, кремнистые и карбонатные глубоководные пелагические осадки, причём карбонаты с определённой глубины исчезают вследствие растворения. Ближе к континенту появляется примесь обломочного материала, снесённого с суши (континента). Мощность осадков колеблется от ноля в зонах спрединга до 10-15 км вблизи континентальных подножий (в периокеанических прогибах).

Второй слой океанической коры в верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелагических осадков. Базальты нередко обладают подушечной отдельностью (пиллоу-лавы), но отмечаются и покровы массивных базальтов. В нижней части второго слоя (2В) в базальтах развиты параллельные дайки долеритов. Общая мощность второго слоя около 1,5-2 км. Строение первого и второго слоя океанской коры хорошо изучено с помощью подводных аппаратов, драгированием и бурением.

Третий слой океанической коры состоит из полнокристаллических магматических пород основного и ультраосновного состава. В верхней части развиты породы типа габбро, а нижняя часть сложена «полосчатым комплексом», состоящем из чередования габбро и ультрамафитов. Мощность 3-го слоя около 5 км. Он изучен по данным драгирования и наблюдений с подводных аппаратов.

Возраст океанической коры не превышает 180 млн. лет.

При изучении складчатых поясов континентов были выявлены в них фрагменты ассоциаций пород, подобных океанским. Г Штейманом было предложено в начале XX века называть их офиолитовыми комплексами (или офиолитами ) и рассматривать «триаду» пород, состоящую из серпентенизированных ультрамафитов, габбро, базальтов и радиоляритов, как реликты океанической коры. Подтверждения этому были получены только в 60-ые годы XX столетия, после публикаций статьи на эту тему А.В. Пейве.

Континентальная кора распространена не только в пределах континентов, но и в пределах шельфовых зон континентальных окраин и микроконтинентов, расположенных внутри океанских бассейнов. Общая площадь её составляет около 41% земной поверхности. Средняя мощность 35-40 км. На щитах и платформах континентов она варьирует от 25 до 65 км, а под горными сооружениями достигает 70-75 км.

Континентальная кора имеет трёхслойное строение:

Первый слой – осадочный, обычно называется осадочным чехлом. Мощность его колеблется от нуля на щитах, поднятиях фундамента и в осевых зонах складчатых сооружений до 10-20 км в экзогональных впадинах плит платформ, передовых и межгорных прогибах. Он сложен, в основном, осадочными породами континентального или мелководного морского, реже батиального (в глубоководных впадинах) происхождения. В этом осадочном слое возможны покровы и силы магматических пород, образующих трапповые поля (трапповые формации). Возрастной диапазон пород осадочного чехла от кайнозоя до 1,7 млрд. лет. Скорость продольных волн составляет 2,0-5,0 км/с.

Второй слой континентальной коры или верхний слой консолидированной коры выходит на дневную поверхность на щитах, массивах или выступах платформ и в осевых частях складчатых сооружений. Он вскрыт на Балтийском (Фенноскандинавском) щите на глубину более 12 км Кольской сверхглубокой скважиной и на меньшую глубину в Швеции, на Русской плите в Саатлинской уральской скважине, на плите в США, в шахтах Индии и Южной Африки. Он сложен кристаллическими сланцами, гнейсами, амфиболитами, гранитами и гранитогнейсами, и называется гранитогнейсовым или гранитно-метаморфическим слоем. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях. Скорость продольных волн составляет 5,5-6,5 км/с.

Третий слой или нижний слой консолидированной коры был выделен как гранулито-базитовый слой. Ранее предполагалось, что между вторым и третьим слоем существует чёткая сейсмическая граница, названная по имени её первооткрывателя границей Конрада (К) . Позднее при сейсмических исследованиях стали выделять даже до 2-3 границ К . Кроме того, данные бурения Кольской СГ-3 не подтвердили различие в составе пород при переходе границы Конрада. Поэтому в настоящее время большинство геологов и геофизиков различают верхнюю и нижнюю кору по их отличным реологическим свойствам: верхняя кора более жёсткая, и хрупкая, а нижняя – более пластичная. Тем не менее, на основании состава ксенолитов из трубок взрыва можно полагать, что «гранулито-базитовый» слой содержит гранулиты кислого и основного состава и базиты. На многих сейсмических профилях нижняя кора характеризуется наличием многочисленных отражающих площадок, что также может, вероятно, рассматриваться как наличие пластовых внедрений магматических пород (что-то похожее на трапповые поля). Скорость продольных волн в нижней коре 6,4-7,7 км/с.

Кора переходного типа является разновидностью коры между двумя крайними типами земной коры (океанской и континентальной) и может быть двух типов – субокеанской и субконтинентальной. Субокеанская кора развита вдоль континентальных склонов и подножий и, вероятно, подстилает дно котловин не очень глубоких и широких окраинных и внутренних морей. Мощность её не превышает 15-20 км. Она пронизана дайками и силами основных магматических пород. Субокеанская кора вскрыта скважиной у входа в Мексиканский залив и обнажена на побережье Красного моря. Субконтинентальная кора образуется в том случае, когда океанская кора в энсиматических вулканических дугах превращается в континентальную, но ещё не достигает «зрелости». Она обладает пониженной (менее 25 км) мощностью и более низкой степенью консолидированности. Скорость продольных волн в коре переходного типа не более 5,0-5,5 км/с.

Поверхность Мохоровичича и состав мантии. Граница между корой и мантией достаточно чётко определяется по резкому скачку скоростей продольных волн от 7,5-7,7 до 7,9-8,2 км/сек и она известна как поверхность Мохоровичича (Мохо или М) по имени выделившего её хорватского геофизика.

В океанах она отвечает границе между полосчатым комплексом 3-го слоя и серпентинизированными базит-гипербазитами. На континентах она расположена на глубине 25-65 км и до 75 км в складчатых областях. В ряде структур выделяется до трёх поверхностей Мохо, расстояния между которыми могут достигать нескольких км.

По результатам изучения ксенолитов из лав и кимберлитов из трубок взрыва предполагается, что под континентами в верхней мантии присутствую кроме перидотитов эклогиты (как реликты океанской коры, оказавшиеся в мантии в процессе субдукции?).

Верхняя часть мантии – это «истощённая» («деплетированная») мантия. Она обеднена кремнезёмом, щелочами, ураном, торем, редкими землями и другими некогерентными элементами благодаря выплавлению из неё базальтовых пород земной коры. Она охватывает почти всю её литосферную часть. Глубже она сменяется «неистощенной» мантией. Средний первичный состав мантии близок к шпинелевому лерцолиту или гипотетической смеси перидотита и базальта в пропоции 3:1, которая была названа А.Е. Рингвудом пиролитом .

Слой Голицина или средняя мантия (мезосфера) – переходная зона между верхней и нижней мантией. Простирается он с глубины 410 км, где отмечается резкое возрастание скоростей продольных волн, до глубины 670 км. Возрастание скоростей объясняется увеличением плотности вещества мантии примерно на 10%, в связи с переходом минеральных видов в другие виды с более плотной упаковкой: например, оливина в вадслеит, а затем вадслеита в рингвудит со структурой шпинели; пироксена в гранат.

Нижняя мантия начинается с глубины около 670 км и простирается до глубины 2900 км со слоем D в основании (2650-2900 км), т. е. до ядра Земли. На основании экспериментальных данных предполагается, что она должна быть сложена в основном перовскитом (MgSiO 3) и магнезиовюститом (Fe,Mg)O – продуктами дальнейшего изменения вещества нижней мантии при общем увеличении отношения Fe/Mg.

По последним сейсмотомографическим данным выявлена значительная негомогенность мантии, а также наличие большего количества сейсмических границ (глобальные уровни – 410, 520, 670, 900, 1700, 2200 км и промежуточные – 100, 300, 1000, 2000 км), обусловленных рубежами минеральных преобразований в мантии (Павленкова, 2002; Пущаровский, 1999, 2001, 2005; и др.).

По Д.Ю. Пущаровскому (2005) строение мантии представляется несколько иначе, чем вышеприведённые данные согласно традиционной модели (Хаин, Ломизе, 1995):

Верхняя мантия состоит из двух частей: верхняя часть до 410 км, нижняя часть 410-850 км. Между верхней и средней мантией выделен раздел I – 850-900 км.

Средняя мантия : 900-1700 км. Раздел II – 1700-2200 км.

Нижняя мантия : 2200-2900 км.

Ядро Земли по данным сейсмологии состоит из внешней жидкой части (2900-5146 км) и внутренней твёрдой (5146-6371 км). Состав ядра большинством принимается железным с примесью никеля, серы либо кислорода или кремния. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Предполагается, что на границе ядра и нижней мантии зарождаются плюмы , которые затем в виде потока энергии или высокоэнергетического вещества поднимаются вверх, формируя в земной коре или на её поверхности магматические породы.

Плюм мантийный узкий, поднимающийся вверх поток твёрдофазного вещества мантии диаметром около100 км, который зарождается в горячем, низкоплотностном пограничном слое, расположенном либо выше сейсмической границы на глубине 660 км, либо рядом с границей ядро-мантия на глубине 2900 км (A.W. Hofmann, 1997). По А.Ф. Грачёву (2000) плюм мантийный – это проявление внутриплитной магматической активности, обусловленное процессами в нижней мантии, источник которой может находиться на любой глубине в нижней мантии, вплоть до границы ядро-мантия (слой «Д»). (В отличие от горячей точки, где проявление внутриплитной магматической активности обусловлено процессами в верхней мантии.) Мантийные плюмы характерны для дивергентных геодинамических режимов. По Дж. Моргану (1971) плюмовые процессы зарождаются ещё под континентами на начальной стадии рифтогенеза (рифтинга). С проявлением мантийного плюма связывается формирование крупных сводовых поднятий (диаметром до 2000 км), в которых происходят интенсивные трещинные излияния базальтов Fe-Ti-типа с коматиитовой тенденцией, умеренно обогащённых лёгкими РЗЭ, с кислыми дифференциатами, составляющими не более 5% от общего объёма лав. Отношения изотопов 3 He/ 4 He(10 -6)>20; 143 Nd/ 144 Nd – 0.5126-0/5128; 87 Sr/ 86 Sr – 0.7042-0.7052. С мантийным плюмом связывается формирование мощных (от 3-5 км до 15-18 км) лавовых толщ архейских зеленокаменных поясов и более поздних рифтогенных структур.

В северо-восточной части Балтийского щита, и на Кольском п-ове в частности, предполагается, что мантийные плюмы обусловили формирование позднеархейских толеитбазальтовых и коматиитовых вулканитов зеленокаменных поясов, позднеархейского щелочногранитного и анортозитового магматизма, комплекса раннепротерозойских расслоенных интрузий и палеозойских щелочно-ультраосновных интрузий (Митрофанов, 2003).

Плюм-тектоника тектоника мантийных струй, связанная с тектоникой плит. Эта связь выражается в том, что субдуцируемая холодная литосфера погружается до границы верхней и нижней мантии (670 км), накапливается там, частично продавливаясь вниз, а затем через 300-400 млн. лет проникает в нижнюю мантию, достигая её границы с ядром (2900 км). Это вызывает изменение характера конвекции во внешнем ядре и его взаимодействия с внутренним ядром (граница между ними на глубине около 4200 км) и, в порядке компенсации притока материала сверху, образование на границе ядро/мантия восходящих суперплюмов. Последние поднимаются до подошвы литосферы, частично испытывая задержку на границе нижней и верхней мантии, а в тектоносфере расщепляются на более мелкие плюмы, с которыми и связан внутриплитный магматизм. Они же, очевидно, стимулируют конвекцию в астеносфере, ответственную за перемещение литосферных плит. Процессы же, происходящие в ядре, японские авторы обозначают в отличие от плейт- и плюм-тектоники, как тектонику роста (growth teсtonics), имея ввиду рост внутреннего, чисто железо-никелевого ядра за счёт внешнего ядра, пополняемого корово-мантиным силикатным материалом.

Возникновение мантийных плюмов, приводящее к образованию обширных провинций плато-базальтов, предшествует рифтогенезу в пределах континентальной литосферы. Дальнейшее развитие может происходить по полному эволюционному ряду, включающему заложение тройных соединений континентальных рифтов, последующее утонение, разрыв материковой коры и начало спрединга. Однако развитие отдельно взятого плюма не может привести к разрыву материковой коры. Разрыв происходит в случае заложения системы плюмов на континенте и далее процесс раскола происходит по принципу продвигающей трещины от одного плюма к другому.

Литосфера и астеносфера

Литосфера состоит из земной коры и части верхней мантии. Это понятие чисто реологическое, в отличие от коры и мантии. Она более жесткая и хрупкая, чем более ослабленная и пластичная подстилающая оболочка мантии, которая была выделена как астеносфера . Мощность литосферы от 3-4 км в осевых частях срединно-океанских хребтов до80-100 км на периферии океанов и 150-200 км и более (до 400 км?) под щитами древних платформ. Глубинные границы (150-200 км и более) между литосферой и астеносферой определяется с большим трудом, либо вовсе не выявляются, что, вероятно, объясняется высокой изостатической уравновешенностью и уменьшением контраста между литосферой и астеносферой в приграничной зоне, обусловленным высоким геотермическим градиентом, уменьшением количества расплава в астеносфере и т.д.

Тектоносфера

Источники тектонических движений и деформаций лежат не в самой литосфере, а в более глубоких уровнях Земли. В них вовлечена вся мантия вплоть до пограничного слоя с жидким ядром. В связи с тем, что источники движений проявляются и в непосредственно подстилающем литосферу более пластичном слое верхней мантии – астеносфере, литосферу и астеносферу нередко объединяют в одно понятие – тектоносферы как области проявления тектонических процессов. В геологическом смысле (по вещественному составу) тектоносфера делится на земную кору и верхнюю мантию до глубины примерно 400 км, а в реологическом смысле – на литосферу и астеносферу. Границы между этими подразделениями, как правило, не совпадают, и литосфера обычно включает кроме коры и какую-то часть верхней мантии.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным её строением. Эти структурные элементы выделяются по геологическим и геофизическим признакам. Не все пространство, занятое водами океана, представляет собой единую структуру океанического типа. Обширные шельфовые области, например, в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами. Эти различия охватывают всю литосферу, подверженную тектоносферным процессам, т.е. прослеживаются до глубин примерно в 750 км.

На континентах выделяются два главных типа структур земной коры: спокойные устойчивые – платформы и подвижные - геосинклинали . По площади распространения эти структуры вполне соизмеримы. Отличие наблюдается в скорости накопления и в величине градиента изменения мощностей: платформы характеризуются плавным постепенным изменением мощностей, а геосинклинали - резким и быстрым. На платформах магматические и интрузивные породы встречаются редко, в геосинклиналях они многочисленны. В геосинклиналях подстилающими являются флишевые формации осадков. Это ритмично многослойные глубоководные терригенные отложения, формирующиеся при быстром погружении геосинклинальной структуры. В конце развития геосинклинальные области подвергаются складкообразованию и превращаются в горные сооружения. В дальнейшем эти горные сооружения проходят стадию разрушения и постепенного перехода в платформенные образования с глубоко дислоцированным нижним этажом отложений горных пород и полого залегающими слоями в верхнем этаже.

Таким образом, геосинклинальная стадия развития земной коры – это самая ранняя стадия, далее геосинклинали отмирают и преобразуются в орогенные горные сооружения и в последующем в платформы. Цикл завершается. Всё это стадии единого процесса развития земной коры.

Платформы - основные структуры континентов, изометричной формы, занимающие центральные области, характеризующиеся выровненным рельефом и спокойными тектоническими процессами. Площадь древних платформ на материках приближается к 40% и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов), горных систем, линейно вытянутых прогибов. Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены (горные цепи). Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи, возникшего в конце раннего протерозоя.

Например, Восточно-Европейская платформа, выделенная в границах от Урала до Ирландии; от Кавказа, Черного моря, Альп до северных пределов Европы.

Различают древние и молодые платформы .

Древние платформы возникли на месте докембрийской геосинклинальной области. Восточно-Европейская, Сибирская, Африканская, Индийская, Австралийская, Бразильская, Северо-Американская и др. платформы образованы в позднем архее - раннем протерозое, представлены докембрийским кристаллическим фундаментом и осадочным чехлом. Их отличительная черта - двухэтажность строения.

Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными тол­щами пород смятыми в складки, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранито-гнейсовых куполов - специфической формой метаморфогенной складчатости (рис. 7.3). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине.

Рис. 7.3. Принципиальный разрез платформы

1 - породы фундамента; породы осадочного чехла: 2 - пески, песчаник, гравелиты, конгломераты; 3 - глины и карбонаты; 4 - эффузивы; 5 - разломы; 6 - валы

Верхний этаж платформ представлен чехлом, или покровом, пологозалегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает основное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникат грабены, грабенообразные прогибы - авлакогены (авлос - борозда, ров; ген - рожденный, т.е. рожденные рвом). Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового (пород основного состава) магматизма с континентальными базальтами, силлами и дайками. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка). Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений. На начальном этапе развития платформы имели тенденцию медленного погружения с накоплением карбонатно-терригенных толщ, а в более поздний этап развития отмечается накоплением терригенных угленосных толщ. В позднем этапе развития платформ в них образовывались глубокие впадины заполненные терригенными или карбонатно-терригенными отложениями (Прикаспийская, Вилюйская).

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам геотектонических циклов: байкальского, каледонского, герцинского, альпийского. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась (перикратонные, т.е. на краю кратона, или платформы).

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты .

Щит - это выступ поверхности кристаллического фундамента платформы ((нет осадочного чехла) ), который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Примерами щитов можно указать: Украинский, Балтийский.

Плиту считают или частью платформы, обладающей тенденцией к прогибанию, или самостоятельной молодой развивающейся платформой (Русская, Скифская, Западно-Сибирская). В пределах плит различаются более мелкие структурные элементы. Это синеклизы (Московская, Балтийская, Прикаспийская) - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы (Белорусская, Воронежская) - пологие своды с поднятым фундаментом и относительно утоненным чехлом.

Молодые платформы сформировались либо на байкальском, каледонском или герцинском фундаменте, отличаются большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Эти платформы имеют трехярусное строение: фундамент из метаморфизованных пород геосинклинального комплекса перекрыт толщей из продуктов денудации геосинклинальной области и слабометаморфизованным комплексом осадочных пород.

Кольцевые структуры . Место кольцевых структур в механизме геолого-тектонических процессов пока точно не определено. Самыми крупными планетарными кольцевыми структурами (морфоструктурами) являются впадина Тихого океана, Антарктида, Австралия и др. Выделение подобных структур можно считать условным. Более тщательное изучение кольцевых структур позволило выявить во многих из них элементы спиралеобразных, вихревых структур).

Однако можно выделить структуры эндогенного, экзогенного и космогенного генезиса.

Эндогенные кольцевые структуры метаморфического и магматического и тектоногенного (своды, выступы, впадины, антеклизы, синеклизы) происхождения имеют размеры диаметра от единиц километров до сотен и тысяч километров (рис. 7.4).

Рис. 7.4. Кольцевые структуры к северу от Нью-Йорка

Крупные кольцевые структуры обусловлены процессами, происходящими в глубинах мантии. Боле мелкие структуры обусловлены диапировыми процессами магматических пород, поднимающихся к поверхности Земли и прорывающих и приподнимающих верхний осадочный комплекс. Кольцевые структуры обуславливаются и вулканическими процессами (конусы вулканов, вулканические острова), и процессами диапиризма пластичных горных пород типа солей и глин, плотность которых меньше, чем плотность вмещающих пород.

Экзогенные кольцевые структуры в литосфере образуются в результате воздействия выветривания, выщелачивания, Это карстовые воронки, провалы.

Космогенные (метеоритные) кольцевые структуры – астроблемы. Эти структуры возникают в результате ударов метеоритов. Метеориты диаметром около 10 километров падают на Землю с периодичностью один раз в 100 млн лет, менее крупные значительно чаще Кратер структуры имеет чашеобразную форму с центральным поднятием и валом из выброшенных пород. Метеоритные кольцевые структуры могут иметь диаметр от десятков метров до сотен метров и километров. Например: Прибалхашско-Илийская (700 км); Юкотан (200км.), глубина – более 1км: Аризона (1,2км), глубина более 185м; Южная Африка (335км), от астероида поперечником около 10км.

В геологическом строении Беларуси можно отметить кольцевые структуры тектономагматического происхождения (Оршанская впадина, Белорусский массив), диапировые солевые структуры Припятского прогиба, вулканические древние каналы типа кимберлитовых трубок (на Жлобинской седловине, Северной части Белорусского массива), астроблема в районе Плещениц диаметром 150 метров.

Кольцевые структуры характеризуются аномалиями геофизических полей: сейсмического, гравитационного, магнитного.

Рифтовые структуры континентов (рис. 7.5, 7.6) небольшой ширины до 150 -200 км выражены протяженными литосферными поднятиями своды которых осложнены грабенами проседания: Рейнский (300 км), Байкальский (2500 км), Днепровско-Донецкий (4 000 км), Восточно-Африканский (6 000 км) и др.

Рис. 7.5. Разрез Припятского континентального рифта

Континентальные рифтовые системы состоят из цепочки отрицательных структур (прогибов, рифтов) ранжированного времени заложения и развития, разделенных поднятиями литосферы (седловинами). Рифтовые структуры континентов могут находиться между другими структурами (антеклизами, щитами), пересекать платформы и продолжаться на других платформах. Строение континентальных и океанических рифтовых структур подобно, они имеют симметричное строение относительно оси (рис. 7.5, 7.6), отличие заключается в протяженности, степени раскрытия и наличием некоторых особых черт (трансформных разломов, выступов-мостиков между звеньями).

Рис. 7.6. Профильные разрезы континентальных рифтовых систем

1-фундамент; 2-хемогенно-биогенные осадочные отложения; 3- хемогенно-биогенно -вулканогенная формация; 4- терригенные отложения; 5, 6-разломы

Частью (звеном) Днепровско-Донецкой континентальной рифтовой структуры является Припятский прогиб. Верхним звеном считается Подляско-Брестская впадина, возможно она имеет генетическую связь с аналогичными структурами Западной Европы. Нижним звеньями структуры является Днепровско-Донецкая впадина, затем аналогичные структуры Карпинская и Мангышлакская и далее структуры средней Азии (общая протяженность от Варшавы до Гиссарского хребта). Все звенья рифтовой структуры континентов ограничены листрическими разломами, имеют иерархическое соподчинение по возрасту возникновения, обладают мощной осадочной толщей перспективной на содержание углеводородных залежей.

ОСНОВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ЗЕМНОЙ КОРЫ: Наиболее крупными структурными элементами земной коры являются континенты и океаны.

В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга , т.е. расширения океанского дна и наращивания новообразованной океанской коры.

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.

Строение Земной коры континентов и океанов: Земная кора - внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами - она более плотная, содержит в основном тугоплавкие элементы. Разделяет кору и мантию граница Мохоровичича, на которой происходит резкое увеличение скоростей сейсмических волн.

Масса земной коры оценивается в 2,8·1019 тонн (из них 21 % - океаническая кора и 79 % - континентальная). Кора составляет лишь 0,473 % общей массы Земли.

Океаническ ая кора: Океаническая кора состоит главным образом из базальтов. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции (место, где океаническая кора погружается в мантию). Поэтому океаническая кора относительно молодая. Океан. кора имеет трехслойное строение (осадочный – 1 км, базальтовый – 1-3 км, магматические породы – 3-5 км), общая ее мощность 6-7 км.

Континентальная кора: Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой - слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород - гранулитов и им подобных. Средняя мощность 35 км.

Химический состав Земли и земной коры. Минералы и горные породы: определение, принципы и классификация.

Химический состав Земли: состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе внутреннее пространство, предположительно, состоит из железа (88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %)

Химический состав земной коры : земная кора чуть более, чем на 47 % состоит из кислорода. Наиболее распространённые породосоставляющие минералы земной коры практически полностью состоят из оксидов; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO2), глинозём (Al2O3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K2O) и оксид натрия (Na2O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним.

Минералы: - природные химические соединениявозникающие в результате определенныхфизико-химических процессов. Большинство минералов представляют собой кристаллические тела. Кристаллическая форма обусловлена строением кристаллической решеткой.

По распространённости минералы можно разделить на породообразующие - составляющие основу большинства горных пород, акцессорные - часто присутствующие в горных породах, но редко слагающие больше 5 % породы, редкие, случаи нахождения которых единичны или немногочисленны, и рудные, широко представленные в рудных месторождениях.

Св-ва минералов: твердость, морфология кристаллов, цвет, блеск, прозрачность, спаянность, плотность, растворимость.

Горные породы: природная совокупность минералов более или менее постоянного минералогического состава, образующая самостоятельное тело в земной коре.

По происхождению горные породы делятся на три группы: магматические (эффузивные (застывшая на глубине) и интрузивные (вулканический, излившийся)), осадочные и метаморфические (горные породы, образованные в толще земной коры в результате изменения осадочных и магматических горных пород вследствие изменения физико-химических условий). Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающие 75 % площади земной поверхности.

Литосфера- внешняя сфера «твердой» оболочки Земли. Верхняя часть ее называется земной корой. Средняя плотность земной коры составляет 2,8 г/см 3 . Она отделяется от верхней мантии границей резкого изменения скорости распространения сейсмических волн с 6 до 8 км/с. На материках это происходит на глубине 35 – 70 км; в пределах океанов - 5 - 15 км. Эта граница получила название границы Мохоровичича(по имени открывшего её югославского ученого Андрея Мохоровичича).

Земная кора различна по составу, строению и мощности на континентах и в океане (рис. 3.1).

Рис. 3.1. Схема строения литосферы: 1 – вода океана; 2 – осадочный слой; 3 - гранитный слой; 4 – базальтовый слой; 5 - верхняя мантия; 6 – межблоковые разломы

Континентальная (материковая) кора имеет мощность 30-40 км, достигая 70-75 км под Гималаями и Андами. В строении континенталь­ной коры различают три слоя:

· осадочный слой, состоящий из осадочных пород мощностью до 20 км и плотностью 1,8 – 2,5 г/см 3 ;

· «гранитный», образованный гранитоидами - светлоокрашенными горными породами мощностью 10 - 40 км и плотностью 2,5 – 2,8 г/см 3 . Скорость распространения волн в этом слое 5,5 – 6,2 км/с;

· «базальтовый», скорость распространения сейсмических волн в этом слое 6,1-7,4 км/с, что характерно для базальта, отсюда название слоя - базальтовый. Мощность базальтового слоя 15-30 км. Граница между гранитным и базальтовым слоем называется границей Конрада.

Океаническая кора обычно не содержит «гранитного» слоя, а мощность осадочного слоя, представленного глубоководными осадками, не превышает 600 – 700 м. Нижний «базальтовый» слой распространен повсеместно и имеет мощность 4,1-5,8 км.

Сплошность земной коры прерывается большим количеством вертикальных и наклонных нарушений, разбивающих её на блоки. Некоторые нарушения уходят в мантию, образуя коромантийные блоки.

Структурными элементами земной коры являются литосферные плиты (платформы), геосинклинали (подвижные пояса) и океанические плиты.

Платформы (массивы, глыбы) занимают огромные пространства на Земле. К ним относятся Русская платформа, Австралийская, Северо-Африканская и др. Платформы чаще всего имеют двухэтажное строение. Их основанием (фундаментом) являются складчатые осадочные породы либо метаморфические и магматические породы. На фундаменте располагаются породы осадочного происхождения в относительно горизонтальном залегании, которые называются осадочным чехлом платформы. Для платформ, как наиболее жестких частей земной коры, характерны сравнительно спокойные колебательные движения вертикаль­ного характера.

Платформы являются центральной частью более обширных структур­ных образований - литосферных плит с континентальной корой, на которых располагаются современные материки.

океанические плиты - это обширные области дна океанов, которые являются слоем океанической коры базальтового состава, с незначительным по мощности осадочным чехлом. В них через рифтовые зоны, или зоны спрединга (англ. spreading, от spread- растягивать, расширять) поступают вещество и тепло из верхней мантии, постоянно наращивая океаническую кору.

На современном уровне знаний утвердились представления о развитии Земного шара в последние 4 млрд лет путем его расширения. Глобальные тектонические процессы сопровождались постепенным увеличением радиуса Земли и её поверхности за счет постоянного прироста площади океанических плит. Действующее со стороны расширяющихся океанов горизонтальное давление на континенты не является уравновешенным. При преобладающем давлении с какой-либо стороны происходит перемещение литосферных плит, «дрейф» материков по верхней мантии Земли.

перемещаясь по верхней мантии Земли, континентальные плиты надвигаются на океанические, которые, являясь более тяжелыми, погружаются, переплавляются и уходят в глубины Земли (рис. 3.1).

Между континентальными и океаническими плитами находятся глубокие прогибы, которые называются геосинклиналями (от греч.Ge - земля + Syn - вместе + Klino – наклоняюсь). Геосинклиналь - обширная, обычно линейно вытянутая, дугообразная в плане тектоническая структура, отличающаяся повышенной подвижностью, большой мощностью осадочных отложений, которые легко проницаемы для внедряющейся

в них магмы.

В начале своего развития они представляют собой морские бассейны, дно которых испытывает прогибание. В них сносится обломочный материал, накапливаются многокилометровые толщи осадков. Примером геосинклиналей такой стадии развития являются Японское и Средиземное моря.



Рис. 3.2. Положение и динамика основных структурных элементов земной коры. 1 – гранитный слой континентальной коры; 2 – базальтовый слой; 3 – осадочный слой; 4 - направление горизонтальных сдвигов от океанических рифтов; 5 – вынос глубинных базальтовых расплавов и тепла через рифтовые зоны

Со временем, в результате горизонтального движения и давления плит, геосинклинальные осадки, зажатые между плитами, сминаются в складки и, являясь более легким материа­лом по сравнению с расплавом океанической коры, как бы выталкиваются («всплывают») из-под воды в виде горных сооружений. Так возникли складчатые горные хребты Альп, Карпат, Крыма, Кавказа, Памира и т. д. Для районов геосинклиналей типичны интенсивные и разнообразные тектонические движения. Это вызывает изменение первоначального положения пород. Горизонтальное залегание пород сменяется смятием, перемещением, разрывами. Районам геосинклиналей свойственны повышенная сейсмичность (землетрясения). К ним приурочено большинство современных вулканических поясов.

Тепловой режим земной коры

Развитие земной коры происходило последние 4 млрд лет за счет поступающей энергии Солнца и внутреннего тепла Земли. Примерное количество поступающей солнечной энергии на поверхность Земли – 1,72*10 17 Вт. Конвективный перенос тепла из внутренних сфер Земли к её поверхности оценивается в 3,05*10 13 Вт. Соотношение поступающей энергии на поверхность Земли от Солнца и из недр планеты составляет 140:1, что обусловливает сложный характер изменений температуры в толщах горных пород.

В верхней части земной коры выделяют три температурные зоны: I - сезонных колебаний, II-постоянной температуры и III-нарастания температур (рис. 3.3). Изменение температур в зоне I определяется климатическими условиями местности – сезонной прогреваемостью и промерзанием почвогрунтов.

Рис. 3.3. Схема распределения температур в земной коре

Общая мощность зоны I достигает 12-15 м. По мере углубления в недра Земли влияние суточных и сезонных колебаний температур уменьшается и на глубине примерно 15-40 м находится зона постоянной температуры, равная среднегодовой для данной местности. В северном полушарии она равна +15,5°С, а в южном - +13,6°С.

В пределах зоны III температура с глубиной возрастает. Величина нарастания температуры на каждые 100 м глубины называется геотермическим градиентом,а разность глубин, при которой температура повышается на один градус, называется геотермической ступенью. Средняя величина этой ступени составляет 33 м. В районах вулканической деятельности, где в недрах земли располагаются участки расплавленной магмы, величина геотермической ступени уменьшается до 5-7 м.

О температуре глубоких зон земной коры и верхней мантии можно судить по температуре лав вулканов. Она примерно равна +1 500°С.

За счет энергии Солнца происходят основные геодинамические процессы на поверхности Земли. Их принято называть экзогенными. Источниками внутреннего или эндогенного тепла, является энергия, постоянно возникающая за счет гравитационного уплотнения ядра и распада радиоактивных элементов, находящихся в земной коре и мантии. За счет эндогенного тепла в земной коре происходят такие процессы, как горообразование, тектонические деформации и подвижки, землетрясения. Возникают и существуют очаги и зоны расплавленных магм, вулканические пояса и геотермальные системы.

Совокупность долговременных в геологическом масштабе времени эндогенных и экзогенных процессов в земной коре привело к формированию современного облика и состава земной поверхности, в том числе современной конфигурации континентов и морей, их структурного и вещественного строения.

Вещество земной коры

Вещество земной коры представлено различными горными породами (гранитами, песчаниками, песками, глинами и др.), которые, в свою очередь, состоят из минералов.

Минералы - это природные соединения, имеющие определенный химический состав и внутреннее строение, образующиеся в недрах земной коры и на ее поверхности. Они представляют собой хорошо ограненные кристаллы или зерна с элементами огранки, обладающие определенными физическими свойствами.

3.3.1. Происхождение минералов

В земной коре содержится более I7 000 видов и разновидностей минералов, но лишь около 100 из них имеют широкое распространение и слагают главнейшие горные породы. Эти минералы называют породообразующими, а остальные - второстепенными.

Все многообразные процессы их образования можно разделить на три группы: эндогенные, экзогенные и метаморфические.

Эндогенные процессы протекают в недрах Земли. Минералы рожда­ются по мере кристаллизации магмы - силикатного огненно-жидкого расплава, при высоких температурах и давлениях. Эти минералы плотные, с большой твердостью, стойкие к воде, кислотам, щелочам (кварц, силикаты и др.).

Экзогенные процессы свойственны поверхности земной коры, где имеют место сложные явления взаимодействия литосферы с гидросферой, атмосферой и биосферой. В этих процессах минералы образуются на суше, а также путем выпадения их из водных растворов (озер, морей и др.). Экзогенные минералы в большинстве случаев имеют низкую твердость и активно взаимодействуют с водой или растворяются в ней.

Метаморфические процессы - это перерождение ранее образовавших­ся минералов (эндогенных и экзогенных) под воздействием высоких температур, давлений, а также магматических газов и воды.