Как решать первую часть по физике. Обучение физики через решение задач

Научиться решать задачи по физике можно,…
только решая задачи по физике .

Итак, вы горите желанием научиться решать задачи, вы не боитесь трудностей, вы готовы быть усердным и внимательным, тогда начнём.

Все физические задачи, независимо от раздела, который вы сейчас изучаете, можно решить, выполняя определённые шаги, которые назовём .

Ознакомьтесь с ним.

Алгоритм решения задач по физике онлайн


3. Сделайте перевод единиц в СИ, если это необходимо.
4. Сделайте чертёж или схему, если это необходимо.
5. Напишите формулу или закон, по которым находится искомая величина.
6. Запишите дополнительные формулы, если это необходимо. Сделайте математические преобразования .
7. Подставьте цифровые значения в окончательную формулу. Вычислите ответ. Проанализируйте его.
8. Запишите ответ.
9. Похвалите себя.

Все пункты надо выполнять именно в этом порядке. Пункты 4 и 5, в зависимости от раздела физики, из которого решаем задачу, будем дополнять (эти дополнения покажу ниже).

Итак, решим следующую задачу с применением «Алгоритма решения задач онлайн» .

Задача 1. Известно, что масса мраморной плиты равна 40,5 кг. Какую силу надо приложить, чтобы удержать эту плиту в воде?

Выполняем п.1 и 2 нашего алгоритма:

1. Внимательно прочитайте задачу.
2. Запишите в «Дано» все данные и правильно запишите искомую величину.

Пункт 3 нашего алгоритма здесь делать не надо, так как все величины даны в СИ.

Выполняем следующий пункт.

4. Сделайте чертёж или схему, если это необходимо. На чертеже рисуем все силы, действующие на тело (это необходимо по условию задачи). А также рисуем координатные оси.

(Предполагаем, что мы удерживаем плиту от падения, т. е. искомая сила будет направлена вверх).

Выполняем следующий пункт.

5. Напишите формулу или закон, по которым находится искомая величина. (В данном случае это II закон Ньютона. Напоминаю, что исходная его запись должна быть в векторном виде).

Выполняем следующий пункт.

6. Запишите дополнительные формулы, если это необходимо. (В данном случае нам надо записать II закон Ньютона в проекциях на оси ОХ и ОУ). Сделайте математические преобразования.

7. Подставьте цифровые значения в окончательную формулу. Вычислите ответ. Проанализируйте его. (В нашем случае, при решении мы получили положительное значение искомой величины. Это говорит о том, что направление искомой силы см п. 4 было выбрано верно).

8. Запишите ответ.

9. Похвалите себя. (Вы действительно сделали то, что удаётся немногим. Вы – молодец).

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Чтобы научить решать задачи,
надо их решать.
Д.Пойа

После введения цикличности в школьном курсе физики, возникла серьезная проблема: на изучение механики отводился один год, в данный момент одна четверть. В первые два года приходилось тратить на этот раздел все первое полугодие, что приводило к проблемам с изучением материала в конце учебного года.

В итоге решение проблемы было найдено в следующем виде:

  • единый подход к решению всех физических задач;
  • алгоритмы на типовые задачи.

Решение любой физической задачи может быть разбито на четыре этапа:

  1. На основе анализа физического процесса составляется система уравнений.
  2. Математическое решение системы уравнений. (Предварительно решить вопрос о совместности уравнений).
  3. Анализ полученных результатов с точки зрения физики процесса.
  4. Вычисления и оценка реальности результатов.

С другой стороны все задачи можно разделить на задачи двух типов:

  1. Тренировочные задачи. Условие такой задачи содержит все необходимые величины и четко сформулированный вопрос. Проблема решения такой задачи – проблема выполнения определенного алгоритма действий.
  2. Задачи, требующие анализа, результатом которого является разбиение условия на конечное число подзадач 1 типа. Уровень сложности такой задачи определяется соотношением между объемами аналитической и алгоритмической части.

Особое положение занимают «эвристические» задачи, решение которых не может быть сведено к выполнению конечного числа алгоритмов.

В данном материале мы будем рассматривать базовые алгоритмы раздела «Механика».

Решение тренировочных задач темы «Равноускоренное движение»

В идеале задачи этой темы должны решаться на основе только двух формул:

которая используется, если скорость тела в интересующий нас промежуток времени не изменяла своего направления. Решение задачи начинаться с задания начальных условий (Н.У.) движения (r, v, a при t = 0) и с выбора системы отсчета (если она не задана в условии задачи).

Но это в идеале. За один, два урока при данном подходе с проблемой не справиться, тем более что задача отягощается математическими проблемами при выводе формул и заданием Н.У.

Решим проблему с начальными условиями:

Пример 1. Мячик бросили вертикально вверх с высоты h 0 = 6 м со скоростью v 0 = 20 м/с. Определите, через сколько секунд мячик окажется на высоте h = 1 м.

Опустим начало решения и запишем закон движения в проекции на ось Oy:

Зачеркиванием введем Н.У. и при необходимости К.У.

в итоге получаем частный случай закона движения для нашей задачи:

Разрешить проблему времени позволяет алгоритм, в основе которого лежат шесть формул:

Формула №1 используется в редких случаях, если в условии задачи задается положение тела.

Формулу № 6 необходимо пробовать в первую очередь если выполняется условие . Для случая v 0 = 0 это очевидное следствие формулы №3. Для случая v = 0 требует вывода.


При краткой записи условия необходимо обратить особое внимание на скрытые условия, т.е. величины заданные вербально. На первых этапах достаточно при чтении условия делать остановки в трудных местах условия.

Рисунок необходим для определения знака ускорения через выбор системы координат и проекцию. Проще на этом этапе рисунок заменить комментарием: «разгон», «торможение» или «равноускоренное движение», «равнозамедленное движение». Но во многих методических источниках не рекомендуется использовать термин «равнозамедленное движение» т.к. он сужает границы применения термина «равноускоренное движение» и приводит к невозможности единого описания некоторых видов движения, например движения под действием силы тяжести. При дальнейшей работе возникают следующие проблемы: учащиеся делят движение под действием силы тяжести на два участка и не воспринимают его как единое целое, описываемое с точки зрения математики одним уравнением, т.е. данный подход не удается обобщить и тему приходится изучать с «нуля».

Анализ краткой записи условия проще объяснить на примере.

Пример 2. На пути 45 метров скорость тела изменилась от 10 м/с до 40 м/с. Определите ускорение тела.

Математическое решение. Не первоначальном этапе изучения физики много времени приходится уделять математической обработки результатов. В основном возникают следующие проблемы:

Мы обычно ругаем математиков за недостаточную подготовку, но некоторые действия, допустимые при решении задач по физике, недопустимы в общей математической практике. Например, с уравнениями можно производить те же действия, что и с числами: сложение, вычитание, умножение и деление. Операция деления ограничена условием – делитель не может быть нулевым, но с точки зрения физического смысла мы уверены, что функция не может быть нулевой или нули функции нам не нужны.

Пример 3.

быстрее, чем выразить и подставить.

Те же проблемы возникают и при решении квадратных уравнений. Часто до квадратного уравнения можно не доводить, теряя, отрицательные корни, не имеющие физического смысла. Т.е. с учетом физического смысла можно сильно сузить ОДЗ и упростить решение.

Пример 4. Определите внутреннее сопротивление источника тока, если при сопротивлении R 1 во внешней цепи выделяется такая же мощность, как и при сопротивлении R 2 .

т.к. P 1 = P 2 , следовательно

Анализ полученного результата включает в себя:

  • проверку размерности как проверку правильности полученной формулы;
  • анализ зависимости искомой величины от данных особенно при их критических значениях;
  • оценку реальности результата.

Вычисления значительно упрощаются при освоении инженерного калькулятора:

В профильном классе в обязательном порядке проводится зачет, основным вопросом которого является доказательство формул №1–№6.

Алгоритм решения задач на применение законов Ньютона

Алгоритм II.

  • Краткая запись условия;
  • первичный рисунок;
  • Как движется тело? – рисуем скорость и ускорение;
  • С какими телами взаимодействует? – рисуем силы;
  • Если в условии задачи рассматривается вес тела:

Опора – «по 3 з. Ньютона Р = N»

Подвес – «по 3 з. Ньютона P = T»

Невесомость – «по 3 з. Ньютона P = 0 = T или Р = 0 = N»

  • Есть ли ускорение?

Да – «по 2 з. Ньютона »

Нет – «по 1 з. Ньютона »

  • Сколько на рисунке сил?
  • Запись векторная 1 или 2 з. Ньютона (расширенная).
  • Выбор СО (системы отсчета).
  • Если есть силы не параллельные осям – рисунок их проекций
  • Запись законов Ньютона в проекции на оси СК

F оси – знак не меняем

F ↓ оси – знак меняем

F оси – не пишем (проекция равна нулю)

Или смотри рисунок.

  • При необходимости применение закона Гука, закона всемирного тяготения, частных формул для сил….
  • Если в условии есть скорость путь время, применяем формулы кинематики.
  • математическое решение.
  • анализ полученного результата.
  • вычисления.
  • ответ.

Первичный рисунок – на этом этапе часто на рисунке изображаются детали, отсутствующие в условии задачи.

Пример 5. В первых задачах на применение второго закона Ньютона в условии часто написано «На тело массой mдействует сила F». Учащиеся рисуют опору и силу тяжести, хотя в условии их нет и происхождение силы не оговаривается.

Неверно

Верно

На рисунке желательно придать силе произвольное направление, что подчеркнет свободное условие задачи и даст повод обсудить связь между силой, ускорением и скоростью с точки зрения причинно – следственной связи.

Пример 6. Тело под действием силы F поднимается вверх с ускорением а.

Не верно

Верно

(очень распространенная ошибка).

Данные примеры подчеркивают необходимость выполнения рисунка в строгом соответствии с условием задачи и отступления не допустимы.

Рисунок должен занимать не менее трети тетрадного листа.

Сила – это величина, характеризующая взаимодействие тел. Здесь возможны следующие нюансы:

  • Взаимодействие может осуществляется без непосредственного контакта (на первоначальном этапе только взаимодействие с Землей – сила тяжести). По сути это действие на тело гравитационного поля. На профильном уровне имеет смысл ввести понятие поля вместе с понятием силы, рассмотрев теории близкодействия и дальнодействия. Тогда вопрос, «С какими телами взаимодействует тело?» можно сразу разбить на два:
  1. С какими телами взаимодействует тело?
  2. В каких полях находится тело?

В 10 классе возможно рассмотреть гравитационное и электромагнитное поле и подчеркнуть, что взаимодействие при непосредственном контакте на макроуровне это на микроуровне так же действие поля на микрообъект (в случае сил упругости и сил трения – взаимодействия электромагнитного поля одной молекулы с другой молекулой как системой зарядов).

  • Взаимодействие при непосредственном контакте тел.

Есть контакт – есть взаимодействие – есть сила.

Итоги

Описанные алгоритмы, при их активном использовании на уроках позволяют существенно сократить время на приобретения учащимися навыка решения задач. Алгоритмы универсальны и могут применяться в любой теме, что позволяет провести единую линию решения задач по всему школьному курсу физики. Позволяет один раз, затратив учебное время на обучение решению задач, в дальнейшем вводить только новые законы и закономерности подчеркивая единые способы и методы их применения в задачах.

В основе выше приведенного материала лежат следующие общеизвестные технологии:

  • Технология обучения математике на основе решения задач (Р.Г. Хазанкин)
  • Проблемное обучение.
  • Уровневая дифференциация обучения на основе обязательных результатов (В.В. Фирсов)

В данной статье представлен разбор заданий по механике (динамике и кинематике) из первой части ЕГЭ по физике с подробными пояснениями от репетитора по физике. Имеется видеоразбор всех заданий.

Выделим на графике участок, соответствующий интервалу времени от 8 до 10 с:

Тело двигалось на этом интервале времени с одинаковым ускорением, поскольку график здесь является участком прямой линии. За эти с скорость тела изменилась на м/с. Следовательно, ускорение тела в этот промежуток времени было равно м/с 2 . Подходит график под номером 3 (в любой момент времени ускорение равно -5 м/с 2).


2. На тело действуют две силы: и . По силе и равнодействующей двух сил найдите модуль второй силы (см. рисунок).

Вектор второй силы равен . Или, что аналогично, . Тогда сложим два последних вектора по правилу параллелограмма:

Длину суммарного вектора можно найти из прямоугольного треугольника ABC , катеты которого AB = 3 Н и BC = 4 Н. По теореме Пифагора получаем, что длина искомого вектора равна Н.

Введём систему координат с центром, совпадающим с центром масс бруска, и осью OX , направленной вдоль наклонной плоскости. Изобразим силы, действующие на брусок: силу тяжести , силу реакции опоры и силу трения покоя . В результате получится следующий рисунок:

Тело покоится, поэтому векторная сумма всех сил, действующих на него равна нулю. В том числе равна нулю и сумма проекций сил на ось OX .

Проекция силы тяжести на ось OX равна катету AB соответствующего прямоугольного треугольника (см. рисунок). При этом из геометрических соображений этот катет лежит напротив угла в . То есть проекция силы тяжести на ось OX равна .

Сила трения покоя направлена вдоль оси OX , поэтому проекция этой силы на ось OX равна просто длине этого вектора, но с противоположным знаком, поскольку вектор направлен против оси OX . В результате получаем:

Используем известную из школьного курса физики формулу:

Определим по рисунку амплитуды установившихся вынужденных колебаний при частотах вынуждающей силы 0,5 Гц и 1 Гц:

Из рисунка видно, что при частоте вынуждающей силы 0,5 Гц амплитуда установившихся вынужденных колебаний составляла 2 см, а при частоте вынуждающей силы 1 Гц амплитуда установившихся вынужденных колебаний составляла 10 см. Следовательно, амплитуда установившихся вынужденный колебаний увеличилась в 5 раз.

6. Шарик, брошенный горизонтально с высоты H с начальной скоростью , за время полёта t пролетел в горизонтальном направлении расстояние L (см. рисунок). Что произойдёт с временем полёта и ускорением шарика, если на той же установке при неизменной начальной скорости шарика увеличить высоту H ? (Сопротивлением воздуха пренебречь.) Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

В обоих случаях шарик будет двигаться с ускорением свободного падения, поэтому ускорение не изменится. В данном случае время полёта от начальной скорости не зависит, поскольку последняя направлена горизонтально. Время полёта зависит от высоты, с которой падает тело, причём чем больше высота, тем больше время полёта (телу дольше падать). Следовательно, время полёта увеличится. Правильный ответ: 13.

Уважаемый выпускник, тебе в этом году необходимо сдавать ЕГЭ по физике? Ты не умеешь решать задачи части С? Могу дать несколько советов.
шаг 1
Чтобы научиться легко решать задачи по физике - потребуется время! Главное в решении задач – это регулярность. Решать задачи нужно каждый день! Как говорят: «Количество переходит в качество». Учебники по физике нужно читать "с карандашом в руках", делать различные пометки. Выучи все основные формулы.
шаг 2
Научитесь читать текст задачи. Кто-то может сказать: а чего тут учиться, но это не так просто, как может показаться сначала. Текст нужно не просто прочитать, как говорится, по диагонали, а необходимо уловить его основную мысль. Другими словами, нужно из условия задачи попытаться извлечь максимум полезной информации: понять, на какую тему эта задача, какие сведения можно сразу переносить в раздел «Дано», а какие нужно найти в справочных материалах, какие единицы нуждаются в переводе в систему СИ. шаг 3
Не стесняйтесь использовать на начальном этапе большое количество справочной литературы. Речь здесь вовсе не о «решебниках», а о той литературе, которая содержит теоретические сведения, таблицы формул, данные о физических величинах. Обязательно найдите в школьном учебнике тему задачи и не поленитесь перечитать ее еще раз. Если в условии задачи появляются, казалось бы, сложные вопросы, то именно теоретические материалы смогут вам помочь. Прилежность может позволить учащемуся найти путь решения.
шаг 4
Приступайте к решению достаточно простых задач. Проблем возникнуть не должно, порешайте задачи из кинематики, постарайтесь решить побольше, если вдруг не получается решить задачу, ищите в интернете решение, внимательно его читаете, важно понять принцип решения задачи. После этого вновь решаете эту же задачу, которую у вас не получилось решить, если вы действительно поняли, как она решается, то решите её без проблем. После того, как научитесь решать задачи в одно, два действия, приступайте к более сложным задачам
шаг 5
Никогда не бойтесь пойти по неверному пути. Не ошибается тот, кто привык ничего не делать. Однако и превращать решение задачи в бездумное «хождение» от формулы к формуле тоже не нужно. Простой вариант для начала решения – отыскать формулу, в которой содержится максимальное количество параметров из условия задачи. шаг 6 Не думайте, что физические задачи решаются «в одну формулу». Если бы все было так просто, то физику не считали бы сложной наукой. Часто задача решается с помощью цепочки формул, каждая из которых выводит на использование других формул и материалов. Именно решение практических задач позволяет наилучшим образом понимать естественнонаучные дисциплины.
УДАЧИ!!!

Если вы хотите самостоятельно научиться решать задачи по физике, в первую очередь вы должны изучить необходимый теоретический материал. Т.е. знать законы, формулы, определения, понимать, почему они записываются именно так, в каких случаях их можно применять, а в каких нет. Однако, при решении всех задач приходится выполнять стандартный набор действий, который даже больше связан с математикой. С него и начнем.

Краткая запись условия.

Краткая запись начинается со слова "Дано:". Ниже вы пишете буквенные обозначения тех физических величин, которые даны в задаче и то, чему они равны. Например, такая задача.
Протон, пройдя ускоряющую разность потенциалов U=800 В, влетает в однородные, скрещенные под прямым углом магнитное (В=50 мТл) и электрическое поля. Определить напряженность Е электрического поля, если протон движется в скрещенных полях прямолинейно.
Тут авторы задачи почти все сделали за вас. Вам останется только выписать, что U=800 В, В=50 мТл, а найти надо E.
Посмотрите другую задачу.
Напряженность магнитного поля в центре кругового витка с током равна 30 А/м. Радиус витка равен 8 см. Определите напряженность поля на оси витка в точке, расположенной на расстоянии 6 см от центра витка.
В ней уже не указано какой буквой обозначить данную физическую величину. Поэтому, придется вспомнить, что напряженность магнитного поля - H, радиус - R, расстояние от центра можно обозначить h. Но обратите внимание, что одна напряженность нам дана, а другую надо найти. Т.е. одна и та же физическая величина в условии присутствует дважды. Поэтому их нужно обозначить разными индексами (символ внизу справа от буквы) Получим H1 и H2. В итоге "дано" запишем так:
Дано:
Н1 = 30 А/м
R = 8 см = 0,08 м
h = 6 см = 0,06 м
Н2 - ?
Настоятельно рекомендую запомнить, какими буквами обозначаются физические величины. Тогда задача уже не будет казаться сверх сложной. Вы же уже можете сделать к ней краткую запись, а это уже часть решения. Для тех кто все же не помнит все обозначения я сделал шпаргалку . Используйте ее пока не запомните. Поверьте, запомнить не так уж и сложно.
Этот этап решения самых простой и обычно не вызывает особых сложностей. Правда есть задачи, где условие немного запутано.
Сила тока в горизонтально расположенном проводнике длиной 20 см и массой 4 г равна 10 А. Найдите минимальную индукцию магнитного поля, в котором сила тяжести может быть уравновешена силой Ампера.
После слов "сила тока" дано число, которое обозначает длину проводника, потом дана масса. Только в конце предложения написано "10 А", это и есть значение силы тока. Такая запись часто запутывает тех, кто не внимательно читает условие. Не спешите, следите за логикой изложения, смотрите на единицы измерения. Сила тока не может измеряться в сантиметрах или граммах. Все это поможет вам правильно записать условие и перейти к следующему этапу. На всякий случай привожу пример краткой записи условия последней задачи.
Дано:
I = 10 А
l = 20 см = 0,2 м
m = 4 г = 0,004 кг
B - ?

Перевод единиц измерения в систему СИ.

Вы уже наверно обратили внимание на то, что в краткой записи условия одни числовые значения записаны как в тексте задачи, а другие переведены в новые единицы измерения. Например, h = 6 см = 0,06 м. Это сделано потому, что каждая физическая величина имеет основную единицу измерения. Эти единицы указаны в шпаргалке . Чтобы числовой ответ в задаче получился правильным, обязательно надо перевести все неосновные единицы в основные. Вот в этом обычно и начинаются первые трудности. На самом деле все довольно просто. Надо только понять и запомнить порядок действий. Почти все неосновные единицы измерения получаются прибавлением приставки к основным. Например:
кН (килоньютон) - перед Ньютоном стоит приставка "кило";
км (километр) - перед метром стоит приставка "кило";
см (сантиметр) - перед метром стоит приставка "санти";
мм (миллиметр) - перед метром стоит приставка "милли";
МДж (мегаджоуль) - перед Джоулем стоит приставка "мега";
Думаю этих примеров достаточно, чтобы понять, как образуются неосновные единицы. Теперь научимся переводить их в основные. Для этого нам понадобится такая таблица.

Показатель степени Наименование Обозначение Показатель степени Наименование Обозначение
18 эксо Э -1 деци д
15 пета П -2 санти с
12 тера Т -3 милли м
9 гига Г -6 микро мк
6 мега М -9 нано н
3 кило к -12 пико п
2 гекто г -15 фемто ф
1 дека да -18 атто а

Далее все просто. Рассмотрим, как переводить в основные единицы на примерах.
F = 3 кН. Смотрим в таблицу, приставке "к" соответствует число 3. Значит надо перенести запятую на три знака вправо. Если запятой нет, то просто дописать три нуля. Тогда получим F = 3 кН = 3000 Н. Обратите внимание, приставку "к" уже второй раз не пишем, т.к. вместо нее появились нули.
F = 3,2 кН. Переносим запятую на три знака. F = 3,2 кН = 3200 Н
F = 3 мН. Смотрим в таблицу, приставке "м" соответствует число -3. Значит надо перенести запятую на три знака влево. Если запятой нет, ставим ее после тройки. Тогда получим F = 3 мН = 0,003 Н. Обратите внимание, приставку "м" опять уже второй раз не пишем, т.к. вместо нее появились нули.
720 нм. Приставке "н" соответствует -9. Тогда получим 0,000000720 м или 0,00000072 м. Перенесли запятую на девять знаков влево.
5 МВ (мегавольт). Мега, значит 6. Переносим запятую на шесть единиц вправо. 6000000 В.
В последних двух примерах получилось много нулей. Это не очень удобно. Но можно значительно все упростить, если применять более удобный способ перевода. Посмотрите как это делается.

Пишем данное нам число, далее приписываем "умножить на 10", и ставим показатель степени, соответствующий приставке. Все просто. Чуть сложнее с объемом и площадью, плотностью и некоторыми другими единицами. Читайте о них подробнее на этой странице.

Вывод формул.

Почти во всех задачах приходится выразить неизвестную величину из основной формулы. Например, вы решаете задачу на закон Джоуля-Ленца.

Все величины, входящие в формулу известны, надо выразить из нее время и найти его. Для этого можно использовать простое правило. Если в формуле нет сложения и вычитания, то буквы можно переносить из левой части формулы в правую и наоборот. Поясню, что левая часть это то, что записано слева от равно, правая - справа от равно. При переносе то, что было записано в числителе (сверху от черты дроби) попадает в знаменетель (снизу от черты дроби) и наоборот, из знаменателя попадает в числитель.
Тепер научимся применять это правило. Нам надо найти время. Смотрите как это делается.


Все очень просто. Даже думать не надо! Переноси все лишнее и новая формула готова. Посмотрите еще пример с уравнением Менделеева-Клапейрона.


Немного сложнее обстоит дело, когда нейсвестная величина в знаменателе.