Наша земля миллионы лет назад (6 фото).

Каким образом жизнь на Земле смогла сохраниться во время чудовищных похолоданий, несколько раз охватывавших нашу планету 600-800 миллионов лет назад? Испытала ли Земля тотальное оледенение — вплоть до установления ледового покрова на всей акватории океана? Модель, предложенная канадскими исследователями, показывает, что океан, по-видимому, никогда не замерзал полностью, а Земля представляла собой не ледяной шар, а «слякотный». Резкие колебания климата в ту далекую эпоху были результатом взаимодействия чисто физических процессов и жизнедеятельности бактерий, которые осуществляли минерализацию (окисление) растворенного в океане органического вещества. Похолодание способствовало обогащению кислородом водной толщи, а тем самым создавались благоприятные условия для бактерий, которые, перерабатывая органику, поглощали кислород и выделяли углекислый газ. Попадая из воды в атмосферу, углекислый газ создавал парниковый эффект, то есть удерживал тепло у поверхности.

В истории Земли был период особенно холодный, отличавшийся самыми мощными оледенениями. Это время так и называют «криогенный период неопротерозойской эры » (см. Cryogenian). Продолжался он довольно долго — 220 миллионов лет (850-630 миллионов лет назад) и характеризовался чередованием небольших потеплений и сильнейших похолоданий. На суше, представленной остатками древнейшего материка — Родинии , толщина льда в некоторых местах достигала 6 км, а сами льды доходили до тропических широт. Уровень океана тогда понижался на километр (для сравнения скажем, что в последнее значительное оледенение, имевшее место 20 тыс. лет назад, он снижался только на 120 м). Некоторые исследователи полагают, что во время неопротерозойских оледенений лед покрывал не только сушу, но и весь океан.

Белая поверхность нашей планеты, напоминавшей в то время снежный ком (см.: гипотеза «снежной Земли», «Snowball Earth hypothesis»), хорошо отражала падающий на нее солнечный свет и, соответственно, почти не нагревалась. Такое холодное состояние Земли было весьма устойчивым. Объяснить же, каким образом планета смогла из него выйти, было непросто. Обычно предполагали, что произошло это благодаря серии мощных извержений вулканов, сопровождавшихся выбросом в атмосферу огромного количества парниковых газов (прежде всего СО 2), выпадением на белую от снега и льда поверхность Земли пепла и кислых дождей. Увеличение содержания в атмосфере парниковых газов позволяло удерживать тепло, а пепел препятствовал отражению солнечных лучей, что и приводило к постепенному оттаиванию поверхности Земли. Жизнь в это время была представлена только обитавшими в океане бактериями и мелкими одноклеточными водорослями. Первые крупные многоклеточные (так называемая эдиакарская фауна) появились только в самом конце неопротерозоя. Хотя бактерии и протисты значительно устойчивее к неблагоприятным воздействиям, чем многоклеточные, возможность их выживания в условиях длительного глобального оледенения весьма сомнительна.

Однако трудностей традиционно предлагаемого объяснения удалось избежать в рамках новой модели, которую уже окрестили как «слякотная Земля» (Slushball Earth) — в отличие от Земли «снежной» (Snowball Earth). Авторы этой модели, канадские исследователи Ричард Пельтье (Richard Peltier), Йонганг Лиу (Yonggang Liu) и Джон Краули (John W.Crowley) — все с физического факультета Торонтского университета (Онтарио, Канада), — предположили, что океан никогда не замерзал целиком. В нем всегда оставались достаточно большие открытые участки, где продолжался фотосинтез фитопланктона и где происходил интенсивный газообмен между водной толщей и атмосферой. При построении модели использованы как данные по физическим процессам, определяющим климат, так и представления о жизнедеятельности организмов, обитавших в океане.

О масштабах образования органического вещества в отдаленные геологические эпохи обычно судят по «изотопике» — по относительному содержанию в осадочных породах стабильного изотопа углерода 13 C. Дело в том, что в процессе фотосинтеза фитопланктонные организмы (а в последствии — и растения) потребляют преимущественно более распространенный легкий изотоп углерода 12 C. Соответственно, если где-то осаждается органическое вещество, то оно оказывается обедненным 13 C. А в воде, где жили фотосинтезирующие организмы, содержание более тяжелого изотопа 13 C оказывалось, наоборот, повышенным. Если же там образовывались карбонаты, то они также отличались повышенным содержанием 13 C (собственно, по этим карбонатам мы и судим о составе воды много миллионов лет тому назад).

Органическое вещество, синтезированное фитопланктоном, после отмирания клеток выпадает в осадок или же остается в толще воды в виде растворенного органического вещества, которое оценивают обычно как растворенный органический углерод — Dissolved Organic Carbon (DOC). В океане и сейчас углерода в такой форме значительно больше, чем связанного в телах организмов или находящегося во взвешенных частицах детрита . А в эпоху неопротерозоя, когда не было еще планктонных животных, потребляющих фитопланктон, такого растворенного органического вещества было существенно (на порядки) больше. Но растворенное органическое вещество — это пища для бактерий, которые при наличии в среде кислорода осуществляют его разложение (минерализацию). В процессе дыхания бактерий выделяется углекислый газ СО 2 , который может диффундировать в атмосферу.

В своей модели Пельтье и его соавторы исходят из того, что похолодание способствует обогащению поверхностных вод океана кислородом — в холодной воде кислород как и другие газы, растворяется гораздо лучше, чем в теплой. А чем больше кислорода, тем эффективнее протекает деятельность бактерий, минерализующих растворенное органическое вещество и выделяющих углекислый газ, который, попадая из океана в атмосферу, создает парниковый эффект и не позволяет океану остывать слишком сильно. Таким образом работает обратная связь, не допускающая крайнего необратимого охлаждения.

Модель (состоящая на самом деле из нескольких блоков: для каждого бока своя подмодель) предсказывает устойчивые колебания только в том случае, когда чисто физические процессы теплообмена увязаны с процессами минерализации органического вещества, осуществляемыми бактериями. Не исключаю, что модель Пельтье скоро будет подхвачена сторонниками гипотезы Геи (когда-то выдвинутой Джеймсом Лавлоком). Ведь в соответствии этой моделью получается, что организмы в ходе своей жизнедеятельности поддерживают планету (Гею) в состоянии, пригодном для дальнейшей жизни. По сути, это одно из краеугольных положений концепции Геи.

Текущая страница: 1 (всего у книги 7 страниц)

А. Ю. Розанов
Что произошло 600 миллионов лет назад

АКАДЕМИЯ НАУК СССР

Ответственный редактор академик Б. С. Соколов

Рецензенты:

д-р биол. наук В. Н. Шиманский канд. геол.-мин. наук М. А. Федонкин

Введение

В истории развития жизни на Земле было несколько событий, которые можно считать кардинальными. Не говоря уже о самом возникновении жизни, по поводу чего существует множество гипотез, очень важными в истории были:

– переход от прокариот (или безъядерных одноклеточных организмов) к эвкариотам (одноклеточным организмам с ядром);

– переход от одноклеточных организмов к многоклеточным;

– приобретение организмами возможности строить скелет.

Именно об этом последнем событии, произошедшем около 600 млн. лет тому назад, речь в нашей книге. Этот рубеж обычно в специальной литературе называется границей докембрия и кембрия (рис. 1).

Время, с которого организмы начали строить скелет и до нынешнего дня, называют фанерозоем. Именно эта фанерозойская история органического мира изучена наиболее достоверно, так как с момента появления скелетных организмов они стали легко захороняться в породах, и при геологических изысканиях специалисты обнаруживают остатки этих скелетов в больших количествах. Долгое время человечество черпало знания об истории органического мира, как правило только изучая органические остатки из пород фанерозойского возраста.

До последнего времени все курсы палеонтологии и исторической геологии во всем мире были снабжены информацией об эволюции жизни почти исключительно только по фанерозойской истории. Однако чем больше накапливался материал по самым ранним этапам фанерозоя, тем становилось все яснее исключительное богатство фауны начала кембрия. В последние годы стало ясно, что почти вое типы организмов, существующих ныне, существовали и тогда. Естественно, возник вопрос! «А были ли они раньше? И почему мы не находим их остатки в более древних слоях?».

Человеку, оценивающему продолжительность различных явлений в масштабе времени своей жизни, очень трудно воспринимать миллионы и миллиарды лет. Однако для представления о темпах изменений в органическом мире нам придется фактор времени рассматривать именно в таких категориях, как миллионы и миллиарды лет. Сколь велики эти цифры, можно представить себе исходя из некоторых сравнений.

Человечество от момента своего появления на Земле прошло всю свою историю всего чуть более чем за 1 млн. лет, а первая жизнь на Земле появилась более 3-3,5 млрд. лет тому назад. Известные всем мамонты давно вымерли, но это было всего лишь около 10 тысяч лет назад, а знаменитые динозавры исчезли с лица Земли около 65-70 млн. лет назад.

Рис. 1. Геохронологическая шкала. Справа более детально показан интервал вокруг границы докембрия и кембрия

Но вернемся к границе кембрия и докембрия. Уместно, вероятно, вспомнить, что сегодня понятие «граница докембрия и кембрия» для всех геологов и палеонтологов имеет вполне определенный реальный осязаемый смысл. Это произошло потому, что ученые смогли выработать принцип ее проведения и в настоящее время озабочены лишь выбором наилучшего стандарта в одном из районов мира. Но если вернуться на 20-25 лет назад, то картина была совершенно иной.

На специальном симпозиуме в Париже в 1957 г. собрались крупнейшие в мире знатоки стратиграфии и палеонтологии позднего докембрия и раннего кембрия. Было высказано много самых различных вариантов возможного распознания этой границы. Причем более всего говорилось о необходимости учитывать различного рода геологические явления, такие, как угловые несогласия, перерывы, ледниковые отложения, и меньше всего надежд было на палеонтологический метод. Были лишь редкие энтузиасты в лице французов Г. А. Шубера и П. Юпе и американца Г. Виллера, которые призывали отдать должное палеонтологическим данным.

Заключение симпозиума в Париже было крайне пессимистично. В решениях было записано, что симпозиум не считает себя компетентным предложить эталон серии, где вопрос о нижней границе кембрия может быть решен однозначно, и вообще не считает возможным решить этот вопрос хоть в какой-то мере в настоящее время.

Но последующие 10 лет привели к кардинальным изменениям в отношении специалистов к проблеме кембрия и докембрия. В 1962 г. группа совсем молодых советских специалистов из Геологического института АН СССР, проанализировав материал, предположила, что проблема значительно проще, чем она казалась умудренным опытом специалистам.

Во-первых, показали они, только палеонтологический метод может быть использован при решении этой проблемы. И во-вторых, они показали, что существует рубеж, на котором очень многие группы ископаемых приобретают возможность строить скелет, и, таким образом, этот рубеж хорошо распознается и может быть принят за искомую границу. Старшие коллеги говорили, что такая простота решения проблемы свойственна молодости и что, вероятно, дело обстоит, конечно, много сложнее.

В 1966 г. акад. В. В. Меннер писал, что «нет и двух специалистов, которые имели бы но этому вопросу общее мнение» (имеется в виду вопрос о границе кембрия и докембрия), В. В. Меннер очевидно был прав и не прав одновременно. Мнения, действительно, у ученых сильно расходились, но эти молодые специалисты имели тогда безусловно одно мнение. В том же году вышла их совместная монография, а уже в следующем, 1967 г., на Всесоюзном совещании в Уфе по поводу доклада о границе кембрия и докембрия, сделанного этими специалистами, было сказано, что это настолько очевидно, что не стоит ломиться в открытые двери.

Но представления советских исследователей по этому поводу в то время еще не разделяли их зарубежные коллеги. В 1966 г. во время моего пребывания в Англии тогдашний президент кембрийской подкомиссии Международной стратиграфической комиссии Джеймс Стабблфилд, обсуждая результаты исследований, проведенных в СССР, предложил организовать международную экскурсию в Якутию, где находились наилучшие разрезы переходных толщ от докембрия к кембрию. Он считал, что правота выводов, сделанных советскими специалистами, должна быть подтверждена фактическим показом на месте. Скепсис зарубежных специалистов только теперь может быть понят, поскольку в те годы, в том числе и во время Парижского симпозиума, не были известны материалы по Сибири, Монголии, Китаю и Ньюфаундленду. О том, что именно в этих регионах находятся наиболее представительные разрезы, ученые всего мира узнают лишь позднее, в 70-е и 80-е годы.

Серьезной вехой в истории исследований по границе кембрия и докембрия был выход в свет крупной монографии советских специалистов «Томмотский ярус и проблема нижней границы кембрия», В этой книге были описаны многочисленные материалы по Сибири, включая всю древнейшую фауну, и проанализирован существовавший на то время весь мировой материал. Эта работа стала настольной книгой всех исследователей, советских и зарубежных, занимающихся проблемой границы кембрия и докембрия. Именно в этой работе были сформулированы все основные теоретические положения, положенные позднее в основу решений Международной рабочей группы по границе кембрия и докембрия, созданной в 1972 г. в Монреале на Международном геологическом конгрессе по инициативе академиков В. В. Меннера, Б. С. Соколова и проф. М. Глесснера. Пройдет еще более 10 лет, и эту книгу переиздадут в США, и зарубежные специалисты будут называть ее «наша библия».

Начиная с 1973 г., когда Международная рабочая группа впервые посетила сибирские разрезы, была проделана огромная исследовательская работа как самой Рабочей группой, так и национальными рабочими группами. В 1979 г. в Кембридже и в 1983 г. в Бристоле были подведены итоги и сформулированы основные принципы проведения границы. Уровень стал всем ясен, и осталось выбрать эталонный разрез. А претендентов после долголетней селекции осталось только три: Сибирь, Ньюфаундленд и Китай. Но, как понимает читатель, выбор эталона – это уже задача, далеко выходящая за рамки просто научной задачи. При выборе стратиграфических эталонов играют роль различные мотивы, такие, как доступность, сохранность и т. д.

В заголовке книги приведена цифра 600 млн. лет тому назад. Но читатель должен отнестись снисходительно к этой цифре, так как до сих пор не очень ясна реальная абсолютная датировка границы кембрия и докембрия, и разница в представлениях составляет до 70 млн. лет, а может быть, и даже несколько больше.

В наиболее известных последних учебниках, сводках и руководствах была принята цифра 570 млн. лет. Но это некое усредненное представление, которое скорее отражает наше временное восприятие этого рубежа, чем реальное положение вещей.

Самым сложным моментом в датировке границы кембрия и докембрия было то, что цифры, полученные по породам, реально находящимся на границе кембрия и докембрия, в классических разрезах Сибири признавались недоброкачественными и действительно составляли 520-530 млн. лет, что обычно считалось уже низами среднего кембрия. Другие же значения, близкие к 570-550 млн. лет, как правило, были получены из пород, стратиграфическое положение которых было недостаточно хорошо доказано.

Долгое время на основании исследований верхов юдомия (венда), непосредственно подстилающего томмотский ярус кембрия, существовала тенденция к удревнению возраста границы. Ряд исследователей считали, что граница проходит где-то в пределах 600 млн. лет.

Однако в самое последнее время стали развиваться две совершенно противоположные тенденции. По материалам из Китая, где также находится один из лучших разрезов переходных толщ от докембрия к кембрию, китайские и австралийские ученые стали получать цифры более 600 млн. лет, причем относящиеся уже даже к относительно более молодым отложениям, чем томмотские. Эти данные были получены с помощью самых современных радиоизотопных методов (Rb/Sr) и вызвали полную растерянность среди исследователей. Правда, вскоре к этим цифрам стали относиться более скептически, ставя под сомнение методическую сторону исследований.

В то же самое время группа исследователей во главе с французским ученым Ж. Одэном стала доказывать, что граница кембрия и докембрия проходит в пределах 530– 540 млн. лет. Ж. Одэн и его коллеги вернулись снова к старому методу определения возраста К/Ar по глаукониту (минерал из группы слоистых силикатов), «реанимировали» его, показав, что при соблюдении определенных условий этот метод может давать очень точные результаты.

Не вдаваясь в обсуждение самого метода, отметим, однако, что материал, использованный Ж. Одэном, со стратиграфической точки зрения вызывает большие сомнения. В большинстве случаев, если не во всех приводимых этой группой исследователей, невозможно доказать, что определения относятся к отложениям собственно пограничных отложений верхов венда и томмотского яруса. Более того, датировки, приводимые этими исследователями, говорят скорее о возрасте крупных тектонических перестроек, которые происходили в послетоммотское время на обширных территориях Северной Европы и, естественно, не могли не повлиять на смежные регионы. А именно данные по Европе и Северной Африке лежат в основе рассуждений Ж. Одэна и его коллег.

Таким образом, сегодня вопрос о реальной датировке границы кембрия и докембрия, как и прежде, остается нерешенным. Цифра 570 не была поколеблена, но и цифра 600 с той же степенью достоверности (или, вернее, недостоверности) может быть принята. Сегодня лишь ясно, что цифры 630-650 указывают уже заведомо на венд (таких данных вполне достаточно), а цифры 540-530 – на кембрий (и таких данных тоже уже весьма достаточно).

Я обсуждаю здесь ситуацию с датировками границы кембрия и докембрия не только потому, что было бы интересно знать точную цифру, но и для того, чтобы показать еще раз, что калибровка стратиграфических подразделений и определение границ с помощью геохронологии («абсолютного возраста») не может быть произведена. Все цифры абсолютного возраста нужны нам лишь для того, чтобы прикинуть временной масштаб явлений в истории Земли и органического мира, которые мы обсуждаем.

Глава I. Первые 3-4 миллиарда лет

Итак, начнем все сначала. Еще лет 60-70 назад представления о возрасте Земли и времени образования жизни были таковы, что речь шла всего лишь о первых сотнях миллионов лет. Однако в связи с бурным развитием ядерной физики и изотопной геохронологии, т. е. с появлением возможности определения абсолютного возраста горных пород, мы стали получать данные о более древнем возрасте пород Земли. В последние два десятилетия сложилось устойчивое представление о том, что наиболее достоверные цифры, полученные по породам, составляют несколько более 3,5 млрд. лет. Но вот совсем недавно австралийскими учеными были получены цифры более 4 млрд. лет. Сегодня господствует представление об образовании Земли 4,5 млрд. лет тому назад.

Параллельно с годами и возраст древнейших находок жизни все увеличивался. Сегодня это уже более 3-3,5 млрд. лет тому назад. А что скажут ученые завтра? А послезавтра?

Следует, однако, заметить, что те находки органических остатков, возраст которых приближается к 3 млрд. лет, представлены организмами, хотя и очень примитивными, но, возможно, уже использующими в своем жизненном цикле кислород. С другой стороны, несмотря на многообразие представлений о механизме возникновения жизни, все современные исследователи более или менее едины в представлении о том, что атмосфера, в которой зародилось живое, была, безусловно, бескислородной. И, таким образом, возникает мысль о том, что жизнь зародилась заведомо ранее 3,5 млрд. лет, т. е. до появления кислородпотребляющих и кислородвыделяющих организмов.

Итак, 3-3,5 млрд. лет тому назад в атмосфере, вероятно, присутствовал кислород. Однако обычно считается, что в то время содержание кислорода составляло менее 0,1% от современного его содержания в атмосфере, Но ряд исследователей, занимающихся изотопией таких элементов, как сера и углерод, в древних породах архея и протерозоя, предполагают, что процент содержания кислорода в атмосфере был значительно выше.

Советский исследователь В. И. Виноградов прямо пишет: «Детальное, насколько это возможно, изучение изотопного состава серы и углерода в архейских метаосадочных породах показывает сходство изотопного состава сульфатной серы и карбонатного углерода с фанерозойскими и современными осадками. Это служит убедительным доказательством принципиальной неизменности условий осадконакопления в течение всей геологической истории планеты. В свою очередь, это означает, что газоводная оболочка Земли в ее современном виде (составе) тоже существует свыше 3500 млн лет. И столь же длительное время существует биосфера, и активность ее по отношению к круговороту циклических элементов остается практически постоянной.

Наиболее сложно представить себе, в каких формах была архейская биосфера и как достигался ее высокий уровень активности. Сегодня на эти вопросы трудно ответить даже гипотетически. Во всяком случае, ответ на них должен быть связан с коренным пересмотром современных представлений».

В этой связи интересно, что группа ученых Сибирского отделения АН СССР во главе с Ю. П. Казанским пришла к близкому заключению, но совершенно на другой основе. Они исследовали газовые включения в древних породах. Вывод – в архее кислорода было уже очень много, а в протерозое состав атмосферы практически уже одинаков с современным.

Однако многие исследователи полагают, что находки так называемых строматолитов, образованных бактериями и синезелеными водорослями, не позволяют утверждать существование продуцентов кислорода. С их точки зрения, синезеленые водоросли (и, конечно уж, бактерии) использовали фотосистему, при которой CO 2 + 2Н 2 → CH 2 O + H 2 O + 2S. И, таким образом, находки этих организмов в древнейших толщах не противоречат наличию в то время восстановительных условий в присутствии сульфидов.

В конечном итоге все исследователи приходят к мысли о насыщении атмосферы кислородом, но разным ученым представляется, что это произошло на разных этапах истории Земли. Однако существенных противоречий в том, что водная оболочка Земли возникла в результате дегазации мантии, нет. Проблема лишь в том, что одни считают, что дегазация мантии происходила более или менее постепенно, другие – достаточно быстро и очень давно. Одни считают, что это произошло ранее 3,5 млрд. лет, а другие – в интервале 4,6-2,5 млрд. лет.

На сегодняшнем уровне наших знаний кажется достаточно очевидным, что существует два основных источника кислорода. Первый из них – это вода, в результате диссоциации которой, под влиянием ультрафиолетовых лучей, образуется водород и кислород. Водород в основном уходит в космос, а более тяжелый кислород остается.

Второй источник – это фотосинтез. В течение времени, естественно, второй источник стал несоизмеримо более существенным.

Следовательно, для нас очень важны два момента в истории Земли. Момент появления больших масс воды, который мы можем в грубых чертах считать и моментом появления свободного кислорода, и момент появления фотосинтезирующих организмов, который опять же с определенными допущениями можем считать моментом, с которого началось резкое увеличение свободного кислорода в атмосфере.

Есть целый ряд показателей, которые, по мнению многих исследователей, дают основания думать, что еще 2,5 млрд. лет тому назад кислорода в атмосфере было значительно меньше, чем сейчас. К ним относятся такие показатели, как преобладание FeO в породах над Fe 2 O 3 , большая редкость в древних породах глауконита; высокие отношения марганца к железу в докембрийских толщах по отношению к фанерозойским. Но все это говорит лишь о том, что кислорода было меньше, но его могло быть достаточно много.

В. И. Виноградов, конечно, несколько увлекается, говоря о том, что газоводная оболочка Земли в ее современном виде (составе) существует свыше 3500 млн. лет. Если бы это было абсолютно так, то вряд ли мы имели бы ту разницу, которую мы имеем в наборах пород докембрия и фанерозоя. Эта разница породных ассоциаций несомненно связана с эволюцией гидро-, атомо– и биосферы. Но несомненной мне кажется правота В. И. Виноградова в вопросе о том, что если мы находим осадочные породы, а в них остатки синезеленых водорослей, то это является показателем и водной среды и достаточно высокого уровня содержания кислорода.

Рис. 2. График содержания O 2 в атмосфере Земли

1 – по Беркнеру и Маршаллу, 2 – по А. Ю. Розанову

Итак, вернемся снова к фактам. Древнейшие строматолиты имеют возраст около 3,5 млрд. лет, следовательно, уже в это время процесс накопления свободного кислорода, вероятно, идет уже очень быстрыми темпами. Пока трудно оценить содержание кислорода в цифрах, но характер кривой увеличения его в атмосфере (рис. 2) несомненно должен быть иным, чем тот, который обычно принято рисовать согласно представлениям Беркнера и Маршалла.

Точно так же мне представляется, что точка Пастера (1% О 2 от современного содержания) должна быть резко смещена к уровню как минимум 2,2-2,5 млрд. лет, а точка Беркнера-Маршалла (10% O 2 от современного содержания) – к уровню 1,8-2,0 млрд. лет.

Итак, находки самых древних ископаемых говорят нам скорее всего о присутствии кислорода в атмосфере, но они же показывают, что среди организмов присутствуют, вероятно, пока только прокариоты.

Момент появления ядерных организмов, т. е. эвкариот, установить очень трудно. Читатель вправе спросить – почему? Это происходит потому, что морфологически в ископаемом состоянии первые эвкариоты ничем практически не отличались от прокариот, а выяснить, было ли у организма ядро или не было, на ископаемом материале очень сложно. В многочисленных препаратах, полученных из достаточно древних довендских пород, были обнаружены некие округлые организмы с темными пятнами в центральной части, которые сравнивались с ядрами, и, естественно, было высказано предположение о находках эвкариот. Но достоверность таких утверждений совершенно ничтожна, хотя и опровергнуть их тоже невозможно. Ряд исследователей находят, однако, возможным считать некоторые сферические образования и без темных пятен внутри зелеными и красными водорослями, т. с. настоящими эвкариотами.

Более того, например, американские ученые Ля Берж, Роббинс и Шмидт на основе изучения органических остатков из пород с возрастом около 2 млрд. лет района озера Верхнего приходят к выводу о существовании в это время не только одноклеточных эвкариот, но и более высокоорганизованных организмов. Этот вывод сделан на том основании, что изученные ими органические остатки из кремней и сланцев напоминают зеленые водоросли и пелеты планктонных организмов. Что это значит? А это значит, что уже существуют какие-то планктонные организмы, имеющие пищеварительную систему. Очень интересно и то, что эти находки сделаны в толще железистых кварцитов. Но об этом несколько позже.

Совершенно ошеломляющие данные, которые в настоящее время даже трудно оценить, были получены польским специалистом проф. З. Валенчаком. Он исследовал образцы архейских метаморфических пород и обратил внимание на то, что при применении разных оптических методов в породах наблюдаются «тени» организмов, образованных разнообразными дефектами раскристаллизации. Это дало ему возможность предположить, что, во-первых, многие породы, считавшиеся магматогенными, т. е. происходящими за счет интрузивной или вулканической деятельности, на самом деле являются первично осадочными; во-вторых, З. Валенчак считает, что уровень развития и разнообразия жизни в архее был очень высок. Одни из обнаруженных им организмов по морфологии и размерам чрезвычайно напоминают грибы, другие – водоросли. В этом случае, если это не совершенно необычные и удивительные артефакты, мы должны смириться с мыслью о появлении многоклеточных организмов уже в архее.

З. Валенчак опубликовал результаты своих наблюдений еще в 1981 г., но, поскольку эта работа была напечатана в специализированном минералого-геохимическом сборнике, она, естественно, пока не привлекала внимание палеонтологов и биологов. Однако, если Валенчак окажется прав, мы будем очень скоро свидетелями коренного пересмотра представлений об эволюции живого на Земле. Надо сказать, что в соответствии о представлениями Валенчака находятся результаты работ группы советских ученых, которую возглавлял акад. А. В. Сидоренко, и американца Б. Виндли, Они показали, что в породах глубокого докембрия широко развиты признаки кор выветривания и палеопочв, речных отложений, тиллитов, континентальных красноцветов, моласс и наземного вулканизма. Это предполагает, что геологические процессы, включая процессы выветривания в докембрии, принципиально не отличались от процессов более поздних эпох.

Вопрос о присутствии кислорода в атмосфере обсуждается и в связи с исследованиями характера магнетита в древних породах. На основании отличий абиогенного п биогенного магнетита американские ученые Д. Киршвинк и С. Чанг приходят к выводу о том, что 2,2 млрд. лет тому назад несомненно присутствовал свободный кислород. Однако в породах с возрастом 3,5 млрд. лет им не удалось пока обнаружить признаков биогенного магнетита.

Существует еще один важный комплекс данных, влияющий на наши представления об эволюции кислорода атмосферы. Из докембрия Алтае-Саянской области, а точнее, из отложений, относимых к среднему рифею, были описаны интереснейшие образования, изучавшиеся О. Сосновской. Ею выделена целая группа образований, названных камазиидами. Наиболее вероятно, что в систематическом плане они более всею напоминают кишечнополостных. Однако нахождение кишечнополостных, возраст которых более 1 млрд. лет, очень серьезный факт. Это может свидетельствовать о том, что кислорода тогда было очень много, а температура была не очень высокой.

В этой связи нельзя не вспомнить снова описанную лет 20 тому назад М. А. Лейтесом Udocania problematica из удоканских отложений Сибири, возраст которых может оказаться более 1,5 млрд. лет, и описанные В. Е. Забродиным ходы илоедов из верхнего рифея Урала. Еще в конце 50-х годов академики В. В. Меннер и Б. С. Соколов предположили целентератную, или полихетную, природу удоканий. Позднее многократно делались безуспешные попытки доказать их неорганическую природу. Новый многочисленный материал, полученный и исследованный в последнее время Т. А. Саютиной, позволяет утверждать несомненную органическую природу удоканий. Они представляют собой узкоконические трубки с квадратным поперечным сечением. Длина трубки может достигать нескольких сантиметров. В редких случаях наблюдались короткие пластинчатые образования, идущие от стенок к центру трубки. Удокании обычно встречаются внутри строматолитовых построек.

Все эти находки вызывают острые дискуссии, природа их действительно не очень ясна, но очень важно, что все они являются производными живых организмов и, вероятно, очень высокой степени организации.

Исходя из всех приведенных фактов и соображений, попробуем представить себе в самых грубых чертах общий ход развития органического мира в криптозое (рис. 1) и основных процессов, происходивших в атмосфере и гидросфере.

В результате дегазации Земли образовывалась водная оболочка. Кажется, с этим все согласны. Разница в представлениях состоит в том, сколько ушло на это времени. Но даже сторонники «катастрофической дегазации», вероятно, отводят на нее не менее 0,5-1 млрд. первых лет существования Земли, т. е. в течение этого времени шло образование сначала озер, потом морей, а уж позднее и океанов. Однако по представлениям других исследователей процесс дегазации шел «медленнее», и тогда соответственно эволюция озеро→море→океан протекала, возможно, более длительный период.

В такой трактовке эволюции количества водных масс на земной поверхности понятно присутствие в архейских породах речных, озерных и т. п. осадочных образований. Вероятно, вскоре после того, как появились крупные водные бассейны, появились и первые фотосинтезирующие организмы. Это было по меньшей мере 3-3,5 млрд. лет тому назад. А уже в интервале времени 3-2,5 млрд. лет тому назад могли появиться эвкариоты и даже примитивные многоклеточные организмы.

Возникает естественный вопрос: каким же образом при наличии недостатка кислорода в атмосфере и теоретически расчетных высоких температурах могли существовать и развиваться столь высоко организованные организмы? В отношении расчетных температур вопрос, вероятно, не столь сложен. Достоверные ледниковые образования известны со времени 2,4-2,5 млрд. лет тому назад. Естественно, что ледники не могли образовываться при температурах 40-45°. Естественно и то, что наличие столь древних ледников приводит нас к выводу о существовании резкой климатической дифференциации в отдельные периоды позднего архея и раннего протерозоя.

Вероятно, именно климатическая дифференциация и создавала многочисленные «оазисы», в которых поступательное усложнение жизни могло осуществляться в темпах, соизмеримых с более поздними, когда свидетельства присутствия жизни становятся все более многочисленными.

Если эти рассуждения верны, то не приходится удивляться находкам удоканий и камазиид в породах с возрастом более 1 млрд. лет.

Теперь вспомним, что удокании и камазииды считаются кишечнополостными или червями или, по крайней мере, группами, близкими к ним.

Очень важным обстоятельством в этих рассуждениях оказывается гигантизм вендо-эдиакарской фауны. Гигантизм, исходя из опыта исследований известных фанерозойских групп, чаще всего свойствен тем группам, которые находятся на стадии завершения своего развития. Правда, М. А. Федонкин предложил и другие объяснения гигантизма некоторых представителей вендо-эдиакарской фауны. Он полагает, что вендские хищники были микрофагами, в связи с чем жертвы могли спастись, только увеличивая в процессе эволюции свои размеры. Кроме того, по аналогии с современными книдариями, которые имеют в тканях симбиотические водоросли, вендские организмы также могли иметь их. М. А. Федонкин допускает, что этот тип симбиоза был одним из самых древних и главных в венде и был распространен значительно шире, чем ныне. «Если это так, – пишет М. А. Федонкин, – то широкая плоская форма, свойственная многим вендским Metazoa, обитавшим в мелководье, способствовала собиранию наибольшего количества света, который необходим для интенсивного метаболизма симбиотических водорослей». В этой связи остается, правда, не ясным вопрос, почему в настоящее время организмы, использующие симбиоз с водорослями, не страдают гигантизмом?

Фауну венда составляли кишечнополостные, черви и другие проблематичные группы, например петалопамы, которые неизвестны затем в фанерозое. Академик Б. С. Соколов предположил, что широкое оледенение, предшествовавшее появлению вендской фауны, было одной из основных причин ее бурной диверсификации. Это верно, очевидно, в том смысле, что именно оледенение таких масштабов способствовало охлаждению «пыла земли» и расширению «оазисов», в которых могла развиваться фауна многоклеточных, и соответственно привело к ее широкой экспансии. В конечном счете именно с этого момента, вероятно, климатические закономерности стали близкими к тем, с которыми мы затем сталкиваемся в фанерозое.

Несколько сложней дело обстоит с кислородом. Наличие железистых кварцитов в толщах архея и раннего протерозоя (3,2-1,9 млрд. лет), по мнению многих исследователей, говорит о некоторой недостаточности кислорода в атмосфере по сравнению с современным уровнем. Однако этот недостаток, возможно, не столь велик, чтобы препятствовать развитию таких организмов, как грибы. А упомянутые выше возможные древнейшие кишечнополостные и черви, для которых уровень кислорода должен быть очень высоким, обнаружены в толщах более молодых, чем те, которые содержат железистые кварциты.

Можно, однако, предположить, что картина недостаточности кислорода в атмосфере только кажущаяся. Недостаточность кислорода могла быть только в глубоких (более 100 м) частях водоемов, где и образовывались железистые кварциты. Приповерхностные воды и атмосфера могли иметь значительно большее содержание кислорода. Такой пример дает нам сегодня Черное море, в котором, как известно, глубоководные зоны «заражены» сероводородом. В этой связи можно и дальше пытаться развивать такие соображения и предположить, что время образования железистых кварцитов сопряжено с максимальным увеличением водных масс Земли в результате ее дегазации (т. е. частичным быстрым переуглублением бассейнов),

Кембрийский период 570-500 млн лет назад распределение суши по поверхности Земли было иным, нежели в настоящее время. На месте Северной Америки и Гренландии существовал материк Лавренция. Южнее Лавренции простирался Бразильский материк. Африканский материк включал Африку, Мадагаскар и Аравию. Севернее него располагался Русский материк, соответствующий на Русской платформе в границах - дельта Дуная, Днестр, Висла, Норвежское море, Баренцево море, реки Печора, Уфа, Белая, север Каспийского моря, дельта Волги, север Чёрного моря. Центр платформы - город Владимир в междуречье Оки и Волги. На Русской платформе кембрийские отложения распространены почти повсеместно в её северной части, а также известны в западных частях Белоруссии и Украины. К востоку от Русского материка располагался Сибирский материк - Ангарида, включающий Сибирскую платформу и прилегающие горные сооружения. На месте современного Китая был Китайский материк, на юге от него - Австралийский материк, охватывавший территорию современной Индии и Западной Австралии.

Ордовикский период

В начале палеозоя (500-440 млн лет назад) в Северном полушарии из древних платформ - Русской, Сибирской, Китайской и Северо-Американской - сложился единый материк Лавразия.

Индостанская (остров Мадагаскар, полуостров Индостан, южнее Гималаев), Африканская (без гор Атласа), Южно-Американская (к востоку от Анд), Антарктическая платформы, а также Аравия и Австралия (к западу от горных хребтов её восточной части) вошли в южный материк - Гондвану.

Лавразия отделялась от Гондваны морем (геосинклиналью) Тетис (Центральное Средиземноморье, Мезогея), проходившим в мезозойскую эру по зоне Альпийской складчатости: в Европе - Альпы, Пиренеи, Андалузские горы, Апеннины, Карпаты, Динарские горы, Стара-Планина, Крымские горы, Кавказские горы; в Северной Африке - северная часть Атласских гор; в Азии - Понтийские горы и Тавр, Туркмено-Хорасанские горы, Эльбрус и Загрос, Сулеймановы горы, Гималаи, складчатые цепи Бирмы, Индонезии, Камчатка, Японские и Филиппинские острова; в Северной Америке - складчатые хребты Тихоокеанского побережья Аляски и Калифорнии; в Южной Америке - Анды; архипелаги, обрамляющие Австралию с востока, в том числе острова Новая Гвинея и Новая Зеландия. Территория, охваченная альпийской складчатостью, сохраняет высокую тектоническую активность и в современную эпоху, что выражается в интенсивно расчленённом рельефе, высокой сейсмичности и продолжающейся во многих местах вулканической деятельности. Реликтом Пратетиса являются современные Средиземное, Чёрное и Каспийское моря.

Лавразия существовала до середины мезозоя, а её изменения заключались в утрате территорий Северной Америки и последующее переформирование Лавразии в Евразию.

Остов современной Евразии сращен из фрагментов нескольких древних материков. В центре - Русский континент. На северо-западе к нему примыкает восточная часть бывшей Лавренции, которая после кайнозойских опусканий в области Атлантического океана отделилась от Северной Америки и образовала Европейский выступ Евразии, расположены западнее Русской платформы. На северо-востоке - Ангарида, которая в позднем палеозое была сочленена с Русским континентом складчатой структурой Урала. На юге - к Евразии причленились северо-восточные части распавшейся Гондваны (Аравийская и Индийская платформы).

Распад Гондваны начался в мезозое, Гондвана была буквально растащена по частям. К концу мелового - началу палеогенового периодов обособились современные постгондванские материки и их части - Южная Америка, Африка (без гор Атласа), Аравия, Австралия, Антарктида.

Климатические данные о состоянии Земли в то время также раскрывают нам дополнительные возможности для интересующего нас познания.

В терминальном рифее (680-570 млн лет назад) большие пространства Европы и Северной Америки были охвачены обширным лапландским оледенением. Ледниковые отложения этого возраста известны на Урале, в Тянь-Шане, на Русской платформе (Белоруссия), в Скандинавии (Норвегия), в Гренландии и Скалистых горах.

В ордовикский период (500-440 млн лет назад) Австралия располагалась близ Южного полюса, а северо-западная Африка - в районе самого полюса, что подтверждается запечатлевшимися в ордовикских породах Африки признаками широкого распространения оледенения.

В девонский период (от 410 млн до 350 млн лет тому назад) экватор располагался под углом в 55 - 65° к современному и проходил примерно через Кавказ, Русскую платформу и южную Скандинавию. Северный полюс находился в Тихом океане в пределах 0 - 30° северной широты и 120-150° восточной долготы (в районе Японии).

Поэтому на Русской платформе климат был приэкваториальным - сухим и жарким, отличался большим разнообразием органического мира. Часть территории Сибири занимали моря, температура воды которых не спускалась ниже 25 °C. Тропический (гумидный) пояс, в разное время девонского периода простирался от современной Западно-Сибирской равнины на севере до юго-западного края Русской платформы . На основе палеомагнитного изучения пород установлено, что на протяжении большей части палеозоя и Северная Америка располагалась в экваториальной зоне. Ископаемые организмы и широко распространенные известняки этого времени свидетельствуют о господстве в ордовике теплых мелководных морей.

Напротив, на территории Гондваны климат был приполярным. В Южной Африке (в Капских горах) в свите Столовой горы, в бассейне Конго и в южной части Бразилии имеются ледниковые образования (тиллиты) - свидетели холодного околополярного климата. В протерозое и верхнем карбоне развивалось обширное оледенение. В Южной Австралии, Китае, Норвегии, Южной Африке, на юге Европы, в Южной Америке в пределах этого пояса обнаружены признаки ордовикского оледенения. Следы верхнекаменноугольного оледенения известны в Центральной и Южной Африке, на юге Южной Америки, в Индии и Австралии. Оледенения установлены в нижнем протерозое Северной Америки, в верхнем рифее (рифей - 1650-570 млн лет) Африки и Австралии, в венде (680-570 млн лет назад) Европы, Азии и Северной Америки, в ордовике Африки, в конце карбона и начале перми на материке Гондвана. Органический мир этого пояса отличался обеднённостью состава. В каменноугольном и пермском периодах на материке Гондвана развивалась своеобразная флора умеренного и холодного пояса, для которой было характерно обилие глоссоптерисов и хвощей.

В девоне северный (аридный - засушливый) пояс охватывал Ангариду (Северную Азию) и складчатые сооружения, примыкавшие к нему с юга и востока, господствовал на континентах: Ангарском, Казахском, Балтийском и Северо-Американском.

В Колорадо (часть бывшей Лавренции) в ордовикских песчаниках обнаружены фрагменты самых примитивных позвоночных - бесчелюстных (остракодерм).

После окончания цикла геосинклинальное развитие может повториться, но всегда какая-то часть геосинклинальных областей в конце очередного цикла превращается в молодую платформу. В связи с этим в течение геологической истории площадь, занятая геосинклиналями (морями), уменьшалась, а площадь платформ увеличивалась. Именно геосинклинальные системы являлись местом образования и дальнейшего нарастания континентальной коры с её гранитным слоем.

Периодический характер вертикальных движений в течение тектонического цикла (преимущественно опускание в начале и преимущественно поднятие в конце цикла) каждый раз приводил к соответствующим изменениям рельефа поверхности, к смене трансгрессий и регрессий моря. Те же периодические движения влияли на характер отлагавшихся осадочных пород, а также на климат, который испытывал периодические изменения. Уже в докембрий тёплые эпохи прерывались ледниковыми. В палеозое оледенение охватывало по временам Бразилию, Южную Африку, Индию и Австралию. Последнее оледенение (в Северном полушарии) было в антропогене

Рассмотренное выше положение континентов подтверждается данными фаунистического районирования, согласно которым суша Земли разделяется на четыре фаунистических царства: Арктогея, Палеогея, Неогея, Нотогея. Антарктическая суша, населённая преимущественно морскими животными, не входит ни в одно из царств.

Арктогея («северная земля») с центром группирования на Русской платформе включает также Голарктическую, Индо-Малайскую, Эфиопскую области и занимает Евразию (без Индостана и Индокитая), Северную Америку, Северную Африку (включая Сахару). Животный мир Арктогеи характеризуется общностью происхождения. В Арктогее обитают только плацентарные млекопитающие.

Неогея («новая земля», более поздняя по времени, образовавшаяся из продуктов распада Гондваны) занимает Южную, Центральную Америку от Нижней Калифорнии и южной части Мексиканского нагорья на севере до 40° ю.ш. на юге и прилежащие к Центральной Америке острова. Распространены плацентарные.
Нотогея («южная земля») занимает Австралию, Новую Зеландию и острова Океании. Длительная изоляция Нотогеи привела к формированию фауны, богатой эндемиками (изолированные виды). Число плацентарных млекопитающих относительно невелико: мышиные, рукокрылые, псовые.

Палеогея занимает главным образом тропические районы Восточного полушария. Для Палеогеи характерны группы животных древней фауны Гондваны - её Бразильско-Африканского континента: страусы, двоякодышащие рыбы, черепахи, а также хоботные, человекообразные обезьяны, хищные и др.

В глобальной сети появился интересный сервис (dinosaurpictures.org), позволяющий посмотреть, как выглядела наша планета 100, 200, … 600 миллионов лет назад. Листинг событий, происходящих в истории нашей планеты приведён ниже.

Наше время
Антропоцен. На Земле практически не осталось мест, не испытывающих деятельность человека.

20 миллионов лет назад
Неогеновый период. Млекопитающие и птицы начинают походить на современные виды. В Африке появились первые гоминиды.

35 миллионов лет назад
Средний ярус Плейстоцена в эпоху Чертвертичного периода. В ходе эволюции из небольших и простых форм млекопитающих появились большее сложные и разнообразные виды. Развиваются приматы, китообразные и другие группы живых организмов. Земля остывает, получают распространения лиственные породы деревьев. Первые виды травянистых растений эволюционируют.

50 миллионов лет назад
Начало третичного периода. После того, как астероид уничтожил динозавров, выжившие птицы, млекопитающие и рептилии, эволюционируя, занимают освободившиеся ниши. От наземных млекопитающих ответвляется группа предков китообразных, которая начинает осваивать просторы океанов.

65 миллионов лет назад
Поздний мел. Массовое исчезновение динозавров, морских и летающих рептилий, а также множества морских беспозвоночных и других видов. Учёные придерживаются мнения, что причиной вымирания стало падения астероида в районе настоящего полуострова Юкатан (Мексика).

90 миллионов лет назад
Меловой период. По Земле продолжают разгуливать Трицератопсы и Пахицефалозавры. Первые виды млекопитающих, птиц и насекомых продолжают эволюционировать.

105 миллионов лет назад
Меловой период. По Земле разгуливают Трицератопсы и Пахицефалозавры. Появляются первые виды млекопитающих, птиц и насекомых.

120 миллионов лет назад
Ранний Мел. На земле тепло и влажно, ледовые полярные шапки отсутствуют. В мире доминируют рептилии, первые мелкие млекопитающие ведут полускрытый образ жизни. Цветковые растения эволюционируют и распространяются по всей Земле.

150 миллионов лет назад
Конец Юрского периода. Появились первые ящерицы, эволюционируют примитивные плацентарные млекопитающие. Динозавры доминируют на всей суше. Мировой океан населяют морские рептилии. Птерозавры становятся доминирующими позвоночными в воздухе.

170 миллионов лет назад
Юрский период. Динозавры процветают. Эволюционируют первые млекопитающие и птицы. Жизнь океана отличается разнообразием. Климат на планете очень тёплый и влажный.

200 миллионов лет назад
Поздний Триас. В результате массового вымирания исчезает 76% всех видов живых организмов. Численность популяций выживших видов также сильно снижается. Виды рыб, крокодилов, примитивных млекопитающих, а также птерозавров пострадали в меньшей степени. Появляются первые настоящие динозавры.

220 миллионов лет назад
Средний Триас. Земля восстанавливается после Пермско-Триасового вымирания. Начинают появляться мелкие динозавры. Вместе с первыми летающими беспозвоночными появляются Терапсиды и Архозавры.

240 миллионов лет назад
Ранний Триас. Из-за гибели большого числа видов наземных растений отмечается низкое содержание кислорода в атмосфере планеты. Многие виды кораллов исчезли, пройдёт много миллионов лет прежде чем над поверхностью Земли начнут вздыматься коралловые рифы. Небольшие по размерам предки динозавров, птиц и млекопитающих выживают.

260 миллионов лет назад
Поздняя Пермь. Самое массовое вымирание в истории планеты. Около 90% всех видов живых организмов исчезает с лица Земли. Исчезновение большинства видов растений приводит к голодной смерти большого количества видов травоядных рептилий, а затем и хищных. Насекомые лишаются среды обитания.

280 миллионов лет назад
Пермский период. Массивы суши сливаются вместе и формируют суперконтинет Пангею. Климатические условия ухудшаются: начинают расти полярные шапки и пустыни. Площадь пригодная для произрастания растений резко снижается. Несмотря на это четвероногие рептилии и и амфибии дивергируют. Океаны изобилуют различными видами рыб и беспозвоночных.

300 миллионов лет назад
Поздний Карбон. У растений появляется развитая корневая система, что позволяет им успешно заселять труднодоступные участки суши. Площадь поверхности Земли, занятая растительностью увеличивается. Содержание кислорода в атмосфере планеты также увеличивается. Жизнь начинает активно развиваться под пологом древней растительности. Эволюционирую первые рептилии. Появляется множество разнообразных гигантских насекомых.

340 миллионов лет назад
Карбон (Каменноугольный период). На Земле происходит массовое вымирание морских организмов. У растений появляется более совершенная корневая система, которая позволяет более успешно захватывать новые участки суши. Концентрация кислорода в атмосфере планеты увеличивается. Первые рептилии эволюционируют.

370 миллионов лет назад
Поздний Девон. По мере развития растений, жизнь на суше усложняется. Появляется большое количество видов насекомых. У рыб появляются крепкие плавники, которые в итоге развиваются в конечности. Первые позвоночные выползают на сушу. Океаны изобилуют кораллами, различными видами рыб, включая акул, а также морскими скорпионами и головоногими моллюсками. Начинают появляться первые признаки массового вымирания морских живых организмов.

400 миллионов лет назад
Девон. Растительная жизнь на суше усложняется, ускоряя эволюцию наземных животных организмов. Насекомые дивергируют. Видовое разнообразие Мирового океана увеличивается.

430 миллионов лет назад
Силур. Массовое вымирание стирает с лица планеты половину видового разнообразия морских беспозвоночных. Первые растения начинают осваивать сушу и заселять прибрежную полосу. У растений начинает развиваться проводящая система, которая ускоряет транспорт воды и питательных веществ к тканям. Морская жизнь становится более разнообразной и многочисленной. Некоторые организмы покидают рифы и обосновываются на суше.

450 миллионов лет назад
Поздний Ордовик. Моря изобилуют жизнью, появляются коралловые рифы. Водоросли по-прежнему являются единственными многоклеточными растениями. Сложная жизнь на суше отсутствует. Появляются первые позвоночные, включая бесчелюстных рыб. Появляются первые предвестники массового вымирания морской фауны.

470 миллионов лет назад
Ордовик. Морская жизнь становится более разнообразной, появляются кораллы. Морские водоросли являются единственными многоклеточными растительными организмами. Появляются простейшие позвоночные.

500 миллионов лет назад
Поздний Кембрий. Океан просто кишит жизнью. Этот период бурного эволюционного развития множества форм морских организмов получил название «Кембрийский взрыв».

540 миллионов лет назад
Ранний Кембрий. Массовое вымирание имеет место быть. В ходе эволюционного развития у морских организмов появляются раковины и экзоскелет. Ископаемые останки свидетельствуют о начале «Кембрийского взрыва».

560 миллионов лет назад
Поздний Эдиакарий. Жизнь эволюционирует в океане, начинают появляться многоклеточные организмы. Появляются первые предвестники массового вымирания.

600 миллионов лет назад
Эдиакарий. Жизнь эволюционирует в море. Начинают появляться первые многоклеточные организмы.

(Первоначальный текст заменён на доработку 4)

Рис. 1 Эволюция планеты Земля. Слева часть ядра Солнца, «выброшенная» 600 млн. лет назад - «новорождённая» Земля. Посередине - «пластилиновая планета». Справа – современный глобус.

Рождение Земли

Солнечная система до появления Земли:
Плутон – Нептун – Уран – Сатурн – Юпитер - «Каменный пояс Церера» - Марс – Солнце

«Суммарное» гравитационное поле, удалившихся на критическое расстояние планет, спровоцировало очередной выброс небольшой части ядра Солнца. Выброс сформировался в шар и вспыхнул ярким светом. Светящаяся звезда – новорождённая Земля, удалилась очень далеко, и, достигнув орбиты Урана, вернулась к Солнцу, сделав полуоборот вокруг него, вновь улетела по эллиптической орбите. Но постепенно орбита звезды – Земли становится всё меньше, пока не стала круговой орбитой, очень близко расположенной к Солнцу. Скоро эта небольшая звезда погасла, превратившись в планету.

Так родилась планета – Земля. (Рис. 1 слева) По мере возникновения материи, орбиты планет удаляются от Солнца.

Возраст Земли

Вырвавшаяся часть ядра Солнца, будущая Венера, пролетая мимо Земли, по удлиненной эллиптической орбите, опалила её радиоактивным излучением. Это произошло 410 млн. лет назад.

Вырвавшаяся часть ядра Солнца, будущий Меркурий, так же опалил Землю «чёрной» радиацией. Это случилось 220 млн. лет назад.

Именно в эти времена 410 и 220 млн. лет назад в слоях земли учёные обнаружили очень высокую радиоактивность. Если принять во внимание эти две цифры, и известную нам удалённость орбит Земли, Венеры и Меркурия от Солнца, то получается, что примерный возраст Земли около 600 млн. лет.

В отличие от планет гигантов, у планет земной группы из-за малых размеров возникли большие трудности с рождением спутников. Марс почти разорвало при выбросе спутника планеты. У Венеры и Меркурия, «прижатых» стремительно выросшей массой Солнца, вообще не смогли появиться спутники.

Пластилиновая планета

Наша планета, много миллионов лет назад, была совсем не такая, как сейчас, а намного меньше, и не только по диаметру, но и по массе.

Материк Пангея был действительно целым материком, но не островом в океане Панталасса, а являлся земной корой планеты с меньшим диаметром. То есть, сегодня существующие материки, это «осколки» ранее существовавшей целой земной коры, значительно меньшей планеты, чем современная Земля.

Проведём эксперимент. Для этого нам потребуется глобус земного шара и разноцветный пластилин.
Изготовим пластилиновый шар, значительно меньших размеров, чем глобус.
Поочерёдно, наложив на глобус пластилиновые пластинки, сделаем выкройки материков.
После чего, пытаемся выкройки материков разместить на пластилиновом шаре, понемногу увеличивая диаметр шара.
Добиваемся такого размера шара, чтобы все материки стали плотно прилегать друг к другу.

Рассмотрим получившуюся мозаику континентов на пластилиновой планете:
Северная Америка плотно соединилась с Южной Америкой, если удалить Мексиканский залив и Карибское море. Африка плотно вписалась между Северной Америкой и Южной Америкой. Евразия расположилась севернее Африки и восточнее Северной Америки. Между Северной Америкой и Евразией - разместилась Гренландия. (Рис. 4)
Восточнее Африки - Мадагаскар, Индия, Австралия, Антарктида. (Рис. 1)
Антарктида плотно вписалась между Австралией, Африкой и Южной Америкой. (Рис. 2)
Острова Новой Зеландии, Индонезийские, Филиппинские острова, Японские острова, остров Сахалин и полуостров Камчатка - разместились восточнее Евразии и Антарктиды.
С противоположной стороны пластилиновой планеты (Рис. 1), материки собрались так, что образовался практически круглый просвет – будущий Тихий океан. (Рис. 3)

Все материки плотно прилегают друг к другу. За исключением просвета, где Индия «протаранила» Евразию. И есть ещё один просвет – будущее Средиземное море, о нём отдельный рассказ.

Немного неправильно разместил ось вращения на пластилиновой планете. Она должна проходить через центр Антарктиды с одной стороны, и через остров Гренландию, с другой. Почти так же, как и на современном глобусе.

Диаметр современного земного шара 12700 км, из пропорции получаем, что диаметр пластилиновой планеты, с плотно состыкованными материками, 8700 км. А диаметр отверстия в земной коре 6000 км.!

Рождение Луны

Мы уже знаем возраст Земли. Теперь предстоит выяснить возраст пластилиновой планеты с огромным отверстием в земной коре.

В этом нам поможет история развития атмосферы Земли.
Учёные, исследуя пузырьки газа древних ледников, пришли к выводу, что содержание газа постоянно изменяется. Как известно, углекислый газ – один из парниковых газов, постоянно присутствующих в атмосфере. Он действует как одеяло, поддерживающее более высокую температуру. Когда уровень углекислого газа понижается, климат становится холоднее, и наоборот, при повышении СО2, повышается и температура на земном шаре.

Боб Беркер на основании изучения содержания углекислого газа в древних ледниках построил кривую зависимости СО2 от хода времени.
От 600 млн. лет назад до 300 млн. лет назад, уровень углекислого газа становится гигантским и составляет 20 условных единиц. 300 млн. лет назад график содержания СО2 вертикально падает до нуля. Затем, начиная с 250 млн. лет назад, уровень углекислого газа поднимается, но не более чем до 5-7 единиц. Атмосфера наших дней содержит углекислый газ около 1-1,2 единицы.

Что произошло с атмосферой 300 млн. лет назад, когда она практически полностью исчезла с планеты Земля?

Да, именно в это время, 300 млн. лет назад произошёл выброс части ядра Земли, невероятно гигантской силы. Часть ядра Земли, пробив земную кору и разметав её, вырвалась наружу с такой силой и начальной скоростью, что преодолев притяжение Земли, стала спутником Солнца. Именно этот выброс снёс почти всю атмосферу Земли! Гигантский выброс, придал реактивное ускорение планете Земля, она полетела с большей скоростью по новой эллиптической орбите, оставляя за собой атмосферный шлейф.

Так появился новый спутник Солнца – Луна, рождённый планетой Земля.
Это было «Главное событие» за всю историю Земли.
И в Солнечной системе это было чрезвычайное, единичное событие. Планеты гиганты часто выбрасывали часть своего ядра, но никогда «не отпускали» от себя свои планеты спутники.
Главное событие – рождение Луны, уничтожило почти всю земную жизнь. И это просто чудо, что она осталась на нашей планете.

Диаметр новорождённой Земли

Разница между диаметрами современного глобуса (Рис. 1 справа) и пластилиновой планетой (в середине): 12700 км.- 8700 км. = 4000 км.
Если от диаметра пластилиновой планеты отнять тоже 4000 км., то получим: 8700 км. – 4000 км. = 4700 км., примерно такого размера должен быть шар, появившейся Земли. Но так как в первом промежутке времени (300 млн. лет) планета росла значительно медленнее, чем после появления Луны, и растрескивания континентов, то принимаем диаметр шара Земли (Рис. 1 слева), 6000 км. Получается, что земной шар за всю свою историю вырос более чем в два раза.
Рост диаметра планеты Земля (Рис. 1)
Ф 6000 км. – Ф 8700 км. – Ф 12700 км.

Диаметр новорожденной Луны

Диаметр современной Луны 3475 км
Из пропорции получаем:
Ф 6000 км. – Ф 8700 км.
Х - Ф 3475 км.

Х = Ф новорождённой Луны = 2396 км.

Но Луна не подаёт признаков возникающей материи. На ней не происходят землетрясения, отсутствует вулканическая деятельность, не наблюдается выделение газов. Современная Луна – возникшая материя. Поэтому примерный диаметр вырвавшейся части ядра Земли (новорождённой Луны) равняется 2500 км, что соответствует отверстию в земной коре равному 6000 км.

«Лёгкая» пластилиновая планета

Гравитационное поле любой планеты определяется массой её суперсжатого ядра. Если у планеты удалить ядро, то её гравитационное поле станет в сотни раз меньше. (Если мы встанем у подножья стёсанного торца горной гряды, то мы не испытаем никакого притяжения к этой стене, хотя её масса очень большая. А вот если мы встанем около ядра земли, то нас расплющит до молекулярного состояния.)
Любой «активный» космический объект растёт, увеличивая свою массу и объём, настолько, насколько это ему позволяют сделать удаляющиеся соседние космические объекты.
Земля, во время рождения Луны, потеряла значительную часть своей массы. Запустился активный процесс восстановления массы Земли (для данного космического окружения). Началась выработка ядром большого количества «лёгкой» магмы.

Увеличивающееся расстояние от ядра до поверхности планеты, ослабляет силу притяжения на поверхности материков.

Несмотря на то, что диаметр планеты был почти в 3 раза больше современной Луны, её сила притяжения на поверхности была в 2 раза меньше, чем у Луны.

Эпоха гигантских животных на Земле

Как могли существовать гигантские динозавры, вес которых, в условиях современной Земли, составлял бы 70 тонн, а Аргентинозавр весил бы 110 тонн. Максимальный вес современного сухопутного животного у африканского слона - 7,7 тонны, и он испытывает «трудности» от гравитационного поля современной Земли. Медленно передвигается и может задохнуться во сне от своей большой массы тела.

Объясняется это тем, что во времена процветания динозавров сила притяжения на поверхности Земли была в 10-15 раз меньше, чем на современной Земле. Именно поэтому гигантские динозавры чувствовали себя комфортно и были очень подвижны.

Итак, мы выяснили, что планета Земля появилась из недр Солнца – 600 млн. лет назад.
Луна появилась из недр Земли – 300 млн. лет назад.
От рождения Земли (Рис. 1 слева) до пластилиновой планеты (Рис. 1 в центре) прошло 300 млн. лет, и от пластилиновой планеты до современного глобуса прошло тоже 300 млн. лет.
Диаметр новорождённой Луны примерно равняется 2500 км.
Удаляющаяся земная кора от небольшого ядра Земли снизила силу притяжения на поверхности материков. Именно в эти времена процветали гигантские животные.
Земля на протяжении всей своей истории растёт, увеличивая свою массу и объём.

Литература

1. Боб Беркер. Содержание углекислого газа в древних ледниках.
2. Стюарт Аткинсон. Астрономия. Энциклопедия окружающего мира.

Рецензии

Валерий, у вас отлично развито чувство анализа и фантазии тоже. Получается, что луна - это "плевок" нашей планеты. Сколько же надо было энергии, чтобы выбросить этот сгусток. Сейчас много всяких предположений о строении Земли. Сначала мы верили - думали, что "внутри Земли кипит ядро - там варится железо..." Сейчас, как мне представляется, там возможно пусто. О том говорят некоторые факты. Я, конечно, не специалист в этом вопросе, но может быть это и навело тебя, Валерий, на такую гипотезу по поводу появления луны. Есть ведь даже "дырки" на полюсах Земли, что обеспечивает водоворот земной. Но всё возможно, но это всё-таки фантастика. Ведь есть сейчас такие гипотезы, что луна - космический корабль. Но не корабль, так что-то подобное - например, база космическая. С уважением А.Д.