Электронная конфигурация 1. Каталог файлов по химии

Заполнение орбиталей в не возбужденном атоме осуществляется таким образом, чтобы энергия атома была минимальной (принцип минимума энергии). Сначала заполняются орбитали первого энергетического уровня, затем второго, причем сначала заполняется орбиталь s-подуровня и лишь затем орбитали p-подуровня. В 1925 г. швейцарский физик В. Паули установил фундаментальный квантово-механический принцип естествознания (принцип Паули, называемый также принципом запрета или принципом исключения). В соответствии с принципом Паули:

в атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел.

Электронную конфигурацию атома передают формулой, в которой указывают заполненные орбитали комбинацией цифры, равной главному квантовому числу, и буквы, соответствующей орбитальному квантовому числу. Верхним индексом указывают число электронов на Данных орбиталях.

Водород и гелий

Электронная конфигурация атома водорода 1s 1 , а гелия 1s 2 . Атом водорода имеет один неспаренный электрон, а атом гелия - два спаренных электрона. Спаренные электроны имеют одинаковые значения всех квантовых чисел, кроме спинового. Атом водорода может отдать свой электрон и превратиться в положительно заряженный ион - катион Н + (протон), не имеющий электронов (электронная конфигурация 1s 0). Атом водорода может присоединить один электрон и превратиться в отрицательно заряженный ион Н - (гидрид-ион) с электронной конфигурацией 1s 2 .

Литий

Три электрона в атоме лития распределяются следующим образом: 1s 2 1s 1 . В образовании химической связи участвуют электроны только внешнего энергетического уровня, называемые валентными. У атома лития валентным является электрон 2s-подуровня, а два электрона 1s-подуровня - внутренние электроны. Атом лития достаточно легко теряет свой валентный электрон, переходя в ион Li + , имеющий конфигурацию 1s 2 2s 0 . Обратите внимание, что гидрид-ион, атом гелия и катион лития имеют одинаковое число электронов. Такие частицы называются изоэлектронными. Они имеют сходную электронную конфигурацию, но разный заряд ядра. Атом гелия весьма инертен в химическом отношении, что связано с особой устойчивостью электронной конфигурации 1s 2 . Незаполненные электронами орбитали называют вакантными. В атоме лития три орбитали 2p-подуровня вакантные.

Бериллий

Электронная конфигурация атома бериллия - 1s 2 2s 2 . При возбуждении атома электроны с более низкого энергетического подуровня переходят на вакантные орбитали более высокого энергетического подуровня. Процесс возбуждения атома бериллия можно передать следующей схемой:

1s 2 2s 2 (основное состояние) + → 1s 2 2s 1 2p 1 (возбужденное состояние).

Сравнение основного и возбужденного состояний атома бериллия показывает, что они различаются числом неспаренных электронов. В основном состоянии атома бериллия неспаренных электронов нет, в возбужденном их два. Несмотря на то что при возбуждении атома в принципе любые электроны с более низких по энергии орбиталей могут переходить на более высокие орбитали, для рассмотрения химических процессов существенными являются только переходы между энергетическими подуровнями с близкой энергией.

Это объясняется следующим. При образовании химической связи всегда выделяется энергия, т. е. совокупность двух атомов переходит в энергетически более выгодное состояние. Процесс возбуждения требует затрат энергии. При распаривании электронов в пределах одного энергетического уровня затраты на возбуждение компенсируются за счет образования химической связи. При распаривании электронов в пределах разных уровней затраты на возбуждение столь велики, что не могут быть компенсированы образованием химической связи. В отсутствие партнера по возможной химической реакции возбужденный атом выделяет квант энергии и возвращается в основное состояние - такой процесс называется релаксацией.

Бор

Электронные конфигурации атомов элементов 3-го периода Периодической системы элементов будут в определенной степени аналогичны приведенным выше (нижним индексом указан атомный номер):

11 Na 3s 1
12 Mg 3s 2
13 Al 3s 2 3p 1
14 Si 2s 2 2p2
15 P 2s 2 3p 3

Однако аналогия не является полной, так как третий энергетический уровень расщепляется на три подуровня и у всех перечисленных элементов имеются вакантные d-орбитали, на которые могут при возбуждении переходить электроны, увеличивая мультиплетность. Особо это важно для таких элементов, как фосфор , сера и хлор .

Максимальное число неспаренных электронов в атоме фосфора может достигать пяти:

Этим объясняется возможность существования соединений, в которых валентность фосфора равна 5. Атом азота , имеющий конфигурацию валентных электронов в основном состоянии такую же, как и атом фосфора , образовать пять ковалентных связей не может.

Аналогичная ситуация возникает при сравнении валентных возможностей кислорода и серы , фтора и хлора . Распаривание электронов в атоме серы приводит к появлению шести неспаренных электронов:

3s 2 3p 4 (основное состояние) → 3s 1 3p 3 3d 2 (возбужденное состояние).

Это отвечает шести валентному состоянию, которое для кислорода недостижимо. Максимальная валентность азота (4) и кислорода (3) требует более детального объяснения, которое будет приведено позднее.

Максимальная валентность хлора равна 7, что соответствует конфигурации возбужденного состояния атома 3s 1 3p 3 d 3 .

Наличие вакантных Зd-орбиталей у всех элементов третьего периода объясняется тем, что, начиная с 3-го энергетического уровня, происходит частичное перекрывание подуровней разных уровней при заполнении электронами. Так, 3d-подуровень начинает заполняться только после того, как будет заполнен 4s-подуровень. Запас энергии электронов на атомных орбиталях разных подуровней и, следовательно, порядок их заполнения, возрастает в следующем порядке:

Раньше заполняются орбитали, для которых сумма первых двух квантовых чисел (n + l) меньше; при равенстве этих сумм сначала заполняются орбитали с меньшим главным квантовым числом.

Эту закономерность сформулировал В. М. Клечковский в 1951 г.

Элементы, в атомах которых происходит заполнение электронами s-подуровня, называются s-элементами. К ним относятся по два первых элемента каждого периода: водород , Однако уже у следующего d-элемента - хрома - наблюдается некоторое «отклонение» в расположении электронов по энергетическим уровням в основном состоянии: вместо ожидаемых четырех неспаренных электронов на 3d-подуровне в атоме хрома имеются пять неспаренных электронов на 3d-подуровне и один неспаренный электрон на s-подуровне: 24 Cr 4s 1 3d 5 .

Явление перехода одного s-электрона на d-подуровень часто называют «проскоком» электрона. Это можно объяснить тем, что орбитали заполняемого электронами d-подуровня становятся ближе к ядру вследствие усиления электростатического притяжения между электронами и ядром. Вследствие этого состояние 4s 1 3d 5 становится энергетически более выгодным, чем 4s 2 3d 4 . Таким образом, наполовину заполненный d-подуровень (d 5) обладает повышенной стабильностью по сравнению с иными возможными вариантами распределения электронов. Электронная конфигурация, отвечающая существованию максимально возможного числа распаренных электронов, достижимая у предшествующих d-элементов только в результате возбуждения, характерна для основного состояния атома хрома. Электронная конфигурация d 5 характерна и для атома марганца : 4s 2 3d 5 . У следующих d-элементов происходит заполнение каждой энергетической ячейки d-подуровня вторым электроном: 26 Fe 4s 2 3d 6 ; 27 Co 4s 2 3d 7 ; 28 Ni 4s 2 3d 8 .

У атома меди достижимым становится состояние полностью заполненного d-подуровня (d 10) за счет перехода одного электрона с 4s-под-уровня на 3d-подуровень: 29 Cu 4s 1 3d 10 . Последний элемент первого ряда d-элементов имеет электронную конфигурацию 30 Zn 4s 23 d 10 .

Общая тенденция, проявляющаяся в устойчивости d 5 и d 10 конфигурации, наблюдается и у элементов ниже лежащих периодов. Молибден имеет электронную конфигурацию, аналогичную хрому : 42 Mo 5s 1 4d 5 , а серебро - меди : 47 Ag5s 0 d 10 . Более того, конфигурация d 10 достигается уже у палладия за счет перехода обоих электронов с 5s-орбитали на 4d-орбиталь: 46Pd 5s 0 d 10 . Существуют и другие отклонения от монотонного заполнения d-, а также f-орбиталей.


Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

  1. Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева. Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.
  2. Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.
    • Например, атом натрия с зарядом -1 будет иметь дополнительный электронв добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
  3. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняет различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:
    • s-подуровень (любое число в электронной конфигурации, которое стоит перед буквой "s") содержит единственную орбиталь, и, согласноПринципу Паули , одна орбиталь может содержать максимум 2 электрона, следовательно, на каждом s-подуровне электронной оболочки может находиться 2 электрона.
    • p-подуровень содержит 3 орбитали, и поэтому может содержать максимум 6 электронов.
    • d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.
    • f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.
  4. Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.
    • Вот, например, простейшая электронная конфигурация:1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это - электронная конфигурация нейтрального атома неона (атомный номер неона -10).
  5. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий:
  6. 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.
  • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид:

1s 2

2s 2 2p 6

3s 2 3p 6

4s 2 3d 10 4p 6

5s 2 4d 10 5p 6

6s 2 4f 14 5d 10 6p 6

7s 2 5f 14 6d 10 7p 6

  • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  • Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.
    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид:1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, азатем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  • Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:
    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание - элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  • Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называютсяблагородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:
    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид:4s 2 3d 10 .

    Первоначально элементы в Периодической таблице химических элементов Д.И. Менделеева были расположены в соответствии с их атомными массами и химическими свойствами, но на самом деле оказалось, что решающую роль играет не масса атома, а заряд ядра и, соответственно, число электронов в нейтральном атоме.

    Наиболее устойчивое состояние электрона в атоме химического элемента соответствует минимуму его энергии, а любое другое состояние называется возбужденным, в нем электрон может самопроизвольно переходить на уровень с более низкой энергией.

    Рассмотрим, как распределяются электроны в атоме по орбиталям, т.е. электронную конфигурацию многоэлектронного атома в основном состоянии. Для построения электронной конфигурации пользуются следующими принципами заполнения орбиталей электронами:

    — принцип (запрет) Паули – в атоме не может быть двух электронов с одинаковым набором всех 4-х квантовых чисел;

    — принцип наименьшей энергии (правила Клечковского) – орбитали заполняют электронами в порядке возрастания энергии орбиталей (рис. 1).

    Рис. 1. Распределение орбиталей водородоподобного атома по энергиям; n – главное квантовое число.

    Энергия орбитали зависит от суммы (n + l). Орбитали заполняются электронами в порядке возрастания суммы (n + l) для этих ортиталей. Так, для подуровней 3d и 4s суммы (n + l) будут равны 5 и 4, соответственно, вследствие чего, первой будет заполняться 4s орбиталь. Если сумма (n + l) одинакова для двух орбиталей, то первой заполняется орбиталь с меньшим значением n. Так, для 3d и 4p орбиталей сумма (n + l) будет равна 5 для каждой орбитали, но первой заполняется 3d орбиталь. В соответствии с этими правилами порядок заполнения орбиталей будет следующим:

    1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<5d<4f<6p<7s<6d<5f<7p

    Семейство элемента определяется по орбитали, заполняемой электронами в последнюю очередь, в соответствии с энергией. Однако, нельзя записывать электронные формулы в соответствии с энергетическим рядом.

    41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 3 5s 2 правильная запись электронной конфигурации

    41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 3 неверная запись электронной конфигурации

    Для первых пяти d – элементов валентными (т.е., электроны, отвечающие за образование химической связи) являются сумма электронов на d и s, заполненных электронами в последнюю очередь. Для p – элементов валентными являются сумма электронов, находящихся на s и p подуровнях. Для s-элементов валентыми являются электроны, находящиеся на s подуровне внешнего энергетического уровня.

    — правило Хунда – при одном значении l электроны заполняют орбитали таким образом, чтобы суммарный спин был максимальным (рис. 2)

    Рис. 2. Изменение энергии у 1s -, 2s – 2p – орбиталей атомов 2-го периода Периодической системы.

    Примеры построения электронных конфигураций атомов

    Примеры построения электронных конфигураций атомов приведены в таблице 1.

    Таблица 1. Примеры построения электронных конфигураций атомов

    Электронная конфигурация

    Применяемые правила

    Принцип Паули, правила Клечковского

    Правило Хунда

    1s 2 2s 2 2p 6 4s 1

    Правила Клечковского

    >> Химия: Электронные конфигурации атомов химических элементов

    Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено»), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

    Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.

    На рисунке 5 показана схема подразделения энергетических уровней на подуровни.

    s-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (s = 1) располагается на этой ор-битали и неспарен. Поэтому его электронная формула или электронная конфигурация будет записываться так: 1s 1 . В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой (1 ...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как показатель степени), показывает число электронов на подуровне.

    Для атома гелия Не, имеющего два спаренных электрона на одной s-орбитали, эта формула: 1s 2 .

    Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ.

    На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уровня (2s-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны 1s-орбитали (n = 2).

    Вообще, для каждого значения n существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения n.

    р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с n = 2, имеет три р-орбитали. С увеличением значения n электроны анимают р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

    У элементов второго периода (n = 2) заполняется сначала одна в-орбиталь, а затем три р-орбитали. Электронная формула 1л: 1s 2 2s 1 . Электрон слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион Li+.

    В атоме бериллия Ве 0 четвертый электрон также размещается на 2s-орбитали: 1s 2 2s 2 . Два внешних электрона атома бериллия легко отрываются - Ве 0 при этом окисляется в катион Ве 2+ .

    У атома бора пятый электрон занимает 2р-орбиталь: 1s 2 2s 2 2р 1 . Далее у атомов С, N, О, Е идет заполнение 2р-орбиталей, которое заканчивается у благородного газа неона: 1s 2 2s 2 2р 6 .

    У элементов третьего периода заполняются соответственно Зв- и Зр-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

    11 Nа 1s 2 2s 2 Зв1; 17С11в22822р63р5; 18Аг П^Ёр^Зр6.

    Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, то есть записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул.

    У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4я- и 5я-орбитали: 19 К 2, 8, 8, 1; 38 Sr 2, 8, 18, 8, 2. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d- и 4d- орбитали соответственно (у элементов побочных подгрупп): 23 V 2, 8, 11, 2; 26 Tr 2, 8, 14, 2; 40 Zr 2, 8, 18, 10, 2; 43 Тг 2, 8, 18, 13, 2. Как правило, тогда, когда будет заполнен предыдущий d-подуровень, начнет заполняться внешний (соответственно 4р- и 5р) р-подуровень.

    У элементов больших периодов - шестого и незавершенного седьмого - электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступят на внешний в-подуровень: 56 Ва 2, 8, 18, 18, 8, 2; 87Гг 2, 8, 18, 32, 18, 8, 1; следующий один электрон (у Nа и Ас) на предыдущий (p-подуровень: 57 Lа 2, 8, 18, 18, 9, 2 и 89 Ас 2, 8, 18, 32, 18, 9, 2.

    Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4f- и 5f-орбитали соответственно у лантаноидов и актиноидов.

    Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73 Та 2, 8,18, 32,11, 2; 104 Rf 2, 8,18, 32, 32,10, 2, - и, наконец, только после полного заполнения десятью электронами сйгоду-ровня будет снова заполняться внешний р-подуровень:

    86 Rn 2, 8, 18, 32, 18, 8.

    Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули, согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

    В заключение еще раз рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И. Менделеева . Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

    В атоме гелия первый электронный слой завершен - в нем 2 электрона.

    Водород и гелий - s-элементы, у этих атомов заполняется электронами s-орбиталь.

    Элементы второго периода

    У всех элементов второго периода первый электронный слой заполнен и электроны заполняют е- и р-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала s-, а затем р) и правилами Паули и Хунда (табл. 2).

    В атоме неона второй электронный слой завершен - в нем 8 электронов.

    Таблица 2 Строение электронных оболочек атомов элементов второго периода

    Окончание табл. 2

    Li, Ве - в-элементы.

    В, С, N, О, F, Nе - р-элементы, у этих атомов заполняются электронами р-орбитали.

    Элементы третьего периода

    У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать Зs-, 3р- и Зd-подуровни (табл. 3).

    Таблица 3 Строение электронных оболочек атомов элементов третьего периода

    У атома магния достраивается Зs-электронная орбиталь. Nа и Mg- s-элементы.

    В атоме аргона на внешнем слое (третьем электронном слое) 8 электронов. Как внешний слой, он завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными Зd-орбитали.

    Все элементы от Аl до Аг - р-элементы. s- и р-элементы образуют главные подгруппы в Периодической системе.

    У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень (табл. 4), так как он имеет меньшую энергию, чем Зй-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода: 1) обозначим условно графическую электронную формулу аргона так:
    Аr;

    2) не будем изображать подуровни, которые у этих атомов не заполняются.

    Таблица 4 Строение электронных оболочек атомов элементов четвертого периода


    К, Са - s-элементы, входящие в главные подгруппы. У атомов от Sс до Zn заполняется электронами Зй-подуровень. Это Зй-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

    Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4я- на Зй-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций Зd 5 и Зd 10:

    В атоме цинка третий электронный слой завершен - в нем заполнены все подуровни 3s, Зр и Зd, всего на них 18 электронов.

    У следующих за цинком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень: Элементы от Gа до Кr - р-элементы.

    У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое, как вы знаете, может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f- подуровни.

    У элементов пятого периода идет заполнение подуровней в следующем порядке: 5s-> 4d -> 5р. И также встречаются исключения, связанные с «провалом» электронов, у 41 Nb, 42 MO и т.д.

    В шестом и седьмом периодах появляются элементы, то есть элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

    4f-Элементы называют лантаноидами.

    5f-Элементы называют актиноидами.

    Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55 Сs и 56 Ва - 6s-элементы;

    57 Lа... 6s 2 5d 1 - 5d-элемент; 58 Се - 71 Lu - 4f-элементы; 72 Hf - 80 Нg - 5d-элементы; 81 Тl- 86 Rn - 6р-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f подуровней, то есть nf 7 и nf 14 .

    В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства или блока (рис. 7).

    1) s-Элементы; заполняется электронами в-подуровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;

    2) р-элементы; заполняется электронами р-подуровень внешнего уровня атома; к р элементам относятся элементы главных подгрупп III-VIII групп;

    3) d-элементы; заполняется электронами d-подуровень предвнешнего уровня атома; к d-элементам относятся элементы побочных подгрупп I-VIII групп, то есть элементы вставных декад больших периодов, расположенные между s- и р-элементами. Их также называют переходными элементами;

    4) f-элементы, заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

    1. Что было бы, если бы принцип Паули не соблюдался?

    2. Что было бы, если бы правило Хунда не соблюдалось?

    3. Составьте схемы электронного строения, электронные формулы и графические электронные формулы атомов следующих химических элементов: Са, Fе, Zr, Sn, Nb, Hf, Ра.

    4. Напишите электронную формулу элемента № 110, используя символ соответствующего благородного газа.

    Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

    Электронные конфигурации атомов

    Электроны в атоме занимают уровни, подуровни и орбитали согласно следующим правилам.

    Правило Паули . В одном атоме два электрона не могут иметь четыре одинаковых квантовых числа. Они должны отличаться, по меньшей мере, одним квантовым числом.

    Орбиталь содержит электроны с определенными числами n, l, m l и электроны на ней могут отличаться только квантовым числом m s , имеющим два значения +1/2 и -1/2. Поэтому на орбитали могут располагаться не более двух электронов.

    На подуровне электроны имеют определенные n и l и различаются числами m l и m s . Поскольку m l может принимать 2l+1 значение, а m s - 2 значения, то на подуровне может содержаться не более 2(2l+1) электронов. Отсюда максимальные числа электронов на s-, p-, d-, f-подуровнях равны соответственно 2, 6, 10, 14 электронов.

    Аналогично на уровне содержится не более 2n 2 электронов и максимальное число электронов на четырех первых уровнях не должно превышать 2, 8, 18 и 32 электронов соответственно.

    Правило наименьшей энергии. Последовательное заполнение уровней должно происходить так, чтобы обеспечить минимальную энергию атома. Каждый электрон занимает свободную орбиталь с наименьшей энергией.

    Правило Клечковского . Заполнение электронных подуровней осуществляется в порядке возрастания суммы (n+l), а в случае одинаковой суммы (n+l) - в порядке возрастания числа n.

    Графическая форма правила Клечковского.

    Cогласно правилу Клечковского заполнение подуровней осуществляется в следующем порядке: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s,...

    Хотя заполнение подуровней происходит по правилу Клечковского, в электронной формуле подуровни записываются последовательно по уровням: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f и т.д. Это связано с тем, что энергия заполненных уровней определяется квантовым числом n: чем больше n, тем больше энергия и для полностью заполненных уровней мы имеем Е 3d

    Уменьшение энергии подуровней с меньшими n и большими l в случае, если они заполнены полностью или наполовину, приводит для ряда атомов к электронным конфигурациям, отличающимся от предсказанных по правилу Клечковского. Так для Cr и Cu мы имеем на валентном уровне распределение:

    Cr(24e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 и Cu(29e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 , а не

    Cr(24e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 и Cu(29e) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 .

    Правило Гунда . Заполнение орбиталей данного подуровня осуществляется так, чтобы суммарный спин был максимален. Орбитали данного подуровня заполняются сначала по одному электрону. Например, для конфигурации р 2 заполнение p x 1 p y 1 с суммарным спином s = 1/2 + 1/2 = 1 предпочтительнее (т.е. ему соответствует меньшая энергия), чем заполнение p x 2 с суммарным спином s = 1/2 - 1/2 = 0.

    ­ ­ - более выгодно, ­ ¯ - менее выгодно.

    Электронные конфигурации атомов можно записать по уровням, подуровням, орбиталям. В последнем случае орбиталь обычно обозначают квантовой ячейкой, а электроны - стрелками, имеющими то или иное направление в зависимости от величины m s .

    Например, электронная формула Р(15е) может быть записана:

    а) по уровням)2)8)5

    б) по подуровням 1s 2 2s 2 2p 6 3s 2 3p 3

    в) по орбиталям 1s 2 2s 2 2p x 2 2p y 2 2p z 2 3s 2 3p x 1 3p y 1 3p z 1 или

    ­ ¯ ­ ¯ ­ ¯ ­ ¯ ­ ¯ ­ ¯ ­ ­ ­

    Пример. Записать электронные формулы Ti(22e) и As(33e) по подуровням. Титан находится в 4 периоде, поэтому записываем подуровни до 4р: 1s2s2p3s3p3d4s4p и заполняем их электронами до их общего числа 22, при этом незаполненные подуровни в окончательную формулу не включаем. Получаем.