Положительные и отрицательные электрические заряды. Электрон и протон

3.1. Электрический заряд

Еще в древности люди обратили внимание на то, что потертый шерстью кусочек янтаря начинает притягивать к себе различные мелкие предметы: пылинки, ниточки и тому подобное. Вы сами можете легко убедиться, что пластмассовая расческа, потертая о волосы, начинает притягивать небольшие кусочки бумаги. Это явление называется электризацией , а силы, действующие при этом – электрическими силами . Оба названия происходят от греческого слова " электрон" , что означает " янтарь" .
При трении расчески о волосы или эбонитовой палочки о шерсть предметы заряжаются , на них образуются электрические заряды . Заряженные тела взаимодействуют друг с другом и между ними возникают электрические силы.
Электризоваться трением могут не только твердые тела, но и жидкости, и даже газы.
При электризации тел вещества, из которых состоят электризующиеся тела, в другие вещества не превращаются. Таким образом, электризация – физическое явление.
Существует два разных рода электрических зарядов. Совершенно условно они названы " положительным" зарядом и " отрицательным" зарядом (а можно было бы назвать их " черный" и " белый" , или " прекрасный" и " ужасный" , или как-то иначе).
Положительно заряженными называют тела, которые действуют на другие заряженные предметы так же, как стекло, наэлектризованное трением о шелк.
Отрицательно заряженными называют тела, которые действуют на другие заряженные предметы так же, как сургуч, наэлектризованный трением о шерсть.
Основное свойство заряженных тел и частиц: одноименно заряженные тела и частицы отталкиваются, а разноименно заряженные – притягиваются. В опытах с источниками электрических зарядов вы познакомитесь и с некоторыми другими свойствами этих зарядов: заряды могут " перетекать" с одного предмета на другой, накапливаться, между заряженными телами может происходить электрический разряд и так далее. Подробно эти свойства вы изучите в курсе физики.

3.2. Закон Кулона

Электрический заряд (Q или q ) – физическая величина, он может быть больше или меньше, и, следовательно, его можно измерять. Но непосредственно сравнивать заряды друг с другом физики пока не могут, поэтому сравнивают не сами заряды, а действие, которое заряженные тела оказывают друг на друга, или на другие тела, например, силу с которой одно заряженное тело действует на другое.

Силы (F), действующие на каждое из двух точечных заряженных тел противоположно направлены вдоль прямой, соединяющей эти тела. Их величины равны между собой, прямо пропорциональны произведению зарядов этих тел (q 1 ) и (q 2 ) и обратно пропорциональны квадрату расстояния (l) между ними.

Это соотношение носит название " закон Кулона" в честь открывшего его в 1785 г. французского физика Шарля Кулона (1763-1806). Важнейшая для химии зависимость кулоновских сил от знака заряда и расстояния между заряженными телами наглядно показана на рис. 3.1.

Единица измерений электрического заряда – кулон (определение в курсе физики). Заряд величиной в 1 Кл протекает через электрическую лампочку мощностью 100 ватт примерно за 2 секунды (при напряжении 220 В).

3.3. Элементарный электрический заряд

До конца XIX века природа электричества оставалась неясной, но многочисленные эксперименты привели ученых к выводу, что величина электрического заряда не может изменяться непрерывно. Было установлено, что существует наименьшая, далее неделимая порция электричества. Заряд этой порции получил название " элементарный электрический заряд" (обозначается буквой е ). Он оказался равен 1,6 . 10– 19 Кл. Это очень маленькая величина – через нить той же электрической лампочки за 1 секунду проходит почти 3 миллиарда миллиардов элементарных электрических зарядов.
Любой заряд является величиной, кратной элементарному электрическому заряду, поэтому элементарный электрический заряд удобно использовать в качестве единицы измерений малых зарядов. Таким образом,

1е = 1,6 . 10– 19 Кл.

На рубеже XIX и XX веков физики поняли, что носителем элементарного отрицательного электрического заряда является микрочастица, получившая название электрон (Джозеф Джон Томсон, 1897 г.). Носитель элементарного положительного заряда – микрочастица под названием протон – был обнаружен несколько позже (Эрнест Резерфорд, 1919 г.). Тогда же было доказано, что положительный и отрицательный элементарные электрические заряды равны по абсолютной величине

Таким образом, элементарный электрический заряд – это заряд протона.
С другими характеристиками электрона и протона вы познакомитесь в следующей главе.

Несмотря на то, что в состав физических тел входят заряженные частицы, в обычном состоянии тела незаряжены, или электронейтральны . Также электронейтральны и многие сложные частицы, например, атомы или молекулы. Суммарный заряд такой частицы или такого тела оказывается равным нулю потому, что число электронов и число протонов, входящих в состав частицы или тела, равны.

Тела или частицы становятся заряженными, если электрические заряды разделяются: на одном теле (или частице) оказывается избыток электрических зарядов одного знака, а на другом – другого. В химических явлениях электрический заряд какого-либо одного знака (положительный или отрицательный) не может ни появиться, ни исчезнуть, так как не могут появиться или исчезнуть носители элементарных электрических зарядов только одного знака.

ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, ОСНОВНОЕ СВОЙСТВО ЗАРЯЖЕННЫХ ТЕЛ И ЧАСТИЦ, ЗАКОН КУЛОНА, ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД
1.Как заряжается шелк при трении о стекло? А шерсть при трении о сургуч?
2.Какое число элементарных электрических зарядов составляет 1 кулон?
3.Определите силу, с который притягиваются друг к другу два тела с зарядами +2 Кл и –3 Кл, находящиеся друг от друга на расстоянии 0,15 м.
4.Два тела с зарядами +0,2 Кл и –0,2Кл находятся на расстоянии 1 см друг от друга. Определите силу с которой они притягиваются.
5.С какой силой отталкиваются друг от друга две частицы, несущие одинаковый заряд, равный +3 е , и находящиеся на расстоянии 2 Е? Значение константы в уравнении закона Кулона k = 9 . 10 9 Н. м 2 /Кл 2 .
6.С какой силой притягивается электрон к протону, если расстояние между ними 0,53 Е? А протон к электрону?
7.Два одноименно и одинаково заряженных шарика соединены непроводящей заряды нитью. Середина нити неподвижно закреплена. Нарисуйте, как расположатся в пространстве эти шарики в условиях, когда силой тяжести можно пренебречь.
8.Как в этих же условиях будут расположены в пространстве три таких же шарика, привязанных одинаковыми по длине нитями к одной опоре? А четыре?
Опыты по притяжению и отталкиванию заряженных тел.

Комментариев: 0

Как правило, атом имеет одинаковое число протонов и электронов. Когда это так, атом электрически нейтрален, поскольку положительно заряженные протоны точно уравновешены отрицательно заряженными электронами. Однако в некоторых случаях атом утрачивает электрическое равновесие за счет потери или захвата электрона. При потере или захвате электрона атом более не является нейтральным. Он либо положительно, либо отрицательно заряжен - в зависимости от потери или захвата электрона. Таким образом, в атоме существует заряд, когда количество его протонов и электронов не совпадают.

В определенных условиях некоторые атомы могут терять небольшое число электронов на короткий период времени. Электроны атомов некоторых веществ, в особенности металлов, могут легко выбиваться со своих внешних орбит. Такие электроны называют свободными электронами, а содержащие их материалы - проводниками. Когда электроны покидают атом, последний приобретает положительный заряд, поскольку отрицательно заряженный электрон удаляется, нарушая электрический баланс в атоме.

Столь же просто атом может захватить и дополнительные электроны. В этом случае он приобретает отрицательный заряд.

Заряд, таким образом, создается при наличии избытка электронов или протонов в атоме. Когда один атом заряжен, а в другом содержится заряд противоположного знака, электроны могут перетекать с одного атома на другой. Этот электронный поток называется электрическим током.

Атом, потерявший или захвативший электрон, считается неустойчивым. Избыток электронов создает в нем отрицательный заряд. Недостаток электронов - положительный заряд. Электрические заряды взаимодействуют друг с другом различными способами. Две отрицательно заряженных частицы отталкивают друг друга, положительно заряженные частицы также отталкивают друг друга. Два заряда противоположных знаков взаимно притягиваются. Закон электрических зарядов гласит: заряды с одинаковыми знаками отталкиваются, а с противоположными притягиваются. 1.2 служит иллюстрацией к закону электрических зарядов.

Все атомы стремятся оставаться нейтральными, поскольку электроны на внешних орбитах отталкивают остальные электроны. Тем не менее многие материалы могут приобретать положительный или отрицательный заряд за счет механических воздействий, как, например, трение. Всем известное потрескивание при движении эбонитового гребешка через волосы в сухой зимний день служит примером генерации электрического заряда посредством трения.

Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

Тело имеет заряд , значит имеет лишние или недостающий электроны. Такой заряд обозначаетсяq =ne . (он равен числу элементарных зарядов).

Наэлектризовать тело – создать избыток и недостаток электронов. Способы:электризация трением иэлектризация соприкосновением .

Точечный заря д – заряд тела, которое можно принять за материальную точку.

Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

Закон сохранения заряда :в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой .

Закон Кулона :силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры .

, где
Ф/м, Кл 2 /нм 2 – диэлектр. пост. вакуума

- относит. диэлектрическая проницаемость (>1)

- абсолютная диэлектрическая прониц. среды

Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

Свойства электрического поля:


Характеристики электрического поля:

    Напряжённость (E ) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

Измеряется в Н/Кл.

Направление – такое же, как и у действующей силы.

Напряжённость не зависит ни от силы, ни от величины пробного заряда.

Суперпозиция электрических полей : напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

Графически электронное поле изображают с помощью линий напряжённости.

Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

Свойства линий напряжённости : они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

Виды полей:

    Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

    Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

    Постоянное электрическое поле – вектор напряжённости не изменяется.

    Непостоянное электрическое поле – вектор напряжённости изменяется.

    Работа электрического поля по перемещению заряда .

, гдеF– сила,S– перемещение,- угол междуFиS.

Для однородного поля: сила постоянна.

Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

Для неоднородного поля:

    Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

-потенциал – энергетическая характеристика поля. Измеряется в Вольтах

Разность потенциалов :

Если
, то

, значит

-градиент потенциала.

Для однородного поля: разность потенциалов – напряжение :

. Измеряется в Вольтах, приборы – вольтметры.

Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

.

Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

, гдеr– размер,
- проницаемость среды вокруг тела.

Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

Конденсатор – устройство для накопления заряда. Электроёмкость:

Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

, гдеS– площадь пластин,d– расстояние между пластинами.

Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

Перенос малого заряда
, напряжение измениться на
, совершится работа
. Так как
, а С =const,
. Тогда
. Интегрируем:

Энергия электрического поля :
, гдеV=Sl– объём, занимаемый электрическим полем

Для неоднородного поля :
.

Объёмная плотность электрического поля :
. Измеряется в Дж/м 3 .

Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя -l).

Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается
. Измеряется в Кулон-метрах.

Диполь в однородном электрическом поле.

На каждый из зарядов диполя действуют силы:
и
. Эти силы противоположно направлены и создают момент пары сил – вращающий момент:, где

М – вращающий момент F– силы, действующие на диполь

d– плечо силl– плечо диполя

p– дипольный моментE– напряжённость

- угол междуpи Еq– заряд

Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы pи Е будут параллельны и однонаправлены.

Диполь в неоднородном электрическом поле.

Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

-градиент напряжённости . Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

Собственное поле диполя .

Но . Тогда:

.

Пусть диполь находится в точке О, а его плечо мало. Тогда:

.

Формула получена с учётом:

Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

Диэлектрики в электрическом поле.

Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

Классы диэлектриков:

    с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

    с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

    кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

Способы поляризации:

1 способ – электрохимическая поляризация :

На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10 -3 -10 -2 с.

2 способ – ориентационная поляризация:

На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10 -13 -10 -7 с. Частота 10 МГц.

3 способ – электронная поляризация:

Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10 -16 -10 -14 с. Частота 10 8 МГц.

4 способ – ионная поляризация:

Две решётки (NaиCl) смещаются относительно друг друга.

Время релаксации:

5 способ – микроструктурная поляризация:

Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

Время релаксации: =10 -8 -10 -3 с. Частота 1 КГц

Числовые характеристики степени поляризации:


Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

Условия существования электрического тока :

    наличие свободных зарядов

    наличие электрического поля, т.е. сил, действующих на эти заряды

Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

Измеряется в Амперах.

n– концентрация зарядов

q– величина заряда

S– площадь поперечного сечения проводника

- скорость направленного движения частиц.

Скорость движения заряженных частиц в электрическом поле небольшая – 7*10 -5 м/с, скорость распространения электрического поля 3*10 8 м/с.

Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м 2 .

. Измеряется в А/м 2 .

- сила, действующая на ион со стороны эл поля равна силе трения

- подвижность ионов

- скорость направленного движения ионов =подвижность, напряжённость поля

Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

Простые опыты по электризации различных тел иллюстрируют следующие положения.

1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

2. Заряды (или заряженные тела ) взаимодействуют друг с другом. Одноименные заряды оттал-киваются, а разноименные заряды притягиваются.

3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда . При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло-жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря-дов с помощью электрометров.

Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы , в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов , положительно заряженных протонов и нейтральных частиц - нейтронов . Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

Элементарный электрический заряд (е ) — это наименьший электрический заряд, положи-тельный или отрицательный, равный величине заряда электрона:

е = 1,6021892(46) · 10 -19 Кл .

Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e , однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се-кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома , вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб-ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря-дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

Определение заряда.

Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра-витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием , а электрический заряд определяет интенсивность электромагнитных взаимодействий.

В современной физике так определяют заряд:

Электрический заряд — это физическая величина , являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

Исходя из наблюдений за взаимодейст-вием электрически заряженных тел, амери-канский физик Бенджамин Франклин назвал одни тела заряженными положительно, а другие — отрицательно. Соответственно этому и электрические заряды называют поло-жительными и отрицательными .

Тела с одноименными зарядами отталки-ваются. Тела с разноименными зарядами притяги-ваются.

Эти названия зарядов вполне условные, и единственное их значение состоит в том, что тела, имеющие электрические заряды, могут либо притягиваться, либо отталки-ваться.

Знак электрического заряда тела опре-деляют по взаимодействию с условным эта-лоном знака заряда.

В качестве одного из таких эталонов взят заряд эбонитовой палочки, потертой мехом. Считается, что эбонитовая палочка после натирания мехом всегда имеет отрицатель-ныйзаряд.

В случае если необходимо определить, какой знак заряда данного тела, его под-носят к закрепленной в легком подвесе эбонитовой палочке, потертой мехом, и наблюдают взаимодействие. Если палочка отталкивается, то тело имеет отрицатель-ный заряд.

После открытия и изучения элементар-ных частичек выяснилось, что отрицатель-ный заряд всегда имеет элементарная части-ца — электрон.

Электрон (от греч. — янтарь) — стабильная элементарная части-ца с отрицательным электриче-ским зарядом e = 1,6021892(46) . 10 -19 Кл, массой покоя m e = 9,1095 . 10 -19 кг. Открыт в 1897 г. английским физиком Дж. Дж. Томсоном.

Как эталон положительного заряда взят заряд стеклянной палочки, потертой нату-ральным шелком. Если палочка отталки-вается от наэлектризованного тела, то это тело имеет положительный заряд.

Положительный заряд всегда имеет про-тон, который входит в состав атомного яд-ра. Материал с сайта

Пользуясь вышеизложенными правила-ми для определения знака заряда тела, нужно помнить, что он зависит от вещества взаимодействующих тел. Так, эбонитовая па-лочка может иметь положительный заряд, если ее потереть тканью из синтетических материалов. Стеклянная палочка будет иметь отрицательный заряд, если ее потереть ме-хом. Поэтому, планируя получить отрица-тельный заряд на эбонитовой палочке, сле-дует обязательно пользоваться при натира-нии мехом или шерстяной тканью. Это же касается и электризации стеклянной палоч-ки, которую для получения положительного заряда натирают тканью из натурального шелка. Лишь электрон и протон всегда и однозначно имеют отрицательный и поло-жительный заряды соответственно.

На этой странице материал по темам:

  • Что является условным эталоном положительного заряда?

  • То являеться условным эталоеом отпицательного заряда

  • Условным эталоном положительного заряда является

  • Что являкться условным эталоном отрицательного заряда?