Построение куба онлайн. Задачи на построение сечений куба

Выбери многогранник и уровень трудности

Параллелепипед.

Тетраэдр.

Куб. Уровень А.

Уровень А.

Уровень А.

Параллелепипед.

Куб. Уровень В.

Уровень В.

Тетраэдр.

Уровень В.

Параллелепипед.

Тетраэдр.

Куб. Уровень С.

Уровень С.

Уровень С.


Куб. Уровень A.

точки М,Н и К, где КЄ(DCC 1 D 1 ).

в 1

С 1

D 1

Помощь


плоскости а) с ребром ВВ 1 ; б)плоскостью (СС 1 D).

Куб. Уровень B.

в 1

С 1

D 1

Помощь


Куб. Уровень С.

Постройте сечение куба плоскостью, проходящей через точки К,Е и М (М Є АВ). Затем найдите точку пересечения прямой ВВ 1 с этой плоскостью.

в 1

С 1

D 1


Куб. Уровень A.

Построить сечение тетраэдра, проходящего через

точки М,Н и К, где КЄ(DCC 1 D 1 ).

в 1

С 1

ЕР ll МН

D 1


Куб. Уровень B.

в 1

С 1

D 1

АН ll КЕ

Построить сечение куба плоскостью, проходящей через

точки А,К и Е.Найдите линию пересечения этой

плоскости а) с ребром ВВ 1 ; б)плоскостью (СС 1 D).


Куб. Уровень С.

Постройте сечение куба плоскостью, проходящей через точки К,Е и М (М Є АВ). Затем найдите точку пересечения прямой ВВ1 с этой плоскостью.

в 1

С 1

D 1

РHКЕRF – искомое сечение


Уровень А. На ребрах АА 1 и А 1 Д 1 1 1 = 6, А 1 Д 1 = 8, АВ = 4 см.

Помощь


Уровень В.

Помощь


УровеньС. На ребрах параллелепипеда даны три точки S,R и L. Построить сечение параллелепипеда плоскостью SRL.

Помощь


Уровень А. На ребрах АА 1 и А 1 Д 1 параллелепипеда взяты соответственно середины S,R. Построить сечение параллелепипеда плоскостью SRВ 1 и найти площадь сечения, если АА 1 = 6, А 1 Д 1 = 8, АВ = 4 см.

Указание

Примени формулу Герона.


Уровень В

SRELZX – искомое сечение


Уровень С.


Тетраэдр.

Уровень А.

Помощь


Тетраэдр.

Постройте сечение тетраэдра плоскостью, проходящей

Уровень В.

Помощь


В тетраэдре на высотах граней (СТА) и (АТВ) взяты точки К и М,

а точка Е лежит в плоскости (АВС). Проведите сечение тетраэдра,

проходящее через данные точки.

Тетраэдр.

Уровень С.

Помощь


Постройте сечение тетраэдра плоскостью, проходящей

через середины ребер СТ,СА и точку КЄТВ. Определите вид

четырехугольника, полученного в сечении.

Тетраэдр.

Уровень А.


Тетраэдр.

Постройте сечение тетраэдра плоскостью, проходящей

Уровень В.

через точки М и Н и точку КЄ(АВС).

МНРЕ – искомое сечение

В1. В. Куб. Уровень B. Помощь. Построить сечение куба плоскостью, проходящей через точки А,К и Е.Найдите линию пересечения этой плоскости а) с ребром ВВ1; б)плоскостью (СС1D). Е. С1. К. А1. D1. С. D. А. Меню.

Слайд 4 из презентации «Задачи на построение сечений» . Размер архива с презентацией 198 КБ.

Геометрия 10 класс

краткое содержание других презентаций

«Определение двугранных углов» - Точка на ребре может быть произвольная. Построим BK. Задача. Решение задач. Плоскость М. Ромб. Определение и свойства. Где можно увидеть теорему трёх перпендикуляров. Концы отрезка. Проведем луч. Свойства. Двугранные углы в пирамидах. Точки М и К лежат в разных гранях. Отрезки АС и ВС. Свойство трёхгранного угла. Определение. Двугранные углы. Найдите угол. Провести перпендикуляр. Градусная мера угла.

«Примеры центральной симметрии» - Плоскость. Аксиомы планиметрии. Точки. Центральная симметрия. Один центр симметрии. Гостиница «Прибалтийская». Капсула поезда. Длина отрезка. Примеры симметрии в растениях. Центральная симметрия в архитектуре. Ромашка. Отрезок имеет определённую длину. Отрезок. Аксиомы стереометрии и планиметрии. Аксиомы стереометрии. Центральная симметрия в квадратах. Центральная симметрия в транспорте. Различные прямые.

«Равносторонние многоугольники» - Октаэдр Октаэдр составлен из восьми равносторонних треугольников. «Эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «дедека» - 12. Тетраэдр имеет 4 грани, 4 вершины и 6 ребер. Додекаэдр имеет 12 граней, 20 вершин и 30 ребер. Октаэдр имеет 8 граней, 6 вершин и 12 ребер. Существует 5 видов правильных многогранников. Додекаэдр Додекаэдр составлен из двенадцати равносторонних пятиугольников.

«Применение правильных многогранников» - Многогранники в природе. Теорема Эйлера. Задачи проекта. Использование в жизни. Мир правильных многогранников. Многогранники в архитектуре. Многогранники в искусстве. Многогранники в математике. Архимед. Кеплер. Теория многогранников. Золотая пропорция в додекаэдре и икосаэдре. Заключение. Платон. Группа «Историки». Евклид. История возникновения правильных многогранников. Взаимосвязь «золотого сечения» и происхождения многогранников.

«Тела Платона» - Октаэдр. Тела Платона. Гексаэдр. Правильные многогранники. Платон. Додекаэдр. Дуальность. Икосаэдр. Правильные многогранники или тела Платона. Тетраэдр.

«Методы построения сечений многогранников» - Правила для самоконтроля. Постройте сечение призмы. Корабль. Многоугольники. Простейшие задачи. Взаимное расположение плоскости и многогранника. Точки пересечения. Пересекаются ли прямые. Разрезы образовали пятиугольник. Делаем разрезы. Законы геометрии. Аксиоматический метод. След секущей плоскости. Задача. Секущая плоскость. Построение сечений многогранников. Сечение. Опрос. Любая плоскость. Сечения параллелепипеда.

« Загадка трёх точек» Информационно-исследовательский проект

Цели проекта: построение сечений в кубе, проходящих через три точки; составление задач по теме « Сечение куба плоскостью»; оформление презентации; подготовка выступления.

В геометрии нет царской дороги Евклид

Аксиомы стереометрии Через любые три точки пространства, не лежащие на одной прямой, проходит единственная плоскость.

Для решения многих геометрических задач, связанных с кубом полезно уметь строить на рисунке их сечения различными плоскостями. Под сечением будем понимать любую плоскость (назовем ее секущей плоскостью), по обе стороны от которой имеются точки данной фигуры. Секущая плоскость пересекает многогранник по отрезкам. Многоугольник, который будет образован этими отрезками, и является сечением фигуры.

Правила построения сечений многогранников: 1) проводим прямые через точки, лежащие в одной плоскости; 2) ищем прямые пересечения плоскости сечения с гранями многогранника, для этого: а) ищем точки пересечения прямой принадлежащей плоскости сечения с прямой, принадлежащей одной из граней (лежащие в одной плоскости); б) параллельные грани плоскость сечения пересекает по параллельным прямым.

Куб имеет шесть граней. Его сечением могут быть: треугольники, четырехугольники, пятиугольники, шестиугольники.

Рассмотрим построение этих сечений.

Треугольник

Полученный треугольник EFG будет искомым сечением. Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба.

Построить сечение куба плоскостью, проходящей через точки A, C и M.

Для построения сечения куба, проходящего через точки лежащие на ребрах куба, выходящих из одной вершины, достаточно просто соединить данные точки отрезками. В сечении получится треугольник.

Четырехугольник

Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба.

Полученный прямоугольник BCFE будет искомым сечением. Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба, для которых AE = DF . Решение. Для построения сечения куба, проходящего через точки E , F , G , соединим точки E и F . Прямая EF будет параллельна AD и, следовательно, BC . Соединим точки E и B , F и C .

Построить сечение куба плоскостью, проходящей через точки E , F , лежащие на ребрах куба и вершину B . Решение. Для построения сечения куба, проходящего через точки E , F и вершину B , Соединим отрезками точки E и B , F и B . Через точки E и F проведем прямые, параллельные BF и BE , соответственно.

Полученный параллелограмм BFGE будет искомым сечением Построить сечение куба плоскостью, проходящей через точки E , F , лежащие на ребрах куба и вершину B . Решение. Для построения сечения куба, проходящего через точки E , F и вершину B , Соединим отрезками точки E и B , F и B . Через точки E и F проведем прямые, параллельные BF и BE , соответственно.

Плоскость сечения параллельна одному из ребер куба или проходит через ребро (прямоугольник) Плоскость сечения пересекает четыре параллельных ребра куба (параллелограмм)

Пятиугольник

Полученный пятиугольник EFSGQ будет искомым сечением Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E , F , G , проведем прямую EF и обозначим P её точку пересечения с AD . Обозначим Q , R точки пересечения прямой PG с AB и DC . Обозначим S точку пересечения FR c СС 1. Соединим точки E и Q , G и S .

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS - след секущей плоскости в грани (BCC1). Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый). Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след - NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую. Пятиугольник MNLPS - искомое сечение.

В сечении куба плоскостью может получится только тот пятиугольник, у которого имеются две пары параллельных сторон.

Шестиугольник

Построить сечение куба плоскостью, проходящей через точки E , F , G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E , F , G , найдем точку P пересечения прямой EF и плоскости грани ABCD . Обозначим Q , R точки пересечения прямой PG с AB и CD . Проведем прямую RF и обозначим S , T её точки пересечения с CC 1 и DD 1. Проведем прямую TE и обозначим U её точку пересечения с A 1 D 1. Соединим точки E и Q , G и S , F и U . Полученный шестиугольник EUFSGQ будет искомым сечением.

В сечении куба плоскостью может получится только тот шестиугольник, у которого имеется три пары параллельных сторон.

Дано: M€AA1 , N€B1C1,L€AD Построить: (MNL)

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости (ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

Цели урока

  • Формирование у учащихся навыков решения задач на построение сечений.
  • Формирование и развитие у учащихся пространственного воображения.
  • Развитие графической культуры и математической речи.
  • Формирование умения работать индивидуально и в коллективе.

Тип урока: урок формирования и совершенствования знаний.

Формы организации учебной деятельности: групповая, индивидуальная, коллективная.

Техническое обеспечение урока: компьютер, мультимедийный проектор, экран, набор геометрических тел (куб, параллелепипед, тетраэдр).

ХОД УРОКА

1. Организационный момент

Класс разбивается на 3 группы по 5-6 человек. На каждом столе – индивидуальные и групповые задания по построению сечения, набор тел. Знакомство учащихся с темой и целями урока.

2. Актуализация опорных знаний

Опрос теории:

– Аксиомы стереометрии.
– Понятие параллельных прямых в пространстве.
– Теорема о параллельных прямых.
– Параллельность трех прямых.
– Взаимное расположение прямой и плоскости в пространстве.
– Признак параллельности прямой и плоскости.
– Определение параллельности плоскостей.
– Признак параллельности двух плоскостей.
– Свойства параллельных плоскостей.
– Тетраэдр. Параллелепипед. Свойства параллелепипеда.

3. Изучение нового материала

Слово учителя: При решении многих стереометрических задач используется сечение многогранника плоскостью. Назовем секущей плоскостью многогранника любую плоскость, по обе стороны от которой имеются точки данного многогранника.
Секущая плоскость пересекает грани по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.
С помощью рисунков 38-39 давайте выясним: Какое количество сторон может иметь сечение тетраэдра и параллелепипеда?

Учащиеся анализируют рисунки и делают выводы. Учитель корректирует ответы учащихся, указывая на тот факт, что если секущая плоскость пересекает две противоположные грани параллелепипеда по каким-то отрезкам, то эти отрезки параллельны.

Анализ решения задач 1, 2, 3, приведенных в учебнике (устная коллективная работа).

4. Закрепление изученного материала (по группам)

1 группе: объясните, как построить сечение тетраэдра плоскостью, проходящей через данные точки М, N, К и в задачах 1-3 найти периметр сечения, если М, N, К – середины ребер и каждое ребро тетраэдра равно а .

2 группе: объясните, как построить сечение куба плоскостью, проходящей через три данные точки, являющиеся либо вершинами куба, либо серединами его ребер (три данные точки на рисунках выделены), в задачах 1-4 и 6 найдите периметр сечения, если ребро куба равно а. в задаче 5докажите, что АЕ = а /3

3 группе: построить сечение параллелепипеда АВСDА 1 В 1 С 1 D 1 плоскостью, проходящей через точки:

Все выполненные задания группа защищает у доски, с использованием слайдов.

5. Самостоятельная работа № 85, № 105.

6. Подведение итогов урока

Оценка работы учащихся на уроке.

7. Домашнее задание: индивидуальные карточки.