Радианная мера угла. Перевод градусов в радианы и обратно

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Основные термины.

Хорошо ли ты помнишь все названия, связанные с окружностью? На всякий случай напомним - смотри на картинки - освежай знания.

Ну, во-первых - центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых - радиус - отрезок, соединяющий центр и точку на окружности.

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов - одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр - точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности ? Тоже отрезок?

Так вот, этот отрезок называется «хорда» .

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же, радиус равен половине диаметра.

Кроме хорд бывают еще и секущие.

Вспомнили самое простое?

Центральный угол - угол между двумя радиусами.

А теперь - вписанный угол

Вписанный угол - угол между двумя хордами, которые пересекаются в точке на окружности .

При этом говорят, что вписанный угол опирается на дугу (или на хорду) .

Смотри на картинку:

Измерения дуг и углов.

Длина окружности. Дуги и углы измеряются в градусах и радианах. Сперва о градусах. Для углов проблем нет - нужно научиться измерить дугу в градусах.

Градусная мера (величина дуги) - это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Видишь две дуги и два центральных угла? Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о страшном - о радианах!

Что же это за зверь такой «радиан»?

Представь себе: радианы - это способ измерения угла … в радиусах!

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос - а сколько же радиан в развёрнутом угле?

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в раза или в раз больше радиуса! Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву.

Итак, - это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём радиан. Именно оттого, что половина окружности в раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число, получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы - нам достаточно двух знаков после занятой, мы привыкли, что

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна, а точно эту длину просто невозможно записать «человеческим» числом - нужна буква. И тогда эта длина окружности окажется равной. И конечно, длина окружности радиуса равна.

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится радиан.

Что имеем:

Значит, рад., то есть рад. Таким же образом получается табличка с наиболее популярными углами.

Соотношение между величинами вписанного и центрального углов.

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре. И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (), что и вписанный угол.

Почему же так? Давай разберёмся сначала на простом случае. Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Что же тут получается? Рассмотрим. Он равнобедренный - ведь и - радиусы. Значит, (обозначили их).

Теперь посмотрим на. Это же внешний угол для! Вспоминаем, что внешний угол равен сумм двух внутренних, не смежных с ним, и записываем:

То есть! Неожиданный эффект. Но и есть центральный угол для вписанного.

Значит, для этого случая доказали, что центральный угол вдвое больше вписанного. Но уж больно частный случай: правда ведь, далеко не всегда хорда проходит прямиком через центр? Но ничего, сейчас этот частный случай нам здорово поможет. Смотри: второй случай: пусть центр лежит внутри.

Давай сделаем вот что: проведём диаметр. И тогда … видим две картинки, которые уже разбирали в первом случае. Поэтому уже имеем, что

Значит, (на чертеже, а)

Ну вот, и остался последний случай: центр вне угла.

Делаем то же самое: проводим диаметр через точку. Все то же самое, но вместо суммы - разность.

Вот и всё!

Давай теперь сформируем два главных и очень важных следствия из утверждения о том, что вписанный угол вдвое меньше центрального.

Следствие 1

Все вписанные углы, опирающиеся на одну дугу, равны между собой.

Иллюстрируем:

Вписанных углов, опирающихся на одну и ту же дугу (у нас эта дуга) - бесчисленное множество, они могут выглядеть совсем по-разному, но у них у всех один и тот же центральный угол (), а значит, все эти вписанные углы равны между собой.

Следствие 2

Угол, опирающийся на диаметр - прямой.

Смотри: какой угол является центральным для?

Конечно, . Но он равен! Ну вот, поэтому (а так же ещё множество вписанных углов, опирающихся на) и равен.

Угол между двумя хордами и секущими

А что, если интересующий нас угол НЕ вписанный и НЕ центральный, а, например, такой:

или такой?

Можно ли его как-то выразить всё-таки через какие-то центральные углы? Оказывается, можно. Смотри: нас интересует.

a) (как внешний угол для). Но - вписанный, опирается на дугу - . - вписанный, опирается на дугу - .

Для красоты говорят:

Угол между хордами равен полусумме угловых величин дуг, заключённых в этот угол.

Так пишут для краткости, но конечно, при использовании этой формулы нужно иметь в виду центральные углы

b) А теперь - «снаружи»! Как же быть? Да почти так же! Только теперь (снова применяем свойство внешнего угла для). То есть теперь.

И значит, . Наведём красоту и краткость в записях и формулировках:

Угол между секущими равен полуразности угловых величин дуг, заключённых в этот угол.

Ну вот, теперь ты вооружён всеми основными знаниями об углах, связанных с окружностью. Вперёд, на штурм задач!

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. СРЕДНИЙ УРОВЕНЬ

Что такое окружность, знает и пятилетний ребёнок, не правда ли? У математиков, как всегда, на этот счёт есть заумное определение, но мы его приводить не будем (смотри ), а лучше вспомним, как называются точки, линии и углы, связанные с окружностью.

Важные термины

Ну, во-первых:

центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых:

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда стягивает дугу. А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,

А теперь - названия для углов.

Естественно, не правда ли? Стороны угла выходят из центра - значит, угол - центральный.

Вот здесь иногда возникают сложности. Обрати внимание - НЕ ЛЮБОЙ угол внутри окружности - вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Давай увидим разницу на картинках:

По-другому ещё говорят:

Тут есть один хитрый момент. Что такое «соответствующий» или «свой» центральный угол? Просто угол с вершиной в центре окружности и концами в концах дуги? Не совсем так. Посмотри-ка на рисунок.

Один из них, правда, и на угол-то не похож - он больше. Но это в треугольнике не может быть углов больше, а в окружности - вполне может! Так вот: меньшей дуге AB соответствует меньший угол (оранжевый), а большей - больший. Просто как, не правда ли?

Соотношение между величинами вписанного и центрального угла

Запомни очень важное утверждение:

В учебниках этот же факт любят записывать так:

Правда, с центральным углом формулировка проще?

Но всё же давай найдём соответствие между двумя формулировками, а заодно научимся находить на рисунках «соответствующий» центральный угол и дугу, на которую «опирается» вписанный угол.

Смотри: вот окружность и вписанный угол:

Где же его «соответствующий» центральный угол?

Снова смотрим:

Какое же правило?

Но! При этом важно, чтобы вписанный и центральный угол «смотрели» с одной стороны на дугу. Вот, например:

Как ни странно, голубой! Потому что дуга-то длинная, длиннее половины окружности! Вот и не путай никогда!

Какое же следствие можно вывести из «половинчатости» вписанного угла?

А вот, например:

Угол, опирающийся на диаметр

Ты уже успел заметить, что математики очень любят об одном и том же говорить разными словами? Зачем это им? Понимаешь, язык математики хоть и формальный, но живой, а поэтому, как и в обычном языке, каждый раз хочется сказать так, как удобнее. Ну вот, что такое «угол опирается на дугу» мы уже видели. И представь себе, та же самая картина называется «угол опирается на хорду». На какую? Да конечно на ту, которая стягивает эту дугу!

Когда же опираться на хорду удобнее, чем на дугу?

Ну, в частности, когда эта хорда - диаметр.

Для такой ситуации есть удивительно простое, красивое и полезное утверждение!

Смотри: вот окружность, диаметр и угол, который на него опирается.

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. КОРОТКО О ГЛАВНОМ

1. Основные понятия.

3. Измерения дуг и углов.

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Это число, выражающее отношение длины полуокружности к радиусу.

Длина окружности радиуса равна.

4. Соотношение между величинами вписанного и центрального углов.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы освоили отсчёт углов на тригонометрическом круге. Узнали, как отсчитывать положительные и отрицательные углы. Осознали, как нарисовать угол больше 360 градусов. Пришла пора разобраться с измерением углов. Особенно с числом "Пи", которое так и норовит запутать нас в хитрых заданиях, да...

Стандартные задания по тригонометрии с числом "Пи" решаются неплохо. Зрительная память выручает. А вот любое отклонение от шаблона - валит наповал! Чтобы не свалиться - понимать надо. Что мы с успехом сейчас и сделаем. В смысле - всё поймём!

Итак, в чём считаются углы? В школьном курсе тригонометрии используются две меры: градусная мера угла и радианная мера угла . Разберём эти меры. Без этого в тригонометрии - никуда.

Градусная мера угла.

К градусам мы как-то привыкли. Геометрию худо-бедно проходили... Да и в жизни частенько встречаемся с фразой "повернул на 180 градусов", например. Градус, короче, штука простая...

Да? Ответьте мне тогда, что такое градус? Что, не получается с ходу? То-то...

Градусы придумали в Древнем Вавилоне. Давненько это было... Веков 40 назад... И придумали просто. Взяли и разбили окружность на 360 равных частей. 1 градус - это 1/360 часть окружности. И всё. Могли разбить на 100 частей. Или на 1000. Но разбили на 360. Кстати, почему именно на 360? Чем 360 лучше 100? 100, вроде, как-то ровнее... Попробуйте ответить на этот вопрос. Или слабо против Древнего Вавилона?

Где-то в то же время, в Древнем Египте мучились другим вопросом. Во сколько раз длина окружности больше длины её диаметра? И так измеряли, и этак... Всё получалось немного больше трёх. Но как-то лохмато получалось, неровно... Но они, египтяне не виноваты. После них ещё веков 35 мучились. Пока окончательно не доказали, что как бы мелко не нарезать окружность на равные кусочки, из таких кусочков составить ровно длину диаметра нельзя... В принципе нельзя. Ну, во сколько раз окружность больше диаметра установили, конечно. Примерно. В 3,1415926... раз.

Это и есть число "Пи". Вот уж лохматое, так лохматое. После запятой - бесконечное число цифр без всякого порядка... Такие числа называются иррациональными. Это, кстати, и означает, что из равных кусочков окружности диаметр ровно не сложить. Никогда.

Для практического применения принято запоминать всего две цифры после запятой. Запоминаем:

Раз уж мы поняли, что длина окружности больше диаметра в "Пи" раз, имеет смысл запомнить формулу длины окружности:

Где L - длина окружности, а d - её диаметр.

В геометрии пригодится.

Для общего образования добавлю, что число "Пи" сидит не только в геометрии... В самых различных разделах математики, а особенно в теории вероятности, это число возникает постоянно! Само по себе. Вне наших желаний. Вот так.

Но вернёмся к градусам. Вы сообразили, почему в Древнем Вавилоне круг разбили на 360 равных частей? А не на 100, к примеру? Нет? Ну ладно. Выскажу версию. У древних вавилонян не спросишь... Для строительства, или, скажем, астрономии, круг удобно делить на равные части. А теперь прикиньте, на какие числа делится нацело 100, и на какие - 360? И в каком варианте этих делителей нацело - больше? Людям такое деление очень удобно. Но...

Как выяснилось много позже Древнего Вавилона, не всем нравятся градусы. Высшей математике они не нравятся... Высшая математика - дама серьёзная, по законам природы устроена. И эта дама заявляет: "Вы сегодня на 360 частей круг разбили, завтра на 100 разобьёте, послезавтра на 245... И что мне делать? Нет уж..." Пришлось послушаться. Природу не обманешь...

Пришлось ввести меру угла, не зависящую от человеческих придумок. Знакомьтесь - радиан!

Радианная мера угла.

Что такое радиан? В основе определения радиана - всё равно окружность. Угол в 1 радиан, это угол, который вырезает из окружности дугу, длина которой (L ) равна длине радиуса (R ). Смотрим картинки.

Маленький такой угол, почти и нет его... Наводим курсор на картинку (или коснёмся картинки на планшете) и видим примерно один радиан . L = R

Чувствуете разницу?

Один радиан много больше одного градуса. А во сколько раз?

Смотрим следующую картинку. На которой я нарисовал полукруг. Развёрнутый угол размером, естественно, в 180°.

А теперь я нарежу этот полукруг радианами! Наводим курсор на картинку и видим, что в 180° укладывается 3 с хвостиком радиана.

Кто угадает, чему равен этот хвостик!?

Да! Этот хвостик - 0,1415926.... Здравствуй, число "Пи", мы тебя ещё не забыли!

Действительно, в 180° градусах укладывается 3,1415926... радиан. Как вы сами понимаете, всё время писать 3,1415926... неудобно. Поэтому вместо этого бесконечного числа всегда пишут просто:

А вот в Интернете число

писать неудобно... Поэтому я в тексте пишу его по имени - "Пи". Не запутаетесь, поди?...

Вот теперь совершенно осмысленно можно записать приближённое равенство:

Или точное равенство:

Определим, сколько градусов в одном радиане. Как? Легко! Если в 3,14 радианах 180° градусов, то в 1 радиане в 3,14 раз меньше! То есть, мы делим первое уравнение (формула - это тоже уравнение!) на 3,14:

Это соотношение полезно запомнить В одном радиане примерно 60°. В тригонометрии очень часто приходится прикидывать, оценивать ситуацию. Вот тут это знание очень помогает.

Но главное умение этой темы - перевод градусов в радианы и обратно.

Если угол задан в радианах с числом "Пи", всё очень просто. Мы знаем, что "Пи" радиан = 180°. Вот и подставляем вместо "Пи" радиан - 180°. Получаем угол в градусах. Сокращаем, что сокращается, и ответ готов. Например, нам нужно выяснить, сколько градусов в угле "Пи"/2 радиан ? Вот и пишем:

Или, более экзотическое выражение:

Легко, верно?

Обратный перевод чуть сложнее. Но не сильно. Если угол дан в градусах, мы должны сообразить, чему равен один градус в радианах, и умножить это число на количество градусов. Чему равен 1° в радианах?

Смотрим на формулу и соображаем, что если 180° = "Пи" радиан, то 1° в 180 раз меньше. Или, другими словами, делим уравнение (формула - это тоже уравнение!) на 180. Представлять "Пи" как 3,14 никакой нужды нет, его всё равно всегда буквой пишут. Получаем, что один градус равен:

Вот и всё. Умножаем число градусов на это значение и получаем угол в радианах. Например:

Или, аналогично:

Как видите, в неспешной беседе с лирическими отступлениями выяснилось, что радианы - это очень просто. Да и перевод без проблем... И "Пи" - вполне терпимая штука... Так откуда путаница!?

Вскрою тайну. Дело в том, что в тригонометрических функциях значок градусов - пишется. Всегда. Например, sin35°. Это синус 35 градусов . А значок радианов (рад ) - не пишется! Он подразумевается. То ли лень математиков обуяла, то ли ещё что... Но решили не писать. Если внутри синуса - котангенса нет никаких значков, то угол - в радианах ! Например, cos3 - это косинус трёх радианов .

Это и приводит к непоняткам... Человек видит "Пи" и считает, что это 180°. Всегда и везде. Это, кстати, срабатывает. До поры до времени, пока примеры - стандартные. Но "Пи" - это число! Число 3,14, а никакие не градусы! Это "Пи" радиан = 180°!

Ещё раз: "Пи" - это число! 3,14. Иррациональное, но число. Такое же, как 5 или 8. Можно, к примеру, сделать примерно "Пи" шагов. Три шага и ещё маленько. Или купить "Пи" килограммов конфет. Если продавец образованный попадётся...

"Пи" - это число! Что, достал я вас этой фразой? Вы уже всё давно поняли? Ну ладно. Проверим. Скажите-ка, какое число больше?

Или, что меньше?

Это из серии слегка нестандартных вопросов, которые могут и в ступор вогнать...

Если вы тоже в ступор впали, вспоминаем заклинание: "Пи" - это число! 3,14. В самом первом синусе четко указано, что угол - в градусах ! Стало быть, заменять "Пи" на 180° - нельзя! "Пи" градусов - это примерно 3,14°. Следовательно, можно записать:

Во втором синусе обозначений никаких нет. Значит, там - радианы ! Вот здесь замена "Пи" на 180° вполне прокатит. Переводим радианы в градусы, как написано выше, получаем:

Осталось сравнить эти два синуса. Что. забыли, как? С помощью тригонометрического круга, конечно! Рисуем круг, рисуем примерные углы в 60° и 1,05°. Смотрим, какие синусы у этих углов. Короче, всё, как в конце темы про тригонометрический круг расписано. На круге (даже самом кривом!) будет чётко видно, что sin60° существенно больше, чем sin1,05° .

Совершенно аналогично поступим и с косинусами. На круге нарисуем углы примерно 4 градуса и 4 радиана (не забыли, чему примерно равен 1 радиан?). Круг всё и скажет! Конечно, cos4 меньше cos4°.

Потренируемся в обращении с мерами угла.

Переведите эти углы из градусной меры в радианную:

360°; 30°; 90°; 270°; 45°; 0°; 180°; 60°

У вас должны получиться такие значения в радианах (в другом порядке!)

0

Я, между прочим, специально выделил ответы в две строчки. Ну-ка, сообразим, что за углы в первой строчке? Хоть в градусах, хоть в радианах?

Да! Это оси системы координат! Если смотреть по тригонометрическому кругу, то подвижная сторона угла при этих значениях точно попадает на оси . Эти значения нужно знать железно. И угол 0 градусов (0 радиан) я отметил не зря. А то некоторые этот угол никак на круге найти не могут... И, соответственно, в тригонометрических функциях нуля путаются... Другое дело, что положение подвижной стороны в нуле градусов совпадает с положением в 360°, так совпадения на круге - сплошь и рядом.

Во второй строчке - тоже углы специальные... Это 30°, 45° и 60°. И что в них такого специального? Особо - ничего. Единственное отличие этих углов от всех остальных - именно про эти углы вы должны знать всё . И где они располагаются, и какие у этих углов тригонометрические функции. Скажем, значение sin100° вы знать не обязаны. А sin45° - уж будьте любезны! Это обязательные знания, без которых в тригонометрии делать нечего... Но об этом подробнее - в следующем уроке.

А пока продолжим тренировку. Переведите эти углы из радианной меры в градусную:

У вас должны получиться такие результаты (в беспорядке):

210°; 150°; 135°; 120°; 330°; 315°; 300°; 240°; 225°.

Получилось? Тогда можно считать, что перевод градусов в радианы и обратно - уже не ваша проблема.) Но перевод углов - это первый шаг к постижению тригонометрии. Там же ещё с синусами-косинусами работать надо. Да и с тангенсами, котангенсами тоже...

Второй мощный шаг - это умение определять положение любого угла на тригонометрическом круге. И в градусах, и в радианах. Про это самое умение я буду вам во всей тригонометрии занудно намекать, да...) Если вы всё знаете (или думаете, что всё знаете) про тригонометрический круг, и отсчёт углов на тригонометрическом круге, можете провериться. Решите эти несложные задания:

1. В какую четверть попадают углы:

45°, 175°, 355°, 91°, 355° ?

Легко? Продолжаем:

2. В какую четверть попадают углы:

402°, 535°, 3000°, -45°, -325°, -3000°?

Тоже без проблем? Ну, смотрите...)

3. Сможете разместить по четвертям углы:

Смогли? Ну вы даёте..)

4. На какие оси попадёт уголок:

и уголок:

Тоже легко? Хм...)

5. В какую четверть попадают углы:

И это получилось!? Ну, тогда я прям не знаю...)

6. Определить, в какую четверть попадают углы:

1, 2, 3 и 20 радианов.

Ответ дам только на последний вопрос (он слегка хитрый) последнего задания. Угол в 20 радианов попадёт в первую четверть.

Остальные ответы не дам не из жадности.) Просто, если вы не решили чего-то, сомневаетесь в результате, или на задание №4 потратили больше 10 секунд, вы слабо ориентируетесь в круге. Это будет вашей проблемой во всей тригонометрии. Лучше от неё (проблемы, а не тригонометрии!)) избавиться сразу. Это можно сделать в теме: Практическая работа с тригонометрическим кругом в разделе 555.

Там рассказано, как просто и правильно решать такие задания. Ну и эти задания решены, разумеется. И четвёртое задание решено за 10 секунд. Да так решено, что любой сможет!

Если же вы абсолютно уверены в своих ответах и вас не интересуют простые и безотказные способы работы с радианами - можете не посещать 555. Не настаиваю.)

Хорошее понимание - достаточно веская причина, чтобы двигаться дальше!)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.