Распределение темной материи во вселенной. Тёмная материя — что это? Самый вероятный вариант

МОСКВА, 12 дек - РИА Новости. Количество темной материи во Вселенной уменьшилось примерно на 2-5%, что может объяснять расхождения в значении некоторых важных космологических параметров во времена Большого Взрыва и сегодня, заявляют российские космологи в статье, опубликованной в журнале Physical Review D.

"Представим, что темная материя состоит из нескольких компонент, как и обычная. И одна компонента состоит из нестабильных частиц, чье время жизни довольно большое: в эпоху образования водорода, через сотни тысяч лет после Большого взрыва, они еще есть во Вселенной, а сегодня они уже исчезли, распавшись в нейтрино или гипотетические релятивистские частицы. Тогда количество темной материи в прошлом и сегодня будет разным", — заявил Дмитрий Горбунов из Московского Физтеха, чьи слова приводит пресс-служба вуза.

Темная материя — гипотетическое вещество, которое проявляет себя исключительно через гравитационное взаимодействие с галактиками, внося искажения в их движение. Частицы темной материи не взаимодействуют с какими-либо видами электромагнитного излучения, а потому не могут быть зафиксированы во время непосредственных наблюдений. На долю темной материи приходится около 26% массы Вселенной, в то время как "обычная" материя составляет лишь около 4,8% от ее массы — все остальное приходится на не менее загадочную темную энергию.

"Хаббл" помог ученым раскрыть неожиданно быстрое расширение Вселенной Оказалось,что Вселенная расширяется сейчас еще быстрее, чем показывали расчеты, построенные на наблюдениях за "эхом" Большого Взрыва. Это указывает на существование третьей загадочной "темной" субстанции - темного излучения или на неполноту теории относительности.

Наблюдения за распределением темной материи по ближайшим и далеким от нас уголкам мироздания, проведенные при помощи наземных телескопов и зонда "Планк", недавно раскрыли странную вещь - оказалось, что скорость расширения Вселенной, и некоторые свойства "эха" Большого взрыва в далеком прошлом и сегодня заметно отличаются. К примеру, сегодня галактики разлетаются в стороны друг от друга заметно быстрее, чем это следует из результатов анализа реликтового излучения.

Горбунов и его коллеги нашли возможную причину этого.

Год назад один из авторов статьи, академик Игорь Ткачев из Института ядерной физики РАН в Москве, сформулировал теорию так называемой распадающейся темной материи (DDM), в которой, в отличие от общепринятой теории "холодной темной материи" (CDM), часть или все ее частицы являются нестабильными. Эти частицы, как предположили Ткачев и его соратники, должны распадаться достаточно редко, но в заметном количестве для того, чтобы породить отклонения между юной и современной Вселенной.

В своей новой работе Ткачев, Горбунов и их коллега Антон Чудайкин попытались вычислить, как много темной материи должно было распасться, используя данные, собранные "Планком" и другими обсерваториями, изучавшими реликтовое излучение и первые галактики Вселенной.

Как показали их расчеты, распад темной материи действительно может объяснять то, почему результаты наблюдений за этой субстанцией при помощи "Планка" не соответствуют данным наблюдений за ближайшими к нам скоплениями галактик.

Что интересно, для этого требуется распад относительно небольшого количества темной материи - от 2,5 до 5% от ее общей массы, чье количество почти не зависит от того, какими фундаментальными свойствами должна обладать Вселенная. Сейчас, как объясняют ученые, вся эта материя распалась, и остальная темная материя, стабильная по своей природе, ведет себя так, как описывает теория CDM. С другой стороны, возможно и то, что она продолжает распадаться.

"Это означает, что в сегодняшней Вселенной на 5% меньше тёмной материи, чем было в эпоху формирования первых молекул водорода и гелия после рождения Вселенной. Мы сейчас не можем сказать, как быстро распалась эта нестабильная часть, возможно, что темная материя продолжает распадаться и сейчас, хотя это уже другая значительно более сложная модель", — заключает Ткачев.

Что было первым: яйцо или курица? Над этим простым вопросом учёные всего мира бьются не один десяток лет. Аналогичный вопрос возникает о том, что было в самом начале, в момент сотворения Вселенной. А было ли оно, это сотворение, либо Вселенные цикличны или бесконечны? Что такое черная материя в космосе и чем она отличается от белой? Отбрасывая в сторону различного рода религии, попробуем подойти к ответам на эти вопросы с научной точки зрения. За прошедшие несколько лет учёным удалось совершить невероятное. Наверно, впервые в истории выкладки физиков-теоретиков сошлись с выкладками физиков-экспериментаторов. Научному сообществу за эти годы было представлено несколько различных теорий. Более или менее точно, эмпирическими путями, порою квазинаучно, однако теоретические расчетные данные были-таки подтверждены экспериментами, некоторые даже с задержкой на не один десяток лет (бозон Хиггса, например).

- черная энергия

Таких теорий много, например: Большого взрыва (Big Bang), теория цикличных Вселенных, теория параллельных Вселенных, Модифицированная Ньютоновская динамика (MOND), теория стационарной Вселенной Ф. Хойла и другие. Однако в настоящее время общепринятой считается теория постоянно расширяющейся и эволюционирующей Вселенной, тезисы которой вполне укладываются в рамках концепции Большого взрыва. При этом квазиэмпирически (т. е. опытным путём, но с большими допусками и основываясь на существующих современных теориях строения микромира) были получены данные о том, что все известные нам микрочастицы составляют лишь 4,02 % от общего объёма всего состава Вселенной. Это так называемый "барионный коктейль", либо барионная материя. Однако основная часть нашей Вселенной (более 95%) - это вещества иного плана, иного состава и свойств. Это так называемая черная материя и черная энергия. Они ведут себя иначе: по-другому реагируют на различного рода реакции, не фиксируются существующими техническими средствами, проявляют не изученные ранее свойства. Из этого можно сделать вывод, что либо эти вещества подчиняются другим законам физики (Неньютонова физика, словесный аналог Неевклидовой геометрии), либо наш уровень развития науки и техники находится лишь на начальном этапе её становления.

Что такое барионы?

Согласно существующей в настоящее время кварк-глюонной модели сильных взаимодействий, элементарных частиц всего шестнадцать (и недавнее открытие бозона Хиггса это подтверждает): шесть типов (флэйворов) кварков, восемь глюонов и два бозона. Барионы - это тяжелые элементарные частицы с сильным взаимодействием. Самые известные из них - это кварки, протон и нейтрон. Семейства таких веществ, различающиеся по спину, массам, их "цвету", а также числам "очарованности", "странности", как раз и являются кирпичиками того, что мы называем барионная материя. Черная (тёмная) материя, составляющая 21,8 % от общего состава Вселенной, состоит из иных частиц, не испускающих электромагнитного излучения и никак с ним не реагирующих. Поэтому для прямого наблюдения как минимум, а уже тем более для регистрации таких веществ необходимо для начала понять их физику и согласовать законы, которым они подчиняются. Многие современные учёные в настоящее время занимаются этим делом в научно-исследовательских институтах разных стран.

Самый вероятный вариант

Какие же вещества рассматриваются в качестве возможных? Для начала следует отметить, что существует всего два возможных варианта. Согласно ОТО и СТО (Общей и Специальной теории относительности), по составу этим веществом может являться как барионная, так и небарионная тёмная материя (черная). Согласно основной теории Большого взрыва, любая существующая материя представлена в виде барионов. Этот тезис доказан с предельно высокой точностью. В настоящее время учёные научились фиксировать частицы, образовавшиеся через минуту после разрыва сингулярности, то есть после взрыва сверхплотного состояния вещества, с массой тела, стремящейся к бесконечности, и размерами тела, стремящимися к нулю. Сценарий с барионными частицами наиболее вероятен, так как именно из них состоит и посредством них продолжает своё расширение наша Вселенная. Черная материя, согласно этому предположению, состоит из основных, общепринятых Ньютоновской физикой частиц, но по каким-то причинам слабовзаимодействующих электромагнитным образом. Именно поэтому детекторы их не фиксируют.

Не всё так гладко

Такой сценарий устраивает многих учёных, однако всё же остаётся больше вопросов, чем ответов. Если и черная, и белая материя представлена только барионами, то концентрация лёгких барионов в процентном соотношении к тяжелым, в результате первичного нуклеосинтеза, должна быть иной в исходных астрономических объектах Вселенной. Да и экспериментально не выявлено наличие в нашей галактике равновесно достаточного количества крупных объектов гравитации, таких как черные дыры или нейтронные звёзды, для уравновешивания массы гало нашего Млечного Пути. Однако те же самые нейтронные звёзды, тёмные галактические гало, черные черные и (звёзды в разных стадиях своего жизненного цикла), вероятнее всего, входят в состав тёмного вещества, из которого состоит тёмная материя. Черная энергия также может дополнять их начинку, в том числе и в предсказанных гипотетических объектах, таких как преонные, кварковые и Q-звёзды.

Небарионные кандидаты

Второй сценарий подразумевает собой небарионное начало. Здесь в качестве кандидатов могут выступать несколько видов частиц. Например, лёгкие нейтрино, существование которых уже доказано учёными. Однако их масса, порядка от одной сотой до одной десятитысячной эВ (электрон-Вольт), практически исключает их из возможных частиц из-за недостижимости необходимой критической плотности. А вот тяжелые нейтрино, парные тяжёлым лептонам, практически не проявляют себя в в обычных условиях. Такие нейтрино называют стерильными, они со своей максимальной массой до одной десятой эВ с большей вероятностью подходят в качестве кандидатов частиц тёмной материи. Аксионы и космионы были искусственно введены в физические уравнения для решения проблем в квантовой хромодинамике и в стандартной модели. Вместе с другой стабильной суперсимметричной частицей (SUSY-LSP) они вполне могут претендовать в кандидаты, так как не принимают участия в электромагнитном и сильном взаимодействиях. Однако, в отличие от нейтрино, они всё же гипотетические, их существование ещё необходимо доказать.

Теория черной материи

Недостаток массы во Вселенной порождает на этот счет разные теории, некоторые из которых вполне состоятельны. Например, теория о том, что обычная гравитация не способна объяснить странное и непомерно быстрое вращение звёзд в спиральных галактиках. При таких скоростях они бы просто вылетели за её пределы, если бы не некая удерживающая сила, зарегистрировать которую пока не представляется возможным. Другие тезисы теорий объясняют невозможность получения вимпов (массивные электрослабовзаимодействующие частицы-партнеры элементарных субчастиц, суперсимметричные и сверхтяжелые - то есть идеальные кандидаты) в земных условиях, так они живут в n-измерении, отличном в большую сторону от нашего, трёхмерного. По теории Калуцы-Клейна такие измерения для нас недоступны.

Изменчивые звёзды

Другая теория описывает, как переменные звезды и черная материя взаимодействуют между собой. Блеск такой звезды может меняться не только благодаря метафизическим процессам, происходящим внутри (пульсация, хромосферная активность, выброс протуберанцев, перетекание и затмения в двойных звёздных системах, взрыв сверхновой), но и благодаря аномальным свойствам тёмного вещества.

ВАРП-двигатель

По одной из теорий, тёмная материя может использоваться в качестве топлива для субпространственных двигателей космических кораблей, работающих по гипотетической ВАРП-технологии (WARP Engine). Потенциально такие двигатели позволяют кораблю двигаться со скоростями, превышающими скорость света. Теоретически они способны искривлять пространство до и позади корабля и перемещать его в нём даже быстрее, чем электромагнитная волна разгоняется в вакууме. Сам корабль локально не ускоряется - искривляется лишь пространственное поле перед ним. Во многих фантастических рассказах применяется такая технология, например в саге Star Trek.

Выработка в земных условиях

Попытки сгенерировать и получить черную материю на земле всё ещё не привели к успеху. В настоящее время проводятся опыты на БАКе (Большом Андронном Коллайдере), именно там, где впервые зафиксировали бозон Хиггса, а также на других, менее мощных, в том числе и линейных коллайдерах в поисках стабильных, но электромагнитно слабовзаимодействующих партнёров элементарных частиц. Однако ни фотино, ни гравитино, ни хигсино, ни снейтрино (нейтралино), а также другие вимпы (WIMP) ещё не получены. По предварительной осторожной оценке учёных, для получения одного миллиграмма тёмной материи в земных условиях необходим эквивалент энергии, потребляемой в США в течение года.

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу. Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях. Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

Темная материя темная не потому, что черного цвета, а потому что представляет собой «темную лошадку» в прямом смысле: никто не знает, что это такое. Физикам темная материя нужна для того, чтобы объяснить расхождение в ускорении расширения вселенной и несоответствии видимой массы материи. Темная материя берет на себя более 95 % невидимой материи от всего ее количества во вселенной. Проблема в том, что темная материя слабо взаимодействует с реальным миром, только на уровне гравитации, поэтому поймать, зафиксировать или создать ее не представляется возможным на данный момент. И наши средства мониторинга и поиска чересчур слабы, чтобы уловить частицы темной материи, хотя работы в этой сфере определенно ведутся.

Европейская лаборатория физических исследований ЦЕРН заявила, что планирует новый эксперимент по поиску частиц, связанных с темной материей, которая, как предполагают, составляет около 27% Вселенной. Эксперимент будет проводиться там же, где расположен - гигантская лаборатория в 27-километровом туннеле на французско-швейцарской границе. Его задачей станет поиск «легких и слабо взаимодействующих частиц».