Геотермальные источники. Геотермальная энергия



Геотермальные ресурсы

(a. geothermal resources; н. geothermale Reserven, Geothermalressoursen; ф. ressorces geothermales; и. recursos geotermicos ) - запасы глубинного тепла Земли, эксплуатация к-рых экономически целесообразна совр. техн. средствами. Потенциальная доля Г. р. в общем топливно-энергетич. балансе промышленно развитых капиталистич. стран (Италии, США, Японии) оценивается в 5-10% (1980). С совершенствованием техники и технологии эксплуатации этот процент может быть увеличен до 50% и более.
Различают гидрогеотермальные ресурсы (), заключённые в естеств. подземных коллекторах, и петрогеотермальные ресурсы, аккумулированные в блоках нагретых (до 350°С и более) практически безводных (т.н. сухих) г. п. Технология извлечения петрогеотермальных ресурсов основана на создании искусств. циркуляционных систем (т.н. тепловых котлов). Практич. значение имеют гидрогеотермальные ресурсы, устойчивый режим к-рых, относит. простота добычи (см. Гидрогеотермальное месторождение) и значительные площади распространения позволили использовать эти воды для теплоснабжения (при t от 40 до 100-150°С) и выработки электроэнергии (150-300°С). Гидрогеотермальные ресурсы приурочены к трещинным водонапорным системам, развитым в р-нах совр. вулканизма и в складчатых областях, испытавших воздействие новейших тектонич. движений; пластовым водонапорным системам, расположенным в депрессионных зонах, выполненных мощными толщами осадочных отложений мезозойского и кайнозойского возрастов. Трещинные водонапорные системы развиты локально в крупных зонах тектонич. разломов. В СССР наибольшее значение имеют пластовые гидрогеотермальные ресурсы и в меньшей степени трещинные. Перспективные р-ны пластовых Г. р. - Западно-Сибирская, Скифская, Туранская эпиплатформенные артезианские области; Куринский, Рионский, Ферганский, Джаркентский, Северо-Сахалинский и ряд др. более мелких межгорн. артезианских бассейнов. В этих р-нах залегания глубина вод 1500-5000 м, t 40-200°С, 1-150 г/л. Р-ны развития трещинных термальных вод; Камчатка и Курильские о-ва, где продуктивные зоны вскрыты на глубинах 500-2000 м, температура вод изменяется от 40 до 200-300°С, минерализация 10-20 г/л; Байкальский , Тянь-Шань, Памир, где глубина вод 500-1000 м, t 40-100°С, минерализация 1-2 г/л.
В СССР общие запасы тепловой энергии в водах с минерализацией до 35 г/л (при насосной эксплуатации скважин и коэфф. полезного использования теплового потенциала 0,5) оценены в 850-1200 млн. ГДж/год, что эквивалентно сжиганию 30-40 млн. т условного топлива; при эксплуатации методом поддержания пластовых давлений путём обратной закачки использованных термальных вод экономия топлива может составить 130-140 млрд. т в год. В СССР геотермальная энергия используется для теплоснабжения и горячего водоснабжения гг. Грозный, Махачкала, Черкесск, Зугдиди, Тбилиси; для теплоснабжения тепличных комбинатов в Грузии, на Сев. Кавказе, Камчатке; для выработки электроэнергии (Паужетская геотермальная электростанция на Камчатке мощностью св. 10 МВт) и др.
За рубежом используются гидрогеотермальные ресурсы, сосредоточенные в р-нах совр. или недавнего вулканизма, где воды имеют t 200-300°С и могут непосредственно использоваться для выработки электроэнергии. К таким р-нам относятся Тоскана в Италии (м-ние Лардерелло), Калифорния в США (м-ние ), в Новой Зеландии (м-ние ), в Японии - о-ва Хоккайдо, Кюсю, Хонсю (м-ния Атагава, Отака, Мацукава), Нижняя Калифорния в Мексике (м-ние Серро-Прието); область Ауачапан в Сальвадоре, м-ния на Ю. и С. Исландии и др. Глубина скважин в этих р-нах в основном до 1500 м, редко более. На базе выведенного подземного пара и пароводяных смесей построены ГеоТЭС, самые крупные в мире - на м-нии Большие общей мощностью до 900 МВт.
Перспектива увеличения Г. р. связана с открытием новых м-ний, искусственным их стимулированием, усовершенствованием методов произ-ва электроэнергии. Напр., в США за счёт этого предполагается повысить суммарную ГеоТЭС к 1990 до 35 ГДж, к 2000 - до 75 ГДж. При использовании гидротермальных ресурсов за счёт коррозионной активности вод происходит хим. и тепловое загрязнение окружающей среды. С целью охраны среды термальные воды после их использования закачивают обратно в продуктивные пласты (трещинные зоны). Борьба с коррозионным воздействием естеств. теплоносителей на оборудование, приборы, конструкц. материалы решается на стадии эксплуатации конкретных м-ний путём добавок хим. реагентов в теплоноситель, предварит. дегазации, а также подбором соответствующих коррозионно- устойчивых металлов и покрытий. Литература : Изучение и использование глубинного тепла Земли, М., 1973; Ресурсы термальных вод СССР, М., 1975; Геотермальная энергия. Ресурсы, разработка, использование, пер. с англ., М., 1975; Берман Э., Геотермальная энергия, пер. с англ., М., 1978. Б. Ф. Маврицкий.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Геотермальные ресурсы" в других словарях:

    Запасы глубинного тепла Земли. Различают гидрогеотермальные (термальные воды) и петрогеотермальные (сухие горные породы, нагретые до 350 .С и более) ресурсы … Большой Энциклопедический словарь

    геотермальные ресурсы - Запасы внутреннего тепла Земли, которые могут быть использованы для получения тепла или выработки электроэнергии … Словарь по географии

    Запасы глубинного тепла Земли. Различают гидрогеотермальные (термальные воды) и петрогеотермальные (сухие горные породы, нагретые до 350ºC и более) ресурсы. * * * ГЕОТЕРМАЛЬНЫЕ РЕСУРСЫ ГЕОТЕРМАЛЬНЫЕ РЕСУРСЫ, запасы глубинного тепла Земли.… … Энциклопедический словарь

    геотермальные ресурсы - 3.4 геотермальные ресурсы: Часть тепловой энергии недр, которая связана с природным коллектором и представлена природными подземными водами, паром или пароводяными смесями. Источник: СТО 70238424.27.100.060 2009: Геотермальные электростанции… …

    Геотермальные ресурсы - Геотермальными ресурсами признается часть геоэнергетических ресурсов, включающая все продукты геотермальных процессов, в том числе подземные геотермальные воды, пар и рассолы, учитывая искусственно введенные в подземные геотермальные формации;… … Официальная терминология

    Запасы глубинного тепла Земли. Различают гидрогеотермаль ные (термальные воды) и петрогеотермальные (сухие горн, породы, нагретые до 350 °С и более) ресурсы … Естествознание. Энциклопедический словарь

    СТО 70238424.27.100.060-2009: Геотермальные электростанции (ГеоТЭС). Условия создания. Нормы и требования - Терминология СТО 70238424.27.100.060 2009: Геотермальные электростанции (ГеоТЭС). Условия создания. Нормы и требования: 3.1 владелец: Юридическое лицо (предприятие), на балансе которого находится опасный производственный объект и руководство… … Словарь-справочник терминов нормативно-технической документации

    На протяжении тысячелетий основными видами используемой человеком энергии были химическая энергия древесины, потенциальная энергия воды на плотинах, кинетическая энергия ветра и лучистая энергия солнечного света. Но в 19 в. главными источниками… … Энциклопедия Кольера

    Природные ресурсы - (Natural Resources) История использования природных ресурсов, мировые природные ресурсы Классификация природных ресурсов, природные ресурсы России, проблема исчерпаемости природных ресурсов, рациональное использование природных ресурсов… … Энциклопедия инвестора

    Исчерпаемые минеральные ресурсы, используемые в качестве топлива (уголь, нефть, природный газ, горючие сланцы, торф, древесина, а также атомная энергия). Международные организации периодически проводят переоценку запасов топливно энергетических… … Географическая энциклопедия

Книги

  • Энергетика Латинской Америки. Смогут ли ведущие державы справиться с последствиями кризиса и пробиться в число высокоразвитых стран? , Катона В.. Книга, являясь первой обзорной публикацией по энергетике Латинской Америки, предлагает актуальное переосмысление того пути развития, придерживаясь которого, страны Латинской Америки так и не…

ГЕОТЕРМАЛЬНЫЕ РЕСУРСЫ (а. geothermal resources; н. geothermale Reserven, Geothermalressoursen; ф. ressorces geothermales; и. recursos geotermiсоs) — запасы глубинного тепла , эксплуатация которых экономически целесообразна современными техническими средствами. Потенциальная доля геотермальных ресурсов в общем топливно-энергетическом балансе промышленно развитых капиталистических стран ( , ) оценивается в 5-10% (1980). С совершенствованием техники и технологии эксплуатации этот процент может быть увеличен до 50% и более.

Различают гидрогеотермальные ресурсы (), заключённые в естественных подземных коллекторах, и петрогеотермальные ресурсы, аккумулированные в блоках нагретых (до 350°С и более) практически безводных (т.н. сухих) . Технология извлечения петрогеотермальных ресурсов основана на создании искусственных циркуляционных систем (т.н. тепловых котлов). Практическое значение имеют гидрогеотермальные ресурсы, устойчивый режим которых, относительная простота добычи (см. ) и значительные площади распространения позволили использовать эти воды для теплоснабжения (при t от 40 до 100-150°С) и выработки электроэнергии (150-300°С). Гидрогеотермальные ресурсы приурочены к трещинным водонапорным системам, развитым в районах современного вулканизма и в складчатых областях, испытавших воздействие новейших тектонических движений; пластовым водонапорным системам, расположенным в депрессионных зонах, выполненных мощными толщами осадочных отложений мезозойского и кайнозойского возрастов. Трещинные водонапорные системы развиты локально в крупных зонах тектонических разломов. В наибольшее значение имеют пластовые гидрогеотермальные ресурсы и в меньшей степени трещинные.

Перспективные районы пластовых геотермальных ресурсов — Западно-Сибирская, Скифская, Туранская эпиплатформенные артезианские области; Куринский, Рионский, Ферганский, Джаркентский, Северо-Сахалинский и ряд других более мелких межгорных артезианских бассейнов. В этих районах залегания глубина вод 1500-5000 м, t 40-200°С, минерализация 1-150 г/л. Районы развития трещинных термальных вод; Камчатка и Курильские острова, где продуктивные зоны вскрыты на глубинах 500-2000 м, температура вод изменяется от 40 до 200-300°С, минерализация 10-20 г/л; Байкальский рифт, Тянь-Шань, Памир, Кавказ, где глубина вод 500-1000 м, t 40-100°С, минерализация 1-2 г/л.

В СССР общие запасы тепловой энергии в водах с до 35 г/л (при насосной эксплуатации скважин и коэффициенте полезного использования теплового потенциала 0,5) оценены в 850-1200 млн. ГДж/год, что эквивалентно сжиганию 30-40 млн. т условного топлива; при эксплуатации методом поддержания путём обратной закачки использованных термальных вод экономия топлива может составить 130-140 млрд. т в год. В СССР геотермальная энергия используется для теплоснабжения и горячего водоснабжения гг. Грозный, Махачкала, Черкесск, Зугдиди, Тбилиси; для теплоснабжения тепличных комбинатов в Грузии, на Северном Кавказе, Камчатке; для выработки электроэнергии (Паужетская геотермальная электростанция на Камчатке мощностью свыше 10 МВт) и др.

За рубежом используются гидрогеотермальные ресурсы, сосредоточенные в районах современного или недавнего вулканизма, где воды имеют t 200-300°С и могут непосредственно использоваться для выработки электроэнергии. К таким районам относятся Тоскана в Италии (месторождение Лардерелло), Калифорния в США (месторождение ), в Новой Зеландии (месторождение ), в Японии — острова Хоккайдо, Кюсю, Хонсю (месторождения Атагава, Отака, Мацукава), Нижняя Калифорния в Мексике (месторождение Серро-Прието); область Ауачапан в Сальвадоре, месторождения на юге и севере Исландии и др. Глубина скважин в этих районах в основном до 1500 м, редко более. На базе выведенного подземного пара и пароводяных смесей построены ГеоТЭС, самые крупные в мире — на месторождении Большие гейзеры общей мощностью до 900 МВт.

Перспектива увеличения геотермальных ресурсов связана с открытием новых , искусственным их стимулированием, усовершенствованием методов производства электроэнергии. Например, в США за счёт этого предполагается повысить суммарную мощность ГеоТЭС к 1990 до 35 ГДж, к 2000 — до 75 ГДж. При использовании гидротермальных ресурсов за счёт коррозионной активности вод происходит химическое и тепловое загрязнение окружающей среды. С целью термальные воды после их использования закачивают обратно в продуктивные пласты (трещинные зоны). Борьба с коррозионным воздействием естественных теплоносителей на оборудование, приборы, конструкционные материалы решается на стадии эксплуатации конкретных месторождений путём добавок химических реагентов в теплоноситель, предварительной , а также подбором соответствующих коррозионно-устойчивых металлов и покрытий.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

на тему: «Геотермальные ресурсы»

1. Понятие и классификация геотермальных ресурсов

2. Этапы и стадии геологического изучения недр

3. Принципы и методы изучения и оценки геотермальных ресурсов

4. Геотермальная станция в Беларуси

Заключение

Список используемой литературы

недра геотермия ресурс станция

1. Понятие и класс ификация геотермальных ресурсов

Геотермальная энергетика -- производство электроэнергии, а также тепловой энергии за счёт энергии, содержащейся в недрах земли.

Преимуществом геотермальной энергетики является ее практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт/ч).

Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов:

Месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

Источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

Месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой, так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

Сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

Магма, представляющая собой нагретые до 1300 °С расплавленные горные породы.

Опыт, накопленный различными странами относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3-5 км обычно превышает 100 °С.

При сопоставлении с традиционными источниками энергии очевидны следующие преимущества геотермальных ресурсов: неисчерпаемость, повсеместность распространения, близость к потребителю, локальность обеспечения потребителя теплотой и электроэнергией, принадлежность к местным ресурсам, полная автоматизация, безопасность и практическая безлюдность добычи геотермальной энергии, экономическая конкурентоспособность, возможность строительства маломощных установок, экологическая чистота.

Однако специфика геотермальных ресурсов включает и ряд недостатков: низкий температурный потенциал теплоносителя, нетранспортабельность, трудности складирования, рассредоточенность источников, ограниченность промышленного опыта.

В настоящее время принято выделять 2 основных класса геотермальных ресурсов - гидро - и петрогеотермальные. Первые представляют собой ту часть ресурсов геотермальной энергии, которая приурочена к естественным коллекторам и представлена природными теплоносителями: подземными водами, паром или пароводяными смесями. Они промышленно эксплуатируются циркуляционными системами (Франция, США, Германия, Дания, Украина, Польша, Швейцария, Россия и др.). Петрогеотермальные - ту часть тепловой энергии недр, которая связана непосредственно со скелетом водовмещающих пород или с практически непроницаемыми горными породами. Технология извлечения петрогеотермальных ресурсов (глубина бурения до 10 км) находится на экспериментальном уровне. Созданы только единичные опытные циркуляционные системы с искусственными коллекторами в США, Англии, Японии, России (Тырныауз), Германии, Франции.

Под эксплуатационными запасами (ресурсами) гидрогеотермальной энергии в целом понимаются количества тепла и воды, которые могут быть получены из оцениваемого водоносного горизонта (комплекса) рациональными в технико-экономическом и экологическом отношениях водозаборными сооружениями при заданном режиме их эксплуатации и соответствующем качестве теплоносителя (температура, химический и газовый состав) в течение всего расчетного срока эксплуатации. Эксплуатационные запасы тепла выражаются либо в единицах мощности, либо в тоннах топлива (условного) в год, эксплуатационные запасы термальных вод имеют размерность объемного расходного расхода для воды (л/с, м3/сут) или весового расхода для пара и пароводяных смесей (кг/с, т/сут).

Наиболее полная классификация ресурсов и запасов геотермальной энергии разработана Э. И. Богуславским.

За нижний предел температуры термальных вод целесообразно принять 20є С с учетом возможного применения тепловых насосов и наличия во многих отраслях народного хозяйства потребности в субтермальных теплоносителях с температурами 20-40є С.

Воды низкопотенциальные (с температурой 20-100є С), в составе которых целесообразно выделение подкласса вод с температурами 20-40є С. Эти воды могут потребляться для теплотехнических нужд в основном с применением тепловых насосов. Также их можно эффективно использовать для оттаивания мерзлых пород и промывки россыпей, интенсификации рыболовства, обогрева открытого грунта, закачки в нефтеносные пласты, технологических процессов, требующих низкопотенциальных теплоносителей. Основное назначение - теплоснабжение, промышленных, сельскохозяйственных и коммунально-бытовых объектов.

Среднепотенциальные (100-150є С) воды могут эффективно использоваться как для теплоснабжения промышленных, сельскохозяйственных и коммунально-бытовых объектов, так и для выработки электроэнергии с применением промежуточных рабочих тел.

Высокопотенциальные (более 150є С) воды могут эффективно применяться для выработки электроэнергии по прямому циклу. В составе таких вод целесообразно выделять перегретые воды (150-250є С), высокоперегретые (250-350є С) и предельно перегретые (более 350є С).

Качество термальных вод, предназначенных для лечебного использования (по температуре, минерализации, ионному и газовому составу, газонасыщенности, содержанию в водах фармакологических активных микроэлементов, радиоактивности, рН) должно оцениваться в соответствии со специальными требованиями к изучению и классификациями минеральных лечебных вод.

2. Этапы и стадии изучения геотермальных ресурсов недр

Источниками геотермальных ресурсов недр являются:

Подземные геотермальные воды;

Тепло горного массива недр.

Геотермальные ресурсы недр могут быть использованы для:

Получения электроэнергии;

Горячего водоснабжения;

Теплоснабжения жилых и производственных помещений;

Лечебных, оздоровительных и иных целей, обусловленных ценностью, полезностью и иными характеристиками геотермальных ресурсов недр.

1) Региональное геологическое изучение недр проводится по следующим стадиям:

Мелкомасштабные геологосъемочные работы;

Среднемасштабные геологосъемочные работы;

Крупномасштабные геологосъемочные работы.

2) Поиск геотермальных ресурсов недр и оценка месторождения проводятся в целях выявления и предварительной оценки месторождения, пригодного для разработки. Поиск геотермальных ресурсов недр и оценка месторождения проводятся по следующим стадиям: - поисковые работы; - оценка месторождения.

3) Разведка геотермальных ресурсов недр и подготовка месторождения для разработки проводятся в целях получения сведений о явлениях и процессах, происходящих в недрах, о геологическом строении месторождения, технологических и иных особенностях месторождения, качестве и количестве находящихся в нем геотермальных ресурсов недр, об условиях разработки месторождения, позволяющих осуществить геолого-экономическую оценку этого месторождения. Разведка геотермальных ресурсов недр и подготовка месторождения для разработки проводятся по следующим стадиям:

Предварительная разведка геотермальных ресурсов недр, проводимая в целях получения достоверных данных для предварительной оценки качества и количества выявленных запасов геотермальных ресурсов недр, получения экономически обоснованной промышленной оценки месторождения, обоснования целесообразности финансирования дальнейших геологоразведочных работ;

Детальная разведка геотермальных ресурсов недр, проводимая в целях подготовки месторождения для разработки. По результатам детальной разведки геотермальных ресурсов недр разрабатываются постоянные разведочные кондиции геотермальных ресурсов недр, по которым проводится подсчет запасов геотермальных ресурсов недр;

Доразведка геотермальных ресурсов недр, проводимая на детально разведанном, но не переданном в разработку месторождении в случае недостаточной изученности этого месторождения, а также на разрабатываемом месторождении при необходимости дополнительного его изучения в связи с пересмотром объемов и технологии добычи, первичной обработки (очистки, обогащения) использования геотермальных ресурсов недр;

Эксплуатационная разведка геотермальных ресурсов недр, проводимая в процессе разработки месторождения для уточнения количества и качества запасов геотермальных ресурсов недр, получения иной геологической информации, необходимой для составления ежегодных планов развития горных работ.

3. Принципы и методы изучения и оценки геотермальных ресурсов

Важным в цикле задач широко вовлечения гидрогеотермальных ресурсов в топливно-энергетическом балансе страны является повышение эффективности поисково-разведочных работ, что, в свою очередь, возможно при условии постоянного совершенствования принципов и методологических основ их планирования и проведения. Методика планирования поисково-разведочных работ на термальные воды, равно как и на другие виды полезных ископаемых, должна исходить из основополагающего принципа эколого-экономической целесообразности. Эффективная его реализация возможна при соблюдении ведущих общих принципов изучения месторождений: полноты исследования, последовательного приближения, равной достоверности, минимизации общественно необходимых трудовых, материальных и временных затрат.

Одним из важнейших является требование стадийности поисково-разведочных работ, позволяющее при минимуме общественно необходимых затрат производить поэтапную геолого-экономическую оценку месторождений и участков.

Конечной задачей всего цикла исследований является обнаружение, геолого-экономическая и экологическая оценка месторождений естественных теплоносителей, т.е. установление величины их эксплуатационных запасов и теплоэнергетического потенциала, а также оценка условий и укрупненных технико-экономических показателей разработки продуктивных водоносных горизонтов, комплексов или трещинных зон.

При изучении геотермальных ресурсов используется достаточно широкий комплекс методов, который определяется в каждом конкретном случае сложностью и особенностями изучаемого объекта и степенью его изученности в предшествующий период.

В общем случае основными видами полевых работ являются: геолого-гидрологическая съемка, специальные съемки (геотермическая, газогидрохимическая и др.), рекогносцировачное обследование участка разведки, бурение и термогидродинамические исследования скважин, геофизические и гидрологические работы, стационарные наблюдения за естественным и нарушенным режимами термальных и холодных вод, обследование ранее пробуренных глубоких скважин и действующих водозаборных сооружений, отбор проб воды и кернового материала, специальные виды исследований (геофизические, гидрогеохимические, геотермические, изотопные, ядерно-физические и др.).

Геолого-гидрогеологическая съемка в зависимости от размеров и сложности изучаемых объектов выполняется в масштабах 1:50 000 - 1:10 000 (в ряде случаев 1:5000), главным образом, при поисках месторождений трещинно-жильного типа. Цель съемки - изучение геологического строения, геотермических и гидрогеологических условий месторождения и прилегающих к нему участков, оконтурирование наиболее продуктивных участков. Особое внимание следует уделять изучению условий разгрузки термальных и холодных вод, парогазовых струй, прогретых площадок и зон измененных пород, а также выделению зон тектонических нарушений.

Специальные съемки проводятся, как правило, в комплексе с геолого-гидрогеологической съемкой, либо как самостоятельный вид работ на стадии поисков (обычно, когда геолого-гидрогеологическая съемка проведена ранее). Задачи этих съемок - картирование отдельных (или комплекса) параметров, являющихся прямыми или косвенными поисковыми показателями (критериями): температуры, компонентов химического и изотопного состава газов, подземных и поверхностных вод. эти исследования реализуются путем проведения термометрических (шпуровых или в неглубоких скважинах), аэрокосмических (ИК-съемка) и газогидрохимических съемок (апробирование всех паро -, газо - и водопроявлений, отбор проб подпочвенного газа и др.).

Рекогносцировочное обследование участков разведки выполняется, главным образом, в начале разведочных работ (застроенность, залесенность, проходимость, наличие коммуникаций, энергообеспеченность и т.д.).

Буровые работы включают в себя бурение поисковых, разведочных, разведочно-эксплуатационных, наблюдательных и (при необходимости) нагнетательных скважин. Основным видом исследований с целью получения информации, необходимой для оценки эксплуатационных запасов теплоносителя, являются специальные опытно-фильтрационные работы. Методика проведения этих работ определяется их целевым назначением, стадийностью исследований, сложностью гидрогеологической и гидрогеотермической обстановок. Опытно-фильтрационные работы по способу их проведения подразделяются на выпуски, осуществляемые за счет использования упругой энергии пласта (трещинной зоны), термолифта (парлифта), газлифта, откачки, выполняемые с применением специального водоподъемного оборудования, и нагнетания.

В зависимости от целевого назначения выпуски (откачки) подразделяются на пробные, опытные и опытно-эксплуатационные.

Пробные выпуски (откачки) производятся на стадии поисковых работ; в отдельных случаях - на стадиях предварительной и детальной разведки. На поисковой стадии задачей пробных выпусков (откачек) является получение предварительной информации о фильтрационных и емкостных свойствах пород, их водообильности, качестве и температуре термальных вод, пароводяных смесей и пара.

Опытные выпуски (откачки) проводят на стадиях предварительной и детальной разведки и подразделяют на одиночные, кустовые и групповые. Задачами их являются: определение расчетных гидрогеологических параметров продуктивных горизонтов и фильтрационных особенностей трещинных зон, выявление закономерностей их изменения в плане и разрезе; установление зависимости между расходом скважин и понижением уровня воды; определение величин срезок уровней при оценке запасов гидравлическим методом и др.

Опытно-эксплуатационные выпуски (откачки) проводятся на месторождениях трещинно-жильного типа с целью получения исходной информации для оценки эксплуатационных запасов термальных вод гидравлическим методом. Основная задача сводится к выявлению зависимости снижения уровня во времени при заданном проектном расходе. Они проводятся до получения устойчивых закономерностей изменения уровней и (или) качества воды в наблюдательных скважинах во времени, позволяющих осуществить прогноз сработки их на конец расчетного срока эксплуатации месторождения (участка).

Перед проведением пробных, опытных и опытно-эксплуатационных выпусков (откачек) обязательно замеряют положения уровней подземных вод в естественной обстановке (или пластовые и избыточные давления), температуру воды в устье скважины и в пластовых условиях и отбирают пробы воды на общий анализ.

Гидрологические исследования проводятся при поисках и разведке месторождений термальных вод трещинно-жильного типа, находящихся в той или иной степени в связи с поверхностными водами. В процессе исследований должны быть получены данные о режиме стока, уровенном, температурном и химическом режиме рек, холодных источников на площади месторождения и на примыкающих участках выше и ниже по течению водной артерии.

Стационарные наблюдения за естественным режимом термальных вод ведутся как на скважинах, так и на источниках термальной воды. Они включают наблюдения за режимом расходов источников, парогазовых струй, химического (в том числе газового) состава и температуры. Задачи:

Уточнение условий взаимосвязи подземных термальных и поверхностных холодных вод;

Определение сезонных и многолетних изменений родникового стока термальных вод;

Изучение характера изменения минерализации, химического и газового состава, температуры термальных вод в годовом и многолетнем разрезах;

Определение параметров взаимосвязи термальных вод отдельных трещинных зон.

Наблюдения за нарушенным режимом термальных вод в районах действующих водозаборных сооружений должны включать в себя наблюдения за уровнями воды в эксплуатационных и специально оборудованных наблюдательных скважинах, за химическим и газовым составом термальных вод, за температурой вод а излив и по стволу скважин, дебитом водозаборных скважин.

Специальные методы исследований (гидрогеохимические, геотермические, изотопные, ядерно-физические) предназначены для выяснения условий формирования эксплуатационных запасов термальных вод, выявления и локализации областей питания и разгрузки, изучения условий взаимодействия между водоносными горизонтами через разделяющие слабопроницаемые слои и взаимодействием между трещинными зонами, а также для изучения процессов продвижения закачиваемых вод в пласты, его охлаждения и др. Сюда же относятся и геоботанические исследования, которые проводятся на поисковой стадии на месторождениях трещинно-жильного типа. Они заключаются в изучении растительных сообществ, которые используются для выявления и оконтурирования площадей прогрева и скрытых термопроявлений.

Геофизические методы. При изучении месторождений термальных вод применяются практически все виды геофизических методов: скважинные, наземные, аэрографические и др. С их помощью уточняется геологическое строение изучаемой территории (особенно глубинное), осуществляются гидрогеологическая стратификация и корреляция разрезов, изучаются гидрогеодинамические, гидрогеохимические и гидрогеотермические характеристики исследуемых толщ.

Наземные, аквальные (морские) и аэрографические методы обеспечивают практически сплошное изучение территории. Они включают электро-, сейсмо-, грави- магниторазведку, радио- и термометрию, наиболее часто выполняются в наземном варианте, но могут производится на дне водоемов или с водной поверхности: эти же методы, за исключением сейсморазведки, реализуются с помощью летательных аппаратов. Как и геофизические исследования скважин (ГИС), наземные и аэрографические работы осуществляются путем постановки специальных полевых наблюдений, либо на основе повторной интерпретации имеющихся разноцелевых материалов.

Ландшафтно-индикационные методы по отношению к объекту исследований подразделяют на наземные и дистанционные.

Наземные методы используют при геотермических исследованиях весьма ограниченно, лишь для геологической привязки и расшифровки аномалий, выявленных дистанционными методами. При этом решаются задачи общего геолого-гидрогеологического плана и специального геотермического направления.

При поисках термальных вод и других видах геологических работ широко используются дистанционные (аэрокосмические) методы. С их помощью производят съемку земной поверхности, регистрируя световые, инфракрасные и дециметровые электромагнитные поля, т.е. имеющие длину от 0,3 мкм до 1,0 м. современные дистанционные методы представляют собой по существу комплекс методов электроразведки, термометрии, ландшафтоведения, использующих как перечисленные методы, так и визуальные наблюдения.

При дистанционном изучении поверхности Земли используют как воздушные аппараты (самолеты, вертолеты), так и космические (пилотируемые космические корабли, искусственные спутники Земли, орбитальные научные станции). Высота аэронаблюдений варьирует от нескольких десятков метров до нескольких километров, а космических - от 300 до 3000 км.

Особенно важное значение при прогнозировании, поисках и разведке термальных вод имеют аэрокосмофотосъемка (АФС и КФС) и ИК-съемка.

Аэрокосмофотосъемка является в настоящее время основным видом дистанционных наблюдений. При съемках с космических аппаратов охватывается огромная площадь, измеряемая сотнями тысяч квадратных километров, в то время как с самолетов - лишь десятками квадратных километров. В целом АФС и КФС позволяют решить серию геологических и гидрогеологических задач, однако для гидрогеотермических исследований этой информации не всегда достаточно.

Инфракрасная съемка основана на способности природных тел испускать ИК-лучи. Интенсивность их определяется температурой и излучательной способностью этих тел. ИК-съемка является наиболее важным дистанционным методом при геотермических исследованиях, особенно при изучении вулканизма гидротермальной деятельности, проявляющейся в приповерхностной части разреза. В условиях дымки и туманов ИК-съемка имеет существенное преимущество перед АФС и КФС и позволяет получить изображение хорошего качества. С помощью ИК-съемки можно решить серию гидрогеологических задач: оценить влажность грунтов, определить уровень грунтовых вод, выявить зоны разгрузки подземных вод в пределах акваторий, проследить обводнены тектонические нарушения, оконтурить таликовые зоны, обнаружить разогретые участки земной поверхности, выявить выходы термальных вод.

4 . Г еотермальная станция в Беларуси

В республике обнаружены две территории в Гомельской и Брестской областях с запасами геотермальных вод плотностью более 2 т усл. т./мІ и температурой 50°С на глубине 1,4-1,8 км и 90-100°С на глубине 3,8-4,2 км. Но температурные условия недр территории республики изучены недостаточно. Большая глубина залегания термальных вод, сравнительно низкая их температура, высокая минерализация и низкий дебет скважин (100-1150 куб.м/сутки) не позволяют в настоящее время рассматривать термальные воды республики в качестве заслуживающего внимания источника энергии.

На брестском предприятии в феврале 2010 г. запущена первая в Беларуси геотермальная станция.

Дан старт работе первой в стране геотермальной станции. Пилотный проект осуществлен тепличным комбинатом "Берестье". По сути это новое слово в использовании альтернативных источников энергии.

На территории комбината пробурили скважину глубиной 1520 метров, где температура воды превышает 40 градусов. Правда, объем источника оказался небольшой. В процессе дальнейшей работы было установлено, что на глубине 1000-1100 метров имеются очень мощные пласты достаточно теплой, около 30 градусов, воды, пригодной для промышленного использования. Она несоленая, высокого качества. Следующим этапом стала покупка тепловых насосов и другого специального оборудования.

Геотермальная станция - это электронно-механическая система, которая позволяет, условно говоря, из 1000 литров воды при температуре 30 градусов получить, например, 300 литров воды с температурой 65 градусов и 700 литров - с температурой 4 градуса. Горячая вода идет для обогрева теплиц. А холодная, согласно проекту, будет очищаться и поставляться в питьевую сеть города в пределах полутора тысяч тонн в сутки. Ее будут бутилировать и продавать.

Система пока обеспечивает 1,5 гектара теплиц и завязана в общий цикл с котельным хозяйством. Природное тепло распределяется на часть площадей, занятых цветами, салатной линией, огурцами и томатами. Сделано так, что, если температура воздуха резко снизится, сразу подключится центральная котельная. По расчетам, в год заменится 1 миллион кубических метров газа, а это экономия более 200 тысяч долларов. Для примера, сэкономленным топливом можно обогреть более полутора сотен двухэтажных коттеджей. Мощность станции - одна гигакалория в час. Станция дает тепла больше, чем рассчитано по проекту.

Вся система управления работает в автоматическом режиме, и все нужные параметры выводятся на монитор в центральную котельную.

Основная сложность была и еще остается в том, что практически нет специалистов по проектированию и наладке таких систем.

Бурение скважины производила Белгеология с целью поиска нефти, газа и других полезных ископаемых. Работы финансировало Министерство природных ресурсов и охраны окружающей среды РБ. Два мощных тепловых насоса стоят около 100 тысяч евро. Помогал облисполком, использовали собственные средства. По большому счету, проект обошелся недорого. К тому же он должен окупиться за 5 лет.

Если вода откачивается из глубины, то там ни в коем случае не создается вакуум. Пласты песка, насыщенные водой, постоянно возобновляются. А обогрев идет за счет температуры земли.

Заключение

Геотермальные ресурсы - количество теплоты, содержащееся в литосфере или ее участках, до глубины, технически достижимой средствами бурения на прогнозируемый период.

Основными этапами изучения геотермальных ресурсов недр являются:

Региональное геологическое изучение недр;

Поиск геотермальных ресурсов недр и оценка месторождения;

Разведка геотермальных ресурсов недр (включая пробную эксплуатацию месторождений углеводородов или отдельных буровых скважин), подготовка месторождения для разработки.

Основными видами полевых работ являются: геолого-гидрологическая съемка, специальные съемки (геотермическая, газогидрохимическая и др.), рекогносцировачное обследование участка разведки, бурение и термогидродинамические исследования скважин, геофизические и гидрологические работы, стационарные наблюдения за естественным и нарушенным режимами термальных и холодных вод, обследование ранее пробуренных глубоких скважин и действующих водозаборных сооружений, отбор проб воды и кернового материала, специальные виды исследований (геофизические, гидрогеохимические, геотермические, изотопные, ядерно-физические и др.).

Температурные условия недр территории Республики Беларусь изучены недостаточно. Большая глубина залегания термальных вод, сравнительно низкая их температура, высокая минерализация и низкий дебет скважин (100-1150 куб.м/сутки) не позволяют в настоящее время рассматривать термальные воды республики в качестве заслуживающего внимания источника энергии.

Список используемой литературы

1. А.А.Шпак, И.М. Мелькановицкий, А.И. Сережников «Методы изучения и оценки геотермальных ресурсов». М.: Недра, 1992. - 316 с.

3. www.baltfriends.ru

4. www.news.tut.by

Размещено на Allbest.ru

Подобные документы

    Понятие и структура геотермальных ресурсов как запасов глубинного тепла Земли, эксплуатация которых экономически целесообразна современными техническими средствами. Их источники и разновидности. Принципы и этапы утилизации "сухого" глубинного тепла.

    презентация , добавлен 30.09.2014

    Разработка и оценка эффективности мероприятий по усовершенствованию технологии производства йода (брома) из геотермальных и попутных промышленных вод нефтегазовых месторождений. Направления и значение упрощения механизма извлечения йода и брома.

    статья , добавлен 30.11.2015

    Стадийность геологоразведочных работ, определяемая степенью изученности объектов, которая оценивается категориями запасов и прогнозных ресурсов твердых полезных ископаемых. Сравнительный анализ геологического изучения недр Казахстана и мировой практики.

    реферат , добавлен 01.11.2016

    Распределение активных вулканов, геотермальных систем, районов землетрясений и известных векторов миграции плит. Вулканические породы и малоглубинные интрузии. Донные магнитные реверсные структуры. Химия первичных пород, диагностика главных разломов.

    реферат , добавлен 06.08.2009

    Разведка золотых месторождений. Максимальные изменения температуры и давлений. Флуктуации давлений и гидравлическое дробление, кипение и изменения гидрогеологических условий системы. Концентрации металлов в осадках из геотермальных скважин и источников.

    реферат , добавлен 04.08.2009

    Изучение угленосности осадочного чехла Беларуси. Анализ строения и состава палеоген-неогеновой угленосной формации. Характеристика разведанных месторождений неогенового возраста. Рассмотрение ресурсов и дальнейших перспектив использования бурых углей.

    курсовая работа , добавлен 28.04.2014

    Геотермальная энергетика: современное состояние и перспективы развития. Гидрогеотермические исследования; основные месторождения термальных и минеральных вод. Прогнозная оценка ресурсов Республики Дагестан, методы газонефтяных поисков и разведки.

    курсовая работа , добавлен 15.01.2011

    Общее представление о ресурсах и запасах нефти и газа. Экономические критерии в новой классификации запасов и прогнозных ресурсов. Пример переоценки запасов месторождений участков нераспределенного фонда недр Сибирской платформы по новой классификации.

    реферат , добавлен 19.04.2011

    Сферическое строение планеты по Э. Вихерту и Э. Зюссу. Современные программы изучения недр с помощью бурения сверхглубоких скважин и сейсмических волн. Особенности земной коры, литосферы, астеносферы, мантии и земного ядра, гравитационная дифференциация.

    реферат , добавлен 20.05.2010

    Методика изучения склонов и склоновых отложений. Схема описания оползней. Методика изучения флювиального рельефа и аллювиальных отложений. Овражный и балочный аллювий. Изучение надпойменных террас. методика изучения карстового рельефа местности.

Помимо нефти и газа большой потенциал в энергетике имеют геотермальные ресурсы. Под ними понимают запасы тепла из недр планеты, образовавшиеся в итоге расщепления радионуклидов.

В Российской Федерации запасы этих ресурсов значительно больше, чем во многих странах мира. Используя тепло планеты Земля, можно получить до десяти процентов от всего теплоснабжения государства. На сегодняшний день известно более шестидесяти месторождений геотермальных ресурсов, для получения энергии создано свыше четырех тысяч скважин.

Наиболее перспективными регионами в отношении развития такой энергии являются полуостров Камчатка, Курилы, Сибирь и Кавказ.

Лучше всего сейчас исследованы месторождения на Северном Кавказе. Температура вод в артезианских бассейнах этого региона достигает ста восьмидесяти градусов. Залежи ресурсов располагаются на глубине в границах 300-5000 метров.

В Краснодарском крае известны месторождения с тепловым потенциалом до 3800 ГДж в год. В настоящее время только пять процентов этого потенциала реализованы.

Относительно сибирских термальных ресурсов известно, что они перспективны для использования.

Потенциал такого вида отопления заключается в том, что этот ресурс быстро возобновляется, является экологически чистым и дешевым.

Применение геотермальных ресурсов в народном хозяйстве возможно при отапливании помещений, теплиц, в рыбном хозяйстве – для выращивания мальков, также при разведении грибниц. В промышленности энергия нагретой до градуса кипения воды может использоваться для электрификации зданий. Водяной пар в таком случае будет подаваться на турбины.

Геотермальные ресурсы неоднородны. Специалисты выделяют петротермальные и гидротермальные.

Геотермальная энергетика России

Наиболее востребован данный вид ресурсов в Соединённых Штатах Америки, государстве, давно и активно использующем внутренние тепло планеты. Наша страна также рассматривает отрасль хозяйства как одну из самых перспективных.

Как правило, электростанции, работающие на термальных источниках энергии, располагаются в регионах с повышенной вулканической деятельностью. Объясняется такое их расположение тем, что раскаленная лава нагревает протекающие рядом воды. В местах разлома горной породы нагретая вода вырывается наружу. Таким образом создаются гейзеры и геотермальные озера. Если разломы отсутствуют, и нет возможности получить энергию из открытых источников, к термальной воде добираются посредством бурения скважин.

Хотя залежи геотермальных ресурсов в нашем государстве богаты, используются в хозяйстве только малая их часть. Электростанции, работающие на таком источнике, делятся на два типа: станции непрямого типа (встречаются наиболее часто) и станции смешанного типа. Последние считаются самыми щадящими для состояния экологии регионов.

Начало использования энергии источников подземных вод в Советском союзе относится к середине двадцатого века. Именно в шестидесятых годах на Камчатке появилась первая опытная геотермальная электростанция. Ее задачей стала выработка энергии для промышленных предприятий. Мощность станции не превышала 500 кВт.

Запуск станции позволил поставлять жителям полуострова электроэнергию по самым выгодным ценам. Это продолжалось долгие годы, пока резко не повысилась стоимость мазута. После подорожания топлива выше стала себестоимость электроэнергии, которая ранее была так дешева. Подорожание услуги стало причиной того, что, несмотря на перспективность геотермальной энергетики, эта отрасль на полуострове развивается не так активно и отстает от потребности территории в дешевых и экологически чистых источниках энергии.

По сравнению с прочими источниками геотермальные источники энергии обладают рядом преимуществ. Прежде всего, электростанции на термальной воде могут эффективно работать в любых климатических условиях в любое время года, при этом коэффициент использования будет не ниже девяноста процентов. Такие предприятия не вредят состоянию окружающей среды, вредные примеси, в том числе и углекислый газ, не выбрасываются в атмосферу. Обслуживание электростанции не нуждается в больших технических затратах. Себестоимость конечного продукта – электроэнергии – ниже, чем стоимость этого продукта, вырабатываемого электростанциями других типов.

В Российской Федерации функционируют пять станций, работающих на геотермальных ресурсах. В условиях севера или недостаточно заселенных территорий государства, где обеспечение населенных пунктов энергией через централизованную сеть электростанций нерентабельно, решить проблему помогут станции, работающие на геотермальной энергии.

Геотермальные электростанции России

Самой первой на территории нашего государства была открыта Паужетская электростанция в шестидесятых годах прошлого века. Строилась станция с целью обеспечить энергией жителей и предприятия, находящиеся в поселках рыбопереработчиков. Название станции дало наименование села, расположенного на берегу полуострова Камчатка. Рядом с ним располагаются два вулкана – Кошелев и Камбальный.

Паужетская ГеоЭС к запуску в эксплуатацию работала на мощности, равной 5 МВт. После подключения бинарного электроблока производственные мощности возросли до 17 МВт. Какой бы щадящей для окружающей среды ни была термальная ГЭС, негативное влияние на экологию ее работа оказывает. Сброс массива геотермальных вод в ближайшую реку приводит к тому, что нерест рыбы в Озерной становится невозможным. Повышение температуры воды в реке до 120 градусов также негативно сказывается на ее экологическом состоянии. На геотермальном носителе также негативно сказывается работа станции – происходит постоянная потеря теплового потенциала.

В конце девяностых годов на Камчатке была построена Верхне-Мутновская ГеоЭС. Спустя четыре года введена в эксплуатацию Муновская станция, крупнейшая в регионе. Питающий ее вулкан Мутновский, нагревает воды, поднятые с глубины не менее трехсот метров. Нагреваясь, вода превращается в пар, температура которого доходит до двухсот пятидесяти градусов. Паровым конденсатом отапливается поселок, расположенный неподалеку.

Энергетика полуострова Камчатка практически на двадцать пять процентов обеспечивает потребности жителей в электричестве за счет использования геотермальных источников.

В двухтысячных годах заработала Океанская станция. Располагается она в Сахалинской области на Итурупе – курильском острове. Через тринадцать лет на станции произошел ряд аварий, после чего электростанция подверглась консервации.

Другой остров Курильской гряды – Кунашир – имеет собственную станцию, которая выстроена недалеко от вулкана Менделеева. Строилась Менделеевская электростанция неполные десять лет. Целью строительства было обеспечение города Южно-Курильска электроэнергией и теплом. В настоящее время предприятие модернизируется на средства федерального бюджета. После модернизации мощность предприятия возрастет.

При несомненных плюсах геотермальной энергетики эта часть отрасли обладает рядом негативных сторон. Среди них:

  • Вредные примеси в выбросах отработанного пара, загрязняющие воздух;
  • Неэффективная утилизация отработанной воды, поднятой с большой глубины. Далеко не все сотрудники ГеоЭС соблюдают требования безопасности, в результате чего выбросы воды производятся в ближайшие водоемы;
  • Возведение таких электростанций стоит довольно дорого;
  • Стоимость оборудования неоправданно высока при достаточно низком получении энергии на выходе;
  • Недостаточно высокие потенциалы теплоносителей;
  • Полученный продукт невозможно транспортировать на большие расстояния;
  • Сложности складирования.

Сказанное выше позволяет сделать следующие выводы. Российская Федерация располагает тремя геотермальными зонами, в каждой из которых особые типы и возможности применения геотермальной энергии.

Первая из них располагается на Дальнем Востоке – Камчатском полуострове и островах Курильской гряды. Вторая и третья – Прибайкалье и Северный Кавказ.

Строительство электростанций с использованием геотермальных ресурсов помогло решить множество важнейших проблем в удаленных регионах. Ученые страны защитили ряд патентов, имеют наработки в области добычи энергии.

Осталось только применить этот научный потенциал на практике для использования на благо государства.

Геотермальная энергетика России может обеспечивать население определенными ресурсами для коммунальных, промышленных и сельскохозяйственных нужд.

В России и бывшем Советском Союзе на протяжении более 60 лет проводились буровые работы для получения горячей воды и пара из недр Земли. Сегодня практически вся территория страны хорошо изучена. Выяснилось, что многие регионы имеют запасы горячей воды и пара с температурой от 50 до 200 0 С на глубине от 200 до 3000 м.

Геотермальные источники в России

Центральный регион, Северный Кавказ, Дагестан, Сибирь, зона Байкальского рифта, Красноярский край, Чукотка, Сахалин, полуостров Камчатка и Курильские острова имеют богатейшие ресурсы геотермальной энергии для производства до 2000 МВт электроэнергии и более 3000 МВт тепла для системы централизованного теплоснабжения. Использование геотермальных ресурсов в России особенно важно для снабжения северных территорий страны.

В России в связи с холодным климатом более 45% от общего объема энергетических ресурсов используются для теплоснабжения городов, населенных пунктов и производственных комплексов. До 30% этих энергетических ресурсов в отдельных районах может быть обеспечено при использовании тепла из недр Земли.

Использование геотермальной энергетики планируется провести в следующих регионах России: в Краснодарском крае (теплоснабжение города Лабинск, а также комплекс в поселке Розовый), Калининградской области и на Камчатке (теплоснабжение Елизовской и Паужетской электростанции мощностью 12 мВт и расширение существующей Мутновской Геоэс до 50 МВт, где используется вторичный пар для производства электроэнергии.

Экономические и политические изменения, которые произошли в России в значительной степени влияют на то, как электроэнергетика развивается.

Электроэнергия в России, в основном, базируется на использовании ископаемого топлива и эксплуатации атомных и гидроэлектростанций. В настоящее время геотермальная энергетика является сравнительно скромной, хотя страна обладает значительными ресурсами.

Современная экономическая ситуация в России зависит от развития своего энергетического потенциала. Трудности экономики делают проблему энергоснабжения существенной, особенно в северных и восточных регионах страны. Под эти обстоятельства, вполне естественно, что регионы должны стремиться к использованию собственных энергетических ресурсов и развития возобновляемых источников энергии. В регионах Дальнего Востока, Сахалина, Курил, на Камчатке, использование становится экономически целесообразным.

Есть несколько основных регионов, перспективных для “прямого” использования (теплоснабжения жилых домов и промышленных зданий, подогрева теплиц и почвы, в животноводстве, рыболовстве, в промышленном производстве, для добычи химических элементов, увеличения нефтеотдачи пластов, для плавления мерзлых пород, в бальнеологии и т. д.), а также для тепла с применением тепловых насосов и получения электроэнергии на Геоэс бинарного цикла (геотермальная электростанция).

Один из них регион (Камчатка и Курильские острова) находится в районе активных вулканов, наиболее перспективный район для “прямого” использования геотермальной энергетики и строительства Геоэс. До сих пор 66 скважин термальной воды и пара были изучены в России. Половина из них находится в эксплуатации, обеспечивая около 1,5 млн Гкал тепла в год, что равно почти 300 тысяч тонн условного топлива.

Южная часть России

Дагестан на Северном Кавказе является одним из крупнейших в области развития геотермальной энергетики. Общая сумма ресурсов на глубине 0,5-5,5 км позволяет получить примерно 4 млн. м 3 /сутки горячей воды. В настоящее время более 7,5 млн. м 3 /год воды температурой 50-110 0 C используется в Дагестане. Среди них 17% в качестве горячей; 43% для централизованного теплоснабжения; 20% для теплиц и 3% для бальнеологии и производства минеральной воды. В Дагестане около 180 скважин пробурено на глубине от 200 до 5500 м. Такие города, как Кизляр, Тарумовка и Южно-Сухокумск, обладают уникальными запасами горячей воды. Например, Таруморское месторождение имеет запасы горячих вод высокой минерализации (200 г/л) с температурой до 95 0 С шесть скважин были пробурены на глубину около 5500 м, самых глубоких скважин в России. Тесты указывают на высокую проницаемость пласта скважин между 7500 и 11000 м 3 /сутки и устьевое давление 140-150 бар.

На Кавказе и в Предкавказье термальные воды образовались за счет многослойных артезианских бассейнов в отложениях геологической эры Мезозоя и Кайнозоя.

Минерализация и температура этих вод существенно различается: на глубинах 1-2 км — от 0,5 до 65 г/кг и от 70 до 100 0 С соответственно, в то время как на Скифской платформе на глубинах 4-5 км – от 1 до 200 г/кг и от 50°С до 170°С.

В Дагестане общая сумма разведанных термальных запасов воды составляет 278 тыс. м3/сутки, а с использованием пласта воды – 400 тыс. м 3 /сутки. Тепловой потенциал здесь эквивалентен ежегодной замене 600 тыс. тонн условного топлива.

Геотермальная энергетика использует ресурсы при температуре от 40-107 0 С и минерализацию от 1,5-27 г/л находящиеся в Северном Дагестане. За последние 40 лет 12 крупных термальных вод были обнаружены и 130 скважин было пробурено и подготовлено к эксплуатации в данном регионе.

Однако в настоящее время используется только 15% потенциальных известных термальных запасов воды.

Краснодарский край также обладает значительными запасами геотермальной энергетики. Район имеет широкий опыт использования геотермальных источников энергии. Порядка 50 скважин находятся в эксплуатации, которые принимают воду в объеме до 10 млн. м 3 с температурой от 75 до 110 °C. Широкие области использования энергии в Краснодарском крае позволят обеспечить к 2020 году до 10% спроса всего тепла и до 3% всех энергетических потребностей региона. В совокупности тепловая мощность месторождений, находящихся в эксплуатации составляет 238 МВт.

Центральная часть России и Сибирь

Экономическая целесообразность использования геотермальных ресурсов для выработки тепла и производства электроэнергии становится более очевидной если ресурсы в основном доступны с температурой от 30 до 80 0 С (иногда даже до 100 0 С) на глубинах 1-2 км. Такие ресурсы находятся в центральной части средне-русского бассейна (Московская синеклиза (разрез)), которые включает в себя 8 районов: Вологодский, Ивановский, Костромской, Московский, Нижегородский,

Новгородский, Тверской и Ярославский. Есть также перспективные возможности для эффективного использования термальных вод в Ленинградской области и особенно в Калининградской области. Эффективность их использования может быть обеспечена за счет применения тепловых насосов и бинарных циркуляционных систем. Широкое использование геотермальной энергетики возможно в центре Европейской части России.

Сибирь также обладает запасами тепла из недр, которые могут использоваться для теплоснабжения и сельского хозяйства. Термальные воды платформы Западной Сибири имеют большой артезианский бассейн на площади почти 3 млн. км 2 . На глубинах до 3 км имеются тепловые ресурсы воды с температурой от 35 до 75 0 С и минерализацией от 1 до 25 г/кг и оцениваются в 180 м 3 /сек.

Высокая минерализация этих термальных вод требует их обратной закачки после использования теплового потенциала для предотвращения загрязнения среды.

Использование даже 5% своих резервов позволит производить 834 млн Гкал/год, что позволит сэкономить 119 млн. т условного топлива.

На Байкале и прилегающей территории есть множество термальных источников, энергия которых может достигать многих тысяч кубических метров в сутки с температурой от 30 до 80 0 С и выше. Обычно минерализация таких вод не превышает 0,6 г/л.

Если рассмотреть химический состав термальных вод, в основном, они имеют щелочную реакцию, сульфат или гидрокарбонат натрия. Большая часть этих ресурсов находится в Тункинской и Баргузинской полости и вдоль побережья озера Байкал.

Камчатка и Курильские острова

Курильские острова, в основном, питаются дизель-генераторами электроэнергии и отапливаются котельными работающими на привозном угле. В то же время Курильские острова богаты геотермальной энергетикой. Ожидается, что их мощность будет достигать 300 МВт. Геотермальная энергетика необходимой мощности может быть реализована в непосредственной близости от каждого крупного населенного пункта, действующих или планируемых объектов Курильских островов — на Кунашире, Итурупе, островах Парамушир и др.

Были изучены несколько источников геотермальной энергетики на упомянутых островах. Например, на острове Кунашир по данным геологоразведочных работ ожидается, что запасы геотермальных резервуаров оцениваются в 52 МВт. Ожидаемые запасы самого Северного острова Курильской гряды — Парамушир, рассчитанные с помощью различных методов, могут поддерживать работу геотермальных электростанций мощностью 15 — 100 мВт.

Прямое использование геотермальных ресурсов в основном развито в Курило-Камчатской области, Дагестане и Краснодарском крае, и в первую очередь для теплоснабжения и отопления теплиц. Развитие геотермальных ресурсов является достаточно перспективным в таких регионах, как Западная Сибирь, Байкал, Чукотка, Приморье, Сахалин.

Экономическая целесообразность использования геотермальных ресурсов при воде с температурой между 30 и 80/даже 100ºС на глубинах 1-2 км.

Природные ресурсы России

Россия, в отличие от многих других стран, обладает уникальными природными ресурсами.

Запасы ископаемого топлива огромны в России, и по сравнению с мировыми составляют: 35% газа, 33% для древесины, 12% на нефть, но в то же время обладают огромным количеством горячей воды из земли — тепла из недр.

Потенциальная энергия в 8-12 раз превышает энергетический потенциал углеводородного топлива, который может кардинально изменить энергетический баланс.

Резюмируя ситуацию с использованием геотермальной энергии в России в первую очередь надо еще раз отметить, что на Камчатке три геотермальные электростанции успешно работают: 12 МВт и 50 МВт (Верхне-Мутновская и Мутновская) и 11 МВт на Паужетской области. На Курильских островах (Кунашир и Итуруп) есть две небольшие Геотэс мощностью 3,6 МВт, которые также успешно работают.