Дисперсия где наблюдается. Дисперсия света: история открытия и описание явления

) света (частотная дисперсия), или, то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Энциклопедичный YouTube

    1 / 3

    Дисперсия и спектр света

    Дисперсия света и Цвет тел

    Дисперсия света. Цвета тел.

    Субтитры

Свойства и проявления

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления - минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления - максимальна.

Однако в некоторых веществах (например в парах иода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

n = a + b / λ 2 + c / λ 4 {\displaystyle n=a+b/\lambda ^{2}+c/\lambda ^{4}} ,

где λ {\displaystyle \lambda } - длина волны в вакууме; a , b , c - постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Окружающий мир наполнен миллионами разнообразных оттенков. Благодаря свойствам света каждый предмет и объект вокруг нас имеет определенный цвет, воспринимаемый человеческим зрением. Изучение световых волн и их характеристик позволило людям глубже взглянуть на природу света и явления, связанные с ним. Сегодня поговорим о дисперсии.

Природа света

С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения. Знаменитый ученый Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными свойствами. Это подтверждается всем известным явлением фотоэффекта. Выходит, что световой поток имеет двоякую природу.

Цветовой спектр

Белый свет, доступный для человеческого зрения, - это совокупность нескольких волн, любая из которых характеризуется определенной частотой и собственной энергией фотонов. В соответствии с этим его можно разложить на волны разного цвета. Каждая из них носит название монохроматической, а определенному цвету соответствует свой диапазон длины, частоты волн и энергии фотонов. Другими словами, энергия, излучаемая веществом (или поглощаемая), распределяется по вышеназванным показателям. Это объясняет существование светового спектра. Например, зеленый цвет спектра соответствует частоте, находящейся в диапазоне от 530 до 600 ТГц, а фиолетовый - от 680 до 790 ТГц.

Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света. Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет. Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму. Дисперсия света выражается следующим равенством:

где n - показатель преломления, ƛ - частота, а ƒ - длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе. Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.

Первые шаги на пути к открытию дисперсии

Как было сказано выше, световой поток при прохождении через призму разлагается на цветовой спектр, который Исаак Ньютон достаточно детально изучил в свое время. Результатом его исследований стало открытие явления дисперсии в 1672 году. Научный интерес к свойствам света появился еще до нашей эры. Знаменитый Аристотель уже тогда заметил, что солнечный свет может иметь разные оттенки. Ученый утверждал, что характер цвета зависит от «количества темноты», присутствующей в белом свете. Если ее много, то возникает фиолетовый цвет, а если мало, то красный. Великий мыслитель также говорил о том, что основным цветом световых лучей является белый.

Исследования предшественников Ньютона

Аристотелевскую теорию взаимодействия темноты и света не опровергли и ученые 16-17 веков. И чешский исследователь Марци, и английский физик Хариот независимо друг от друга проводили опыты с призмой и были твердо уверены в том, что причиной появления разных оттенков спектра является именно смешивание светового потока с темнотой при прохождении его через призму. На первый взгляд, выводы ученых можно было назвать логичными. Но их эксперименты были достаточно поверхностными, и они не смогли подкрепить их дополнительными исследованиями. Так было, пока за дело не взялся Исаак Ньютон.

Открытие Ньютона

Благодаря пытливому уму этого выдающегося ученого было доказано, что белый свет не является основным, и что остальные цвета возникают вовсе не в результате взаимодействия света и темноты в разных соотношениях. Ньютон опроверг эти убеждения и показал, что белый свет является составным по своей структуре, его образуют все цвета светового спектра, называемые монохроматическими. В результате прохождения светового пучка через призму разнообразие цветов образуется из-за разложения белого света на составляющие его волновые потоки. Такие волны с разной частотой и длиной преломляются в среде по-разному, образуя определенный цвет. Ньютон поставил опыты, которые до сих пор используются в физике. Например, эксперименты со скрещенными призмами, с использованием двух призм и зеркала, а также пропускание света через призмы и перфорированный экран. Теперь нам известно, что разложение света на цветовой спектр происходит вследствие различной скорости прохождения волн с разной длиной и частотой сквозь прозрачное вещество. В результате одни волны выходят из призмы раньше, другие - чуть позже, третьи - еще позже и так далее. Так и происходит разложение светового потока.

Аномальная дисперсия

В дальнейшем ученые-физики позапрошлого столетия сделали очередное открытие, касающееся дисперсии. Француз Леру обнаружил, что в некоторых средах (в частности, в парах йода) зависимость, выражающая явление дисперсии, нарушается. За изучение этого вопроса взялся живший в Германии физик Кундт. Для своего исследования он позаимствовал один из методов Ньютона, а именно опыт с использованием двух скрещенных призм. Разница состояла лишь в том, что вместо одной из них Кундт применял призматический сосуд с раствором цианина. Оказалось, что показатель преломления при прохождении света через такие призмы увеличивается, а не уменьшается, как это происходило в экспериментах Ньютона с обычными призмами. Немецкий ученый выяснил, что этот парадокс наблюдается вследствие такого явления, как поглощение света веществом. В описанном опыте Кундта поглощающей средой выступал раствор цианина, а дисперсия света для таких случаев была названа аномальной. В современной физике такой термин практически не используют. На сегодняшний день открытую Ньютоном нормальную и обнаруженную позже аномальную дисперсию рассматривают как два явления, относящихся к одному учению и имеющих общую природу.

Низкодисперсные линзы

В фототехнике дисперсия света считается нежелательным явлением. Она становится причиной так называемой хроматической аберрации, при которой на изображениях появляется искажение цветов. Оттенки фотографии при этом не соответствуют оттенкам снимаемого объекта. Особенно неприятным такой эффект становится для фотографов-профессионалов. Из-за дисперсии на фотоснимках не только происходит искажение цветов, но и нередко наблюдается размытие краев или, наоборот, появление чересчур очерченной каймы. Мировые производители фототехники справляются с последствиями такого оптического явления с помощью специально разработанных низкодисперсных линз. Стекло, из которого они производятся, обладает великолепным свойством одинаково преломлять волны с разными значениями длины и частоты. Объективы, в которых устанавливаются низкодисперсные линзы, называются ахроматами.

  • 3.Свободные колебания в lc-контуре. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение.
  • 4. Вынужденные электрические колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
  • 5. Резонанс напряжений и резонанс токов.
  • Основы теории максвелла для электромагнитного поля.
  • 6.Общая характеристика теории Максвелла. Вихревое магнитное поле. Ток смещения.
  • 7.Уравнения Максвелла в интегральном виде.
  • Электромагнитные волны
  • 8.Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Энергия электромагнитных волн. Давление электромагнитных волн.
  • Геометрическая оптика
  • 9. Основные законы геометрической оптики. Фотометрические величины и их единицы.
  • 10. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
  • 11.Световые волны
  • 12.Интерференция света при отражении от тонких пластинок. Полосы равной толщины и равного наклона.
  • 13. Кольца Ньютона. Применение явления интерференции. Интерферометры. Просветление оптики.
  • 14.Дифракция света
  • 15. Дифракция света на круглом экране и круглом отверстии.
  • 16.Дифракция света на одной щели. Дифракционная решетка.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
  • 19.Поляризация света. Естественный и поляризованный свет. Степень поляризации. Закон малюса.
  • 20.Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
  • 21. Эффект доплера для световых волн.
  • 22.Тепловое излучение. Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре абсолютно черного тела. Законы Кирхгофа, Стефана- Больцмана, Вина.
  • 23. Элементы специальной теории относительности Постулаты специальной теории относительности. Преобразования Лоренца.
  • 2. Длительность событий в разных системах отсчета.
  • 24. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.

    Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ):

    Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через призму. Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г.

    Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной , рис.1.

    Величина

    называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.

    Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения.

    Рассмотрим дисперсию света в призме, рис.2.

    Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α 1 . После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что

    т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

    Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

    На явлении нормальной дисперсии основано действие призменных спектрометров , широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу.

    Электронная теория дисперсии света. Из макроскопической электромагнитной теории Максвелла следует, что

    но в оптической области спектра для всех веществ μ ≈ 1, поэтому

    n = ε. (1)

    Формула (1) противоречит опыту, т.к. величина n, являясь переменной n = f(λ), равняется в то же время определенной постоянной ε (постоянной в теории Максвелла). Кроме того, полученные из этого выражения значения n не согласуются с экспериментальными данными.

    Для объяснения дисперсии света была предложена электронная теория Лоренца, в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

    Ознакомимся с этой теорией на примере однородного изотропного диэлектрика, предположив формально, что дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества равна

    ε = 1 + χ = 1 + Р/(ε 0 Е),

    где χ – диэлектрическая восприимчивость среды, ε 0 – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны напряженностью Е). Тогда

    n 2 = 1 + Р/(ε 0 Е), (2)

    т.е. зависит от Р. Для видимого света частота ω~10 15 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет. Эти электроны наз. оптическими электронами.

    Для простоты рассмотрим колебания одного оптического электрона в молекуле. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны. Пусть n 0 – концентрация атомов в диэлектрике, тогда

    Р = р n 0 = n 0 е х. (3)

    Подставив (3) в (2) получим

    n 2 = 1 + n 0 е х /(ε 0 Е), (4)

    т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Е 0 cos ωt.

    Уравнение вынужденных колебаний электрона для простейшего случая

    d 2 x/dt 2 +ω 0 2 x = (F 0 /m)cos ωt = (e/ m) E 0 cos ωt, (5)

    где F 0 = еE 0 –амплитудное значение силы, действующей на электрон со стороны поля волны, ω 0 = √k/m – собственная частота колебаний электрона, m – масса электрона. Решив уравнение (5), найдем ε = n 2 в зависимости от констант атома (е, m, ω 0) и частоты внешнего поля ω, т.е. решим задачу дисперсии.

    Решением (5) является

    Х = А cos ωt, (6)

    А = еЕ 0 /m(ω 0 2 – ω 2). (7)

    Подставим (6) и (7) в (4) и получим

    n 2 = 1 + n 0 e 2 /ε 0 m(ω 0 2 – ω 2). (8)

    Из (8) видно, что показатель преломления вещества зависит от частоты ω внешнего поля, и что в области частот от ω = 0 до ω = ω 0 значение n 2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия ). При ω = ω 0 значение n 2 = ± ∞; в области частот от ω = ω 0 до ω = ∞ значение n 2 меньше 1 и возрастает от - ∞ до 1 (нормальная дисперсия). Перейдя от n 2 к n, получим график зависимости n = n(ω), рис.1. Область АВ – область аномальная дисперсии . Изучение аномальной дисперсии – Д.С. Рождественский.

    Поглощением света – называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.

    С точки зрения электронной теории, взаимодействие света и вещества сводится к взаимодействию электромагнитного поля световой волны с атомами и молекулами вещества. Электроны, входящие в состав атомов, могут колебаться под действием переменного электрического поля световой волны. Часть энергии световой волны затрачивается на возбуждение колебаний электронов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения, а также переходит в другие формы энергии, например, в энергию теплового излучения.

    Поглощение светового излучения можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

    Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света

    I = I e -K l (1)

    где I 0 λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l ; К λ – коэффициент поглощения, зависящий от λ, т.е. К λ = f(λ).

    Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества свет встречает на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален С:

    К λ = c λ С (2)

    где c λ – коэффициент пропорциональности, который также зависит от λ. Учитывая (2), можно закон Бугера (1) переписать в виде:

    I λ = I 0λ e - c C l (3)

    c λ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то c λ называют молярным коэффициентом поглощения .

    Соотношение (3) носит название закона Бугера-Ламберта-Бера. Отношение величины светового потока, вышедшего из слоя I , к во­шедшему I 0λ носит название коэффициента оптического (или свето-) пропускания слоя Т :

    Т = I /I 0 λ = e - c C l (4)

    или в процентах

    Т = I /I 0λ 100%. (5)

    Поглощение слоя равно отношению

    Л
    огарифм величины 1/Т называетсяоптической плотностью слоя D

    D = lg 1/T = lg I 0 λ /I l λ = 0,43c λ Сl (6)

    т.е. оптическая плотность характеризует поглоще­ние света средой. Соотношение (6) может быть использовано как для определения концен- трации растворов, так и для характеристики спек­тров поглощения веществ.

    Зависимость оптической плотности от длины волны D = f(λ) является спектральной характеристикой поглощения данного вещества, а кривая, выражающая эту зависимость, называется спектром поглощения. Спектры поглощения, как и спектры испускания, бывают линейчатые, полосатые и сплошные, рис. 3. Cогласно модели атома Бора кванты света испускаются и поглощаются при переходе системы (атома) из одного энергетического состояния в другое. Если при этом в оптических переходах меняется только электронная энергия системы, как это имеет место в атомах, то в спектре линия поглощения будет резкой.

    Рис.3.а)линейчатый спектр поглощения, б)полосатый спектр поглощения, в) сплошной спектр поглощения.

    Однако для сложных молекул, энергия которых слагается из электронной Е эл, колебательной Е кол и вращательной Е вр энергии (Е =Е эл + Е кол + Е вр) при поглощении света изменяется не только электронная энергия, но обязательно колебательная и вращательная. Причем поскольку ∆Е эл >>∆E кол >>∆Е вр, то в результате этого набор линий, соответствующих электронному переходу, в спектре поглощения растворов выглядит как полоса поглощения.

    Коэффициент поглощения для диэлектриков невелик (примерно 10 -3 – 10 -5 см -1), для них наблюдаются широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения . Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

    Коэффициент поглощения для металлов имеет большие значения (примерно 10 3 - 10 5 см -1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощается свет. На рис. 1 показана типичная зависимость коэффициента поглощения света от частоты в области полосы поглощения. Видно, что внутри полосы поглощения наблюдается аномальная дисперсия. Однако поглощение света веществом должно быть значительным, чтобы повлиять на ход показателя преломления.

    Зависимостью коэффициента поглощения от длины волны (частоты) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения этих длин волн стекло будет казаться черным. Это явление используется при изготовлении светофильтров , которые в зависимости от хим. состава стекол пропускают свет только определенных длин волн, поглощая остальные.

    ОПРЕДЕЛЕНИЕ

    Дисперсией света называют зависимость показателя преломления вещества (n) от частоты () или длины волны () света в вакууме (часто индекс 0 опускают):

    Иногда дисперсию определяют как зависимость фазовой скорости (v) волн света от частоты.

    Всем известное следствие дисперсии - это разложение белого света в спектр при прохождении сквозь призму. Первым свои наблюдения дисперсии света зафиксировал И. Ньютон. Дисперсия является следствием зависимости поляризованности атомов от частоты.

    Графическая зависимость показателя преломления от частоты (или длины волны) - дисперсионная кривая.

    Дисперсия возникает в результате колебаний электронов и ионов.

    Дисперсия света в призме

    Если монохроматический пучок света попадает на призму, показатель преломления вещества которой равен n, под углом (рис.1), то после двойного преломления луч отклоняется от первоначального направления на угол :

    Если углы А, - маленькие, следовательно малыми являются все остальные углы в формуле (2). В таком случае закон преломления можно записать не через синусы этих углов, а непосредственно через величины самих углов в радианах:

    Зная, что , имеем:

    Следовательно, угол отклонения лучей при помощи призмы прямо пропорционален величине преломляющего угла призмы:

    и зависит от величины . А нам известно, что показатель преломления - функция длины волны. Получается, что лучи, имеющие разные длины волн после того, как пройдут через призму, отклонятся на разные углы. Становится понятным, почему пучок белого света разложится в спектр.

    Дисперсия вещества

    Величина (D), равная:

    называется дисперсией вещества . Она показывает быстроту изменения показателя преломления в зависимости от длины волны.

    Показатель преломления для прозрачных веществ при уменьшении длины волны монотонно увеличивается, значит, величина D по модулю растет с уменьшением длины волны. Данная дисперсия называется нормальной. Явление нормальной дисперсии положено в основу действия призменных спектрографов, которые могут использоваться для исследования спектрального состава света.

    Примеры решения задач

    ПРИМЕР 1

    Задание В чем состоят основные различия в дифракционном и призматическом спектрах?
    Решение Дифракционная решетка раскладывает свет по длинам волн. По полученным и измеренным углам на направления соответствующих максимумов можно рассчитать длину волны. В отличи от дифракционной решетки призма раскладывает свет по величинам показателя преломления, следовательно, для нахождения длины волны света необходимо иметь зависимость .

    Кроме сказанного выше цвета в спектре, полученном в результате дифракции, и призматическом спектре расположены по-разному. Для дифракционной решетки было получено, что синус угла отклонения является пропорциональным длине волны. Значит, красные лучи дифракционная решетка отклоняет больше, чем фиолетовые. Призма раскладывает лучи по величинам показателя преломления, а он для всех прозрачных веществ при росте длины волны монотонно уменьшается. Получается, что красные лучи, обладающие меньшим показателем преломления, будут отклоняться призмой меньше, чем фиолетовые (рис.2).


    ПРИМЕР 2

    Задание Каким будет угол отклонения () луча стеклянной призмой, если он нормально падает на ее грань? Показатель преломления вещества призмы равен n=1,5. Преломляющий угол призмы составляет тридцать градусов ().
    Решение При решении задачи можно воспользоваться рис. 1 в теоретической части статьи. Следует учесть, что . Из рис.1 следует, что

    По закону преломления запишем:

    Так как , получим, что . Из формулы (2.1) получим, что:

    Окружающий мир наполнен миллионами разнообразных оттенков. Благодаря свойствам света каждый предмет и объект вокруг нас имеет определенный цвет, воспринимаемый человеческим зрением. Изучение световых волн и их характеристик позволило людям глубже взглянуть на природу света и явления, связанные с ним. Сегодня поговорим о дисперсии.

    Природа света

    С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения. Знаменитый ученый Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными...

    0 0

    Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона). У этого термина существуют и другие значения, см. Дисперсия.

    Диспе рсия све та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

    Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления...

    0 0

    Опыты Ньютона

    Первые опыты с дисперсионным разложением света проделал Ньютон. Он направил обычный луч солнечного света на призму и получил то, что многие сегодня видят ежедневно – призма разложила световой пучок на множество разноцветных цветов - от красного до фиолетового. После серии других опытов с линзами и призмой Ньютон сделал вывод, что призма не изменяет солнечного света, а лишь разлагает его на составляющие. Но как же это получается?

    Дело в том, что свет имеет определенную скорость. Как показал опыт, световой пучок состоит из множества цветов, вот их-то скорость как раз и различна. То есть каждый цвет спектра имеет свою скорость движения и свою длину волны. Различной оказалась также степень преломления цветовых лучей. Вспомните, как выглядит...

    0 0

    Глава 1. Световые волны - Урок 5. Дисперсия света
    Вернуться к оглавлению
    Урок 5. ДИСПЕРСИЯ СВЕТА

    Показатель преломления не зависит от угла падения светового пучка, но он зависит от его цвета. Это было открыто Ньютоном.

    Занимаясь усовершенствованием телескопов. Ньютон обратил внимание на то. что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону). Радужную окраску изображения, даваемого линзой, наблюдали, конечно, и до него. Было замечено также, что радужные края имеют предметы, рассматриваемые через призму. Пучок световых лучей, прошедший через призму, окрашивается по краям.

    Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную...

    0 0

    Гимназия № 26 ДИСПЕРСИЯ СВЕТА Выполнил: ученик 11 В класса Шелепов Дмитрий Руководитель: Пылкова Л.В. Томск-2011 В 17 веке начинает развиваться представление о волновой природе света. Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским учёным Франческо Гримальди. Он заметил, что если на пути очень узкого пучка света поставить предмет, то на экране не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое явление Гримальди назвал дифракцией, но объяснить правильно не сумел. Он понимал, что наблюдаемое им явление находится в противоречии с корпускулярной теорией света, однако не решился полностью отказаться от этой теории. Правильное объяснение открытого явления связано с теорией цветного зрения, основы которой были заложены замечательным английским учёным Исааком Ньютоном. Дисперсия света (разложение света) - это явление зависимости абсолютного показателя преломления вещества от длины волны света...

    0 0

    Диспе рсия све та (разложение света) - это явление зависимости абсолютного показателя преломления вещества от длины волны света (частотная дисперсия) , а также, от координаты (пространственная дисперсия) , или, что то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты) . Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

    Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона) . Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета) . Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

    у красного цвета максимальная скорость в среде и минимальная степень преломления,...

    0 0

    Урок физики "Дисперсия света"

    Разделы: Физика

    Задачи урока:

    Образовательные: ввести понятия спектр, дисперсия света; ознакомить учащихся с историей открытия данного явления. наглядно продемонстрировать процесс разложение узкого светового луча на составляющие различных цветовых оттенков. выявить различия этих элементов луча света. продолжить формирование научного мировоззрения учащихся. Развивающие: развитие внимания, образного и логического мышления, памяти при изучении данной темы. стимулирование познавательной мотивации учащихся. развитие критического мышления. Воспитательные: воспитание интереса к предмету; воспитание чувства прекрасного, красоты окружающего мира.

    Тип урока: урок изучения и первичного закрепления новых знаний.

    Методы обучения: беседа, рассказ, объяснение, эксперимент. (Информационно-развивающий)

    Требования к...

    0 0

    Министерство науки и образования Украины

    Украинская инженерно-педагогическая академия

    Доклад на тему:

    Дисперсия света

    Выполнил студент гр. ДРЭ-С5-1

    Фесенко А.В.

    Харьков 2006

    Явление дисперсии

    Дисперсия света. В яркий солнечный день закроем окно в комнате плотной шторой, в ко торой сделаем маленькое отверстие. Через это отвер стие будет проникать в комнату узкий солнечный луч, образующий на противоположной стене светлое пятно. Если на пути луча поставить

    стеклянную призму, то пятно на стене превратится в разноцветную по лоску, в которой будут представлены все цвета ра дуги-от фиолетового до красного (рис. 1,ф– фиолетовый, С - синий, Г - голубой, 3 - зеленый, Ж -желтый, О -оранжевый, К - красный).

    Дисперсия света – зависимость показателя преломления n вещества от частоты f (длины волны) света или зависимость...

    0 0

    Слайд 1
    Слово “дисперсия” происходит от латинского слова dispersio , что в буквальном переводе означает “рассеяние, развеивание ”. Дисперсия света Работу выполнила ученица 11 «Э» класса Адельшина Ильвира

    Слайд 2
    История открытия Определение Опыт Ньютона Особенность прохождения светового пучка через призму Основные свойства Следствия Условия возникновения радуги Вопросы Выводы Содержание

    Слайд 3
    Световой поток при прохождении через призму разлагается на цветовой спектр, который Исаак Ньютон достаточно детально изучил в свое время. Результатом его исследований стало открытие явления дисперсии в 1672 году. Первые шаги на пути к открытию дисперсии

    Слайд 4
    Около 300 лет назад Исаак Ньютон пропустил солнечные лучи через призму. Недаром на его надгробном памятнике, поставленном в 1731 году и украшенном фигурами юношей, которые держат в руках эмблемы его главнейших открытий, одна фигура держит призму, а в надписи на памятнике есть слова: «Он...

    0 0

    10

    Изучение дисперсии света в 11-м классе

    Тишкова Светлана Анатольевна, учитель физики

    Статья отнесена к разделу: Преподавание физики

    Этот урок проводится в конце изучения темы “волновые свойства света” в классах физико-математического профиля.

    А. Учащиеся должны усвоить:


    Пучок белого света, при прохождении через вещество, имеющее преломляющий угол, разлагается на пучки различной цветности. Это явление называется дисперсией света.

    При падении на границу раздела двух сред световые пучки разной цветности преломляются по-разному: красные - меньше, а фиолетовые - больше.

    Объективная характеристика цветности – частота электромагнитной волны.

    Б. Учащиеся должны научиться:

    Создавать понятие “дисперсия света”.

    Распознавать дисперсию света среди других явлений.

    Воспроизводить дисперсию света в конкретной ситуации.

    0 0

    11

    Дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав веществ. Частицы вещества совершают вынужденные колебания в переменном электромагнитном поле волны.

    Дисперсия света – зависимость абсолютного показателя преломления вещества n от частоты...

    0 0

    12

    Наблюдение явления дисперсии света лабораторная
    В физике дисперсией света называется зависимость показателя преломления вещества от длины световой волны. Наиболее наглядно демонстрирует явление дисперсии света его разложение под действием какой-либо призмы.

    1.3. Первые опыты с призмами. Представления о при чинах возникновения цветов до Ньютона.
    1.4. Опыты Ньютона с призмами. Ньютоновская теория возникновения цветов
    1.5. Открытие аномальной дисперсии света. Опыты Кундта
    Глава II . Дисперсия в природе
    2.1. Радуга
    Глава III . Экспериментальная установка для наблюдения смешения цветов
    3.1. Описание установки
    3.2. Устройство экспериментальной установки
    Заключение
    Литература
    Введение.
    Дисперсия света. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. Наверное, нет человека, который не...

    0 0

    13

    МАОУ «Средняя школа №28 имени Г. Ф. Кирдищева»

    Петропавловск-Камчатского городского округа

    Дисперсия света и цвета тел

    Конспект урока физики в 11 классе

    Урок изучения нового материала, закрепления и контроля

    Учитель физики МАОУ «Средняя школа №28 имени Г. Ф. Кирдищева» Юрьева О. Л.

    Сергей ЕСЕНИН

    Не жалею, не зову, не плачу,
    Все пройдет, как с белых яблонь дым.
    Увяданья золотом охваченный,
    Я не буду больше молодым.

    Ты теперь не так уж будешь биться,
    Сердце, тронутое холодком,
    И страна березового ситца
    Не заманит шляться босиком.

    Дух бродяжий! ты все реже, реже
    Расшевеливаешь пламень уст
    О, моя утраченная свежесть,
    Буйство глаз и половодье чувств!

    Я теперь скупее стал в желаньях,
    Жизнь моя, иль ты приснилась мне?
    Словно я весенней гулкой ранью
    Проскакал на розовом коне.

    Все мы, все мы в этом мире тленны,
    Тихо льется...

    0 0

    14

    Какие волны называются когерентными?

    волны, имеющие одинаковую частоту

    волны, имеющие одинаковую амплитуду

    волны, имеющие одинаковую частоту и постоянную разность фаз

    Поляризация света доказывает, что свет –
    поток нейтральных частиц
    поперечная волна
    продольная волн

    Что называется дифракцией света?
    разложение белого света в спектр при помощи стеклянной призмы
    усиление или ослабление света при наложении двух когерентных волн
    огибание светом препятствий

    Цвета спектра (красный – к, оранжевый – о, синий – с, желтый – ж, голубой – г, зеленый – з, фиолетовый – ф) в порядке убыли длины волны правильно указаны в ответе:
    1.ф, с, г, з, ж, о, к
    к, о, ж, з, г, с, ф
    ф, г, з, с, ж, о, к

    Радужная окраска тонких пленок нефтепродуктов в лужах вызвана явлением
    дифракции
    дисперсии
    интерференции

    Просветление линз объясняется за счет...

    0 0

    15

    Реферат: Тема урока: «Свет это поток частиц»
    Учитель Пылкова Л.В., МОУ гимназия № 26

    Тема урока: «Свет это поток частиц»

    Тип урока: Модифицированные дебаты

    Организация «модифицированных» дебатов допускает некоторые изменения правил, можно увеличить или уменьшить количество игроков в командах; допустимы вопросы аудитории, организуются группы поддержки, к которым команды могут обращаться во время игры, группа экспертов осуществляет функции судейства, вырабатывает компромиссное решение, когда это необходимо для реализации учебных целей. Основными этапами организации учебного процесса на основе использования методики дебатов являются: ориентация (выбор темы); подготовка к проведению; проведение дебатов; обсуждение игры.

    ^ Цели урока:

    Обобщение и систематизация знаний