Холодная термоядерная реакция своими руками. Холодный термоядерный синтез признали официально

Утром человек просыпается, включает тумблер – в квартире появляется электричество, которое греет воду в чайнике, дает энергию для работы телевизора и компьютера, заставляет светиться лампочки. Человек завтракает, выходит из дома и садится в машину, которая уезжает, не оставляя после себя привычного облака выхлопных газов. Когда человек решает, что надо заправиться, он покупает баллон с газом, который не пахнет, не токсичен и очень дешев - нефтепродукты больше не используются как топливо. Топливом стала океаническая вода. Это не утопия, это обычный день в мире, где человек освоил реакцию холодного ядерного синтеза.

В четверг, 22 мая 2008 года, группа японских физиков из Университета Осаки под руководством профессора Араты провела демонстрацию реакции холодного ядерного синтеза. Некоторые из присутствовавших на демонстрации ученых назвали ее успешной, однако большинство заявило, что для подобных утверждений необходимо независимо повторить опыт в других лабораториях. О заявлении японцев написало несколько физических изданий, однако наиболее уважаемые в научном мире журналы, такие как Science и Nature , пока не опубликовали своей оценки этого события. Чем объясняется такой скепсис научного сообщества?

Все дело в том, что холодный ядерный синтез с некоторых пор пользуется у ученых дурной славой. Несколько раз заявления об успешном проведении этой реакции на поверку оказывались фальсификацией либо неверно поставленным экспериментом. Чтобы понять, в чем трудность осуществления ядерного синтеза в лабораторных условиях, необходимо коротко коснуться теоретических основ реакции.

Куры и ядерная физика

Ядерный синтез - это реакция, при которой атомные ядра легких элементов сливаются, образуя ядро более тяжелого. При реакции выделяется огромное количество энергии. Это обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения, которые удерживают вместе входящие в состав ядра протоны и нейтроны. На маленьких расстояниях – около 10 -13 сантиметров - эти силы чрезвычайно сильны. С другой стороны, протоны в ядрах заряжены положительно, и, соответственно, стремятся оттолкнуться друг от друга. Радиус действия электростатических сил намного больше, чем у ядерных, поэтому когда ядра удалены друг от друга, первые начинают преобладать.

В обычных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы они смогли преодолеть электростатическое отталкивание и вступить в ядерную реакцию. Заставить атомы сблизиться можно, сталкивая их на большой скорости или используя сверхвысокие давления и температуры. Однако теоретически существует и альтернативный способ, позволяющий проводить желанную реакцию практически "на столе". Одним из первых идею осуществления ядерного синтеза при комнатной температуре высказал в 60-е годы прошлого века французский физик, лауреат Нобелевской премии Луис Кервран (Louis Kervran).

Ученый обратил внимание на тот факт, что куры, не получающие кальция с пищей, тем не менее несут нормальные яйца, покрытые скорлупой. В скорлупе, как известно, содержится очень много кальция. Кервран заключил, что куры синтезируют его у себя в организме из более легкого элемента – калия. В качестве места протекания реакций ядерного синтеза физик определил митохондрии – внутриклеточные энергетические станции. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза.

Две почти детективные истории

В 1989 году Мартин Флейшман и Стэнли Понс объявили о том, что им удалось покорить природу и заставить дейтерий превратиться в гелий при комнатной температуре в приборе для электролиза воды. Схема эксперимента была следующей: в подкисленную воду опускали электроды и пропускали ток – обычный опыт по электролизу воды. Однако ученые использовали необычную воду и необычные электроды.

Вода была "тяжелой". То есть, легкие ("обычные") изотопы водорода в ней были заменены на более тяжелые, содержащие помимо протона еще и один нейтрон. Такой изотоп называется дейтерием. Кроме того, Флейшман и Понс использовали электроды, сделанные из палладия. Палладий отличает удивительная способность "впитывать" в себя большое количество водорода и дейтерия. Число атомов дейтерия в палладиевой пластине может сравниться с числом атомов самого палладия. В своем эксперименте физики использовали электроды, предварительно "насыщенные" дейтерием.

При прохождении электрического тока через "тяжелую" воду образовывались положительно заряженные ионы дейтерия, которые под действием сил электростатического притяжения устремлялись к отрицательно заряженному электроду и "врезались" в него. При этом, как были уверены экспериментаторы, они сближались с уже находящимися в электродах атомами дейтерия на расстояние, достаточное для протекания реакции ядерного синтеза.

Доказательством протекания реакции стало бы выделение энергии – в данном случае это выразилось бы в увеличении температуры воды - и регистрация потока нейтронов. Флейшман и Понс заявили, что в их установке наблюдалось и то и другое. Сообщение физиков вызвало чрезвычайно бурную реакцию научного сообщества и прессы. СМИ расписывали прелести жизни после повсеместного внедрения холодного ядерного синтеза, а физики и химики по всему миру принялись перепроверять их результаты.

Поначалу в нескольких лабораториях вроде бы смогли повторить эксперимент Флейшмана и Понса, о чем радостно сообщали газеты, однако постепенно стало выясняться, что при одних и тех же начальных условиях разные ученые получают совершенно несхожие результаты. После перепроверки расчетов выяснилось, что если бы реакция синтеза гелия из дейтерия шла бы так, как описали физики, то выделившийся поток нейтронов должен был бы немедленно убить их. Прорыв Флейшмана и Понса оказался просто неграмотно поставленным экспериментом. И заодно научил исследователей доверять только результатам, сначала опубликованным в рецензируемых научных журналах, и только потом в газетах.

После этой истории большинство серьезных исследователей прекратили работы по поиску путей осуществления холодного ядерного синтеза. Однако в 2002 году эта тема снова всплыла в научных дискуссиях и прессе. На сей раз с претензией на покорение природы выступили физики из США Рузи Талейархан (Rusi Taleyarkhan) и Ричард Лейхи (Richard T. Lahey, Jr.). Они заявили, что смогли добиться необходимого для реакции сближения ядер, используя не палладий, а эффект кавитации.

Кавитацией называют образование в жидкости полостей, или пузырьков, заполненных газом. Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии. Как пузырьки могут помочь в ядерном синтезе? Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию – что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез.

Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода (протий) был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития – еще одного продукта ядерного синтеза.

Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно. На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов. Талейархан и Лейхи переставили опыт с учетом полученных замечаний – и снова получили тот же результат. Тем не менее, авторитетный научный журнал Nature в 2006 году опубликовал , в которой высказывались сомнения в достоверности результатов. Фактически, ученых обвинили в фальсификации.

В Университете Пердью, куда перешли работать Талейархан и Лейхи, было проведено независимое расследование. По его итогам был вынесен вердикт: эксперимент поставлен верно, ошибки или фальсификации не обнаружено. Несмотря на это, пока в Nature не появилось опровержения статьи, а вопрос о признании кавитационного ядерного синтеза научным фактом повис в воздухе.

Новая надежда

Но вернемся к японским физикам. В своей работе они использовали уже знакомый палладий. Точнее, смесь палладия с оксидом циркония. "Дейтериевая емкость" этой смеси, по утверждениям японцев, еще выше, чем у палладия. Ученые пропускали дейтерий через ячейку, содержащую эту смесь. После добавления дейтерия температура внутри ячейки поднялась до 70 градусов по Цельсию. По словам исследователей, в этот момент в ячейке происходили ядерные и химические реакции. После того как поступление дейтерия в ячейку прекратилось, температура внутри нее оставалась повышенной еще в течение 50 часов. Физики утверждают, что это свидетельствует о протекании внутри ячейки реакций ядерного синтеза - из атомов дейтерия, сблизившихся на достаточное расстояние, образовывались ядра гелия.

Пока рано говорить, правы японцы или нет. Эксперимент должен быть неоднократно повторен, а результаты проверены. Скорее всего, несмотря на скепсис, многие лаборатории займутся этим. Тем более что руководитель исследования – профессор Йошиаки Арата (Yoshiaki Arata) – очень уважаемый физик. О признании заслуг Араты свидетельствует тот факт, что демонстрация работы прибора проходила в аудитории, носящей его имя. Но, как известно, ошибаться могут все, особенно тогда, когда очень хотят получить вполне определенный результат.

Я заметил, что действительно важные и интересные новости очень скудно освещаются в прессе. Журналисты почему-то пережёвывают полёт на Альфа-Центавра, поиски инопланетян и прочую чушь с большим удовольствием, чем реальное открытие, которое перевернёт нашу жизнь очень скоро в прямом смысле этого слова. Возможно, они просто не понимают, что оно означает для всего человечества и считают это не очень важным, но я, как всегда, объясню популярно, если кто читал и не понял.

Речь идёт о случайно попавшей мне на глаза статье: “«Россия - лидер научной революции». А почему шёпотом?. Там много описаний, научных терминов и выводов не посуществу, поэтому попробуем разобраться хотя бы в главном.

Приведу основные цитаты, поверьте – это очень важно, а потом уже комментарии:

“6 июня 2016 года состоялось заседание постоянного научного семинара в Институте общей физики РАН им А.М. Прохорова.
На семинаре директор научно-технологического отделения по обращению с отработанным ядерным топливом и радиоактивными отходами Высокотехнологического НИИ неорганических материалов имени академика А.А. Бочвара Владимир Кащеев впервые публично рассказал об успешных результатах законченной еще в апреле государственной экспертизы новой уникальной технологии дезактивации жидких ядерных отходов. Суть технологии: в емкость с водным раствором радиоактивного изотопа цезия-137 (главное «действующее лицо» в Чернобыле и Фукусиме, период полураспада которого составляет 30,17 лет) добавляются специально подготовленные микробные культуры, в результате уже через 14 дней (!) концентрация цезия снижается более чем на 50%, но одновременно в растворе нарастает концентрация нерадиоактивного бария. То есть микробы способны поглощать радиоактивный цезий и каким-то образом превращать его в нерадиоактивный барий.”

“Те, кто не был ранее знаком с работами А.А. Корниловой, с удивлением узнали, что:
открытие (а это, безусловно, открытие) трансмутации химических элементов в естественных биологических культурах было сделано еще в 1993 году, первый патент на получение мёсбауэровского изотопа железа-57 получен в 1995 году;
результаты неоднократно были опубликованы в авторитетных международных и отечественных научных журналах;
до выхода технологии на госэкспертизу было проведено 500 независимых проверок технологии в различных научных центрах;
технология апробирована в Чернобыле на разных изотопах, то есть может быть настроена на любой состав изотопов конкретных жидких ядерных отходов;
госэкспертиза имела дело не с изощренной лабораторной методикой, а с готовой промышленной технологией, которая не имеет аналогов на мировом рынке;
более того, украинским физиком-теоретиком Владимиром Высоцким и его российским коллегой Владимиром Манько создана убедительная теория для объяснения наблюдаемых феноменов в рамках ядерной физики.”

“В основе экспериментов А.А. Корниловой лежит идея, высказанная французским ученым Луи Кервраном в 60-е годы прошлого века. Она заключается в том, что биологические системы способны синтезировать из имеющихся компонентов критически важные для своего выживания микроэлементы или их биохимические аналоги. К таким микроэлементам относятся калий, кальций, натрий, магний, фосфор, железо и др.
Объектами первых опытов, проведенных А.А. Корниловой, были культуры бактерий Bacillus subtilis, Escherichia coli, Deinococcus radiodurans. Их помещали в питательную среду, обедненную железом, но содержащую соль марганца и тяжелую воду (D2O). Эксперименты показали, что в этой системе вырабатывался редкий мёссбауэровский изотоп железа-57. По мнению авторов исследования, железо-57 появлялось в растущих клетках бактерий в результате реакции 55Mn + d = 57Fe (d - ядро атома дейтерия, состоящее из протона и нейтрона). Определенным аргументом в пользу предлагаемой гипотезы служит тот факт, что когда в питательной среде тяжелую воду заменяли на легкую (H2O) или исключали соль марганца из ее состава, изотоп железа-57 не вырабатывался. Было проведено более 500 опытов, в которых появление изотопа железа-57 было надежно установлено.”

“В питательных средах, используемых в экспериментах А.А. Корниловой для биологического превращения цезия в барий, отсутствовали ионы калия - микроэлемента критически важного для выживания микроорганизмов. Барий является биохимическим аналогом калия, ионные радиусы которых очень близки. Экспериментаторы рассчитывали на то, что поставленная на грань выживания синтрофная ассоциация синтезирует ядра бария из ядер цезия, присоединив к ним протоны, присутствующие в жидкой питательной среде. Предполагается, что механизм ядерных превращений в биологических системах аналогичен процессу, протекающему в нанопузырьках. Для протонов наноразмерные полости в растущих биологических клетках представляют собой потенциальные ямы с динамически изменяющимися стенками, формирующие когерентные коррелированные состояния квантовых частиц. Находясь в этих состояниях протоны способны вступить в ядерную реакцию с ядрами цезия, в результате которой возникают ядра бария, требуемые для осуществления биохимических процессов в микроорганизмах.
Эксперименты А.А. Корниловой по превращению цезия в барий прошли государственную экспертизу во ВНИИ неорганических материалов им. А.А. Бочвара в лаборатории кандидата физико-математических наук В.А. Кащеева.
Учеными ВНИИНМ было произведено два контрольных эксперимента, различающихся по своей постановке. В первом эксперименте питательная среда содержала соль нерадиоактивного изотопа цезия-133. Ее количество было достаточным для надежного измерения содержания исходного цезия и синтезируемого бария методами масс-спектрометрии. В питательную среду были добавлены синтрофные ассоциации, которые затем содержались при постоянной температуре 35ºC в течение 200 часов. Периодически в питательную среду добавлялась глюкоза и отбирались пробы для анализа на масс-спектрометре.
В ходе эксперимента в питательном растворе было зафиксировано немонотонное уменьшение концентрации цезия и одновременно появление бария.
Результаты эксперимента однозначно указывали на протекание ядерной реакции по преобразованию цезия в барий, поскольку до проведения эксперимента присутствие бария не обнаруживалось ни в питательном растворе, ни в синтрофной ассоциации, ни в используемой посуде.
Во второй экспериментальной постановке использовалась соль радиоактивного цезия-137 с удельной активностью 10 000 Беккерелей на литр. Синтрофная ассоциация нормально развивалась при таком уровне радиоактивности раствора. При этом обеспечивалось надежное измерение концентрации ядер радиоактивного цезия в питательном растворе методами гамма-спектрометрии. Длительность эксперимента составила 30 суток. За это время содержание ядер радиоактивного цезия в растворе уменьшилось на 23%.”

А теперь давайте подумаем, что всё это может обозначать:

1. этому открытию уже больше 20 лет, а предпосылки для него были сделаны более 50 лет назад, но оно замалчивалось, а автора, скорее всего, ещё и высмеивали коллеги, хотя оно заслуживает сразу несколько Нобелевских;

2. экспертиза и более 500 независимых опытов подтвердила наличие результата, у которого есть объяснение только у альтернативщика, а официальная наука разводит руками.
Тут мне особенно понравился вывод: “это означает… легализацию всего направления исследований низкоэнергетических ядерных реакций, так как получен убедительный ответ на два основных контраргумента противников данного направления: невоспроизводимость большинства экспериментальных результатов и отсутствие теоретического объяснения наблюдаемых феноменов. Теперь с этим все в порядке.” А вот раньше раскрыть глаза и поверить что-то мешало. Того же Андреа Росси с его реактором никто вообще не воспринимал всерьёз.

3. цезий в барий, марганец в железо обычными микроорганизмами, без ядерных реакторов, ускорителей, высокотемпературной плазмы и т.д. И это только начало.
Когда-то давно я осторожно высказывал свою мысль, что множество наблюдений и опытов говорят о том, что растения, а именно их корни весной должны производить огромное количество различных веществ для своего роста не имея объяснимых источников энергии и запасов элементов (возьмите хоть сахара в берёзовом соке без тепла и фотосинтеза). У меня тогда было только одно объяснение происходящему: весной в корнях растений начинают протекать ядерные реакции. Широкое распространение этого вывода попахивало психушкой, но теперь оно может оказаться верным.

4. исследования показали, что в ходе таких реакций к ядру элемента присоединяется ещё один протон. А что такое протон? Это ядро водорода. Обычного водорода из воды. Т.е. такая реакция может идти везде, где есть водород, вода или водород содержащие вещества.
Тут официальная наука получает ещё раз граблями, потому что эксперименты с растениями ещё в середине прошлого века показали, что при фотосинтезе не углекислый газ разлагается на углерод и кислород, а именно вода на водород и кислород и растения используют именно водород для своих нужд, а лишний кислород сбрасывают. Однако эта реакция была необъяснима до сих пор и результаты просто не принимались.

5. были и ещё более давние эксперименты, о которых я уже писал, но сейчас не могу найти посты. Там я высказывал мысль о том, что в плазме электрической дуги при обычной сварке могут идти низкоэнергетические ядерные реакции. О них я слышал ещё в школе, как о достаточно старых и не подтверждённых, а один повторил и сам, хотя мне тогда никто не поверил.
Началось всё с легенды о том, что кто-то где-то сделал тонкий электрод для электродуговой сварки из свинца, зажёг дугу, полностью его сжёг, а в образовавшемся шлаке обнаружилось золото. Это я не проверил до сих пор, но вот то, что если испарить кусок тонкой медной проволоки завёрнутой в бумагу, вставив её в розетку, в остатке обнаружится железо я проверил. Следы железа были точно. Про что-то подобное написано тут: “Низкоэнергетические ядерные реакции - не объясненная реальность”

6. естественно, всё это затрагивает космологию с её теориями образования элементов во вселенной, а также эволюции звёзд и определения их возраста. Ведь до сих пор считается, что звёзды не могут производить тяжёлые элементы во время своей жизни, а они появляются только после взрыва сверхновых, что металличность звезды может увеличиваться только при смене поколений, а не во время её жизни с увеличением возраста, а это уже потянет за собой пересмотр очень многих выводов, теорий и расчётов.

Что нас может ждать в ближайшем будущем?:

1. конечно, развитие холодного термоядерного синтеза и реакторов на нём, практически бытового использования для дома/дачи/авто;

2. обесценивание золота, платины и других дорогих и редких элементов, т.к. появится возможность их искусственного дешёвого получения из распространённых веществ (мифический философский камень на подходе);

3. пересмотр множества космологических бредней хотя бы в отношении возраста, состава, эволюции и происхождения вселенной и звёзд.

И вот такие новости часто проходят мимо нас…

Есть хорошая статья на эту тему в журнале "Химия и Жизнь" (№8, 2015)

АНДРЕЕВ С. Н.
ЗАПРЕТНЫЕ ПРЕВРАЩЕНИЯ ЭЛЕМЕНТОВ

В науке есть свои запретные темы, свои табу. Сегодня мало кто из ученых осмелится заниматься исследованием биополей, сверхмалых доз, структуры воды… Области сложные, мутные, трудно поддающиеся. Здесь легко потерять репутацию, прослыв лжеученым, а уж о получении гранта говорить не приходится. В науке нельзя и опасно выходить за рамки общепринятых представлений, покушаться на догмы. Но именно усилия смельчаков, готовых быть не такими, как все, порой прокладывают новые дороги в познании.
Мы не раз наблюдали, как по мере развития науки догмы начинают пошатываться и постепенно приобретают статус неполного, предварительного знания. Так, и не раз, было в биологии. Так было в физике. То же самое мы наблюдаем в химии. На наших глазах истина из учебника «состав и свойства вещества не зависят от способов его получения» рухнула под натиском нанотехнологий. Оказалось, что вещество в наноформе может кардинально изменить свойства - например, золото перестанет быть благородным металлом.
Сегодня мы можем констатировать, что есть изрядное число экспериментов, результаты которых невозможно объяснить с позиций общепринятых воззрений. И задача науки - не отмахи-ваться от них, а копать и пытаться добраться до истины. Позиция «этого не может быть, потому что не может быть никогда» удобная, конечно, но она ничего не может объяснить. Более того, непонятные, необъяснимые эксперименты могут стать предвестниками открытий в науке, как это уже случалось. Одна из таких горячих в прямом и переносном смысле тем - так называемые низкоэнергетические ядерные реакции, которые сегодня именуют LENR - Low-Energy Nuclear Reaction.
Мы попросили доктора физико-математических наук Степана Николаевича Андреева из Инсти-тута общей физики им. А. М. Прохорова РАН познакомить нас с существом проблемы и с неко-торыми научными экспериментами, выполненными в российских и западных лабораториях и опубликованными в научных журналах. Экспериментами, результаты которых мы пока объяснить не можем.

РЕАКТОР «E-СAT» АНДРЕА РОССИ

В середине октября 2014 года мировое научное сообщество было взбудоражено новостью - вышел отчет Джузеппе Леви, профессора физики Болонского университета, и соавторов о результатах тестирования реактора «E-Сat», созданного итальянским изобретателем Андреа Росси.
Напомним, что в 2011 году А. Росси представил на суд общественности установку, над которой он работал многие годы в сотрудничестве с физиком Серджо Фокарди. Реактор, названный «E-Сat» (сокращенно от английского Energy Catalizer), производил аномальное количество энергии. В течение последних четырех лет «E-Сat» тестировали разные группы исследователей, поскольку научное сообщество настаивало на независимой экспертизе.
Реактор представлял собой керамическую трубочку длиной 20 см и диаметром 2 см. Внутри реактора были расположены топливный заряд, нагревательные элементы и термопара, сигнал с которой подавался на блок управления нагревом. Питание к реактору подводили от электрической сети с напряжением 380 Вольт по трем жаропрочным проводам, которые разогревались докрасна во время работы реактора. Топливо состояло в основном из порошка никеля (90%) и алюмогидрида лития LiAlH4 (10%). При нагревании алюмогидрид лития разлагался и выделял водород, который мог поглощаться никелем и вступать с ним в экзотермическую реакцию.
Изобретатель не раскрывает, как устроен реактор. Однако известно, что внутри керамической трубки размещены топливный заряд, нагревательные элементы и термопара. Поверхность трубки ребристая, чтобы лучше отводилось тепло

В отчете сообщалось, что общее количество тепла, выделенное устройством за 32 дня непрерывной работы, составило около 6 ГДж. Элементарные оценки показывают, что энергоемкость порошка более чем в тысячу раз превышает энергоемкость, например, бензина!
В результате тщательных анализов элементного и изотопного состава эксперты надежно установили, что в отработанном топливе появились изменения в соотношениях изотопов лития и ни-келя. Если в исходном топливе содержание изотопов лития совпадало с природным: 6Li - 7,5%, 7Li - 92,5%, то в отработанном топливе содержание 6Li увеличилось до 92%, а содержание 7Li уменьшилось до 8%. Столь же сильными были искажения изотопного состава для никеля. Например, содержание изотопа никеля 62Ni в «золе» составило 99%, хотя в исходном топливе его было всего 4%. Обнаруженные изменения изотопного состава и аномально высокое тепло-выделение указывали на то, что в реакторе, возможно, протекали ядерные процессы. Однако никаких признаков повышенной радиоактивности, характерной для ядерных реакций, не было зафиксировано ни во время работы устройства, ни после его остановки.
Процессы, протекающие в реакторе, не могли быть ядерными реакциями деления, поскольку топливо состояло из стабильных веществ. Реакции синтеза ядер также исключаются, ведь с точ-ки зрения современной ядерной физики температура 1400оС ничтожно мала для преодоления сил кулоновского отталкивания ядер. Именно поэтому использование нашумевшего термина «холодный термояд» для подобного рода процессов - ошибка, которая вводит в заблуждение.
Вероятно, здесь мы сталкиваемся с проявлениями нового типа реакций, в которых происходят коллективные низкоэнергетические превращения ядер элементов, входящих в состав топлива. Оценка энергий таких реакций дает величину порядка 1-10 кэВ на нуклон, то есть они занимают промежуточное положение между «обычными» высокоэнергетическими ядерными реакциями (энергии более 1 МэВ на нуклон) и химическими реакциями (энергии порядка 1 эВ на атом).
Пока что никто не может удовлетворительно объяснить описанный феномен, а гипотезы, выдвигаемые множеством авторов, не выдерживают критики. Чтобы установить физические механизмы нового явления, необходимо тщательно изучить возможные проявления подобных низко-энергетических ядерных реакций в различных экспериментальных постановках и обобщить по-лученные данные. Тем более что подобных необъясненных фактов за многие годы накопилось весомое количество. Вот лишь некоторые из них.

ЭЛЕКТРОВЗРЫВ ВОЛЬФРАМОВОЙ ПРОВОЛОЧКИ – НАЧАЛО ХХ ВЕКА

В 1922 году сотрудники химической лаборатории Чикагского университета Кларенс Айрион и Джеральд Вендт опубликовали работу, посвященную исследованию электровзрыва вольфрамовой проволочки в вакууме (G.L.Wendt, C.E.Irion, Experimental Attempts to Decompose Tungsten at High Temperatures. «Journal of the American Chemical Society», 1922, 44, 1887-1894).
В электровзрыве нет ничего экзотического. Это явление было открыто ни много ни мало в конце XVIII века, а в быту мы его постоянно наблюдаем, когда при коротком замыкании перегорают электролампочки (лампочки накаливания, разумеется). Что же происходит при электровзрыве? Если сила тока, протекающего через металлическую проволоку, велика, то металл начинает плавиться и испаряться. Вблизи поверхности проволоки образуется плазма. Нагрев происходит неравномерно: в случайных местах проволоки появляются «горячие точки», в которых выделяется больше тепла, температура достигает пиковых значений, и происходит взрывное разрушение материала.
Самое поразительное в этой истории то, что ученые изначально рассчитывали эксперименталь-но обнаружить разложение вольфрама на более легкие химические элементы. В своем наме-рении Айрион и Вендт опирались на следующие уже известные в то время факты.
Во-первых, в видимом спектре излучения Солнца и других звезд отсутствуют характерные оптические линии, принадлежащие тяжелым химическим элементам. Во-вторых, температура по-верхности Солнца составляет около 6000оС. Следовательно, рассудили они, атомы тяжелых элементов не могут существовать при таких температурах. В-третьих, при разряде конденсатор-ной батареи на металлическую проволочку температура плазмы, образующейся при электро-взрыве, может достигать 20 000оС.
Исходя из этого, американские ученые предположили, что если через тонкую проволоку из тяжелого химического элемента, например, вольфрама, пропустить сильный электрический ток и нагреть ее до температур, сопоставимых с температурой Солнца, то ядра вольфрама окажутся в нестабильном состоянии и разложатся на более легкие элементы. Они тщательно подготовили и блестяще провели эксперимент, пользуясь при этом весьма простыми средствами.
Электровзрыв вольфрамовой проволочки проводили в стеклянной сферической колбе (рис. 2), замыкая на нее конденсатор емкостью 0,1 микрофарад, заряженный до напряжения 35 кило-вольт. Проволочка располагалась между двумя крепежными вольфрамовыми электродами, впаянными в колбу с двух противоположных сторон. Кроме того, в колбе имелся дополнительный «спектральный» электрод, который служил для зажигания плазменного разряда в газе, образовавшемся после электровзрыва.
Следует отметить некоторые важные технические детали эксперимента. При его подготовке колбу помещали в печь, где она непрерывно прогревалась при 300оС в течение 15 часов и все это время из нее откачивали газ. Вместе с прогревом колбы по вольфрамовой проволочке про-пускали электрический ток, нагревавший ее до температуры 2000оС. После дегазации стеклян-ный патрубок, соединяющий колбу с ртутным насосом, расплавляли с помощью горелки и запаивали. Авторы работы утверждали, что предпринятые меры позволяли сохранить чрезвычайно низкое давление остаточных газов в колбе в течение 12 часов. Поэтому при подаче высоковольтного напряжения 50 киловольт между «спектральным» и крепежным электродами пробоя не было.
Айрион и Вендт выполнили двадцать один эксперимент с электровзрывом. В результате каждого опыта в колбе образовывалось порядка 10^19 частиц неизвестного газа. Спектральный анализ показывал, что в нем присутствовала характерная линия гелия-4. Авторы предположили, что гелий образуется в результате альфа-распада вольфрама, индуцированного электровзрывом. Напомним, что альфа-частицы, появляющиеся в процессе альфа-распада, представляют собой ядра атома 4He.
Публикация Айриона и Вендта вызвала большой резонанс в научном сообществе того времени. Сам Резерфорд обратил внимание на эту работу. Он выразил глубокое сомнение в том, что использовавшееся в эксперименте напряжение (35 кВ) достаточно велико, чтобы электроны могли индуцировать ядерные реакции в металле. Желая проверить результаты американских ученых, Резерфорд выполнил свой эксперимент - облучил вольфрамовую мишень пучком электронов с энергией 100 килоэлектронвольт. Резерфорд не обнаружил никаких следов ядерных реакций в вольфраме, о чем в достаточно резкой форме сделал короткое сообщение в журнале «Nature». Научное сообщество приняло сторону Резерфорда, работу Айриона и Вендта признали ошибочной и забыли на долгие годы.

ЭЛЕКТРОВЗРЫВ ВОЛЬФРАМОВОЙ ПРОВОЛОЧКИ: 90 ЛЕТ СПУСТЯ
Только спустя 90 лет за повторение опытов Айриона и Вендта взялся российский научный коллектив под руководством доктора физико-математических наук Леонида Ирбековича Уруцкоева. Эксперименты, оснащенные современной экспериментальной и диагностической аппаратурой, проводили в легендарном Сухумском физико-техническом институте в Абхазии. Свою уста-новку физики назвали «ГЕЛИОС» в честь путеводной идеи Айриона и Вендта (рис. 3). Кварцевая взрывная камера расположена в верхней части установки и подключена к вакуумной системе - турбомолекулярному насосу (окрашен в голубой цвет). Четыре черных кабеля тянутся к взрыв-ной камере от разрядника конденсаторной батареи емкостью 0,1 микрофарад, которая стоит слева от установки. Для электровзрыва батарею заряжали до 35-40 киловольт. Диагностическая аппаратура, используемая в экспериментах (не показана на рисунке), позволяла исследовать спектральный состав свечения плазмы, которая образовывалась при электровзрыве проволочки, а также химический и элементный состав продуктов ее распада.

Рис. 3. Так выглядит установка «ГЕЛИОС», в которой группа Л. И. Уруцкоева исследовала взрыв вольфрамовой проволочки в вакууме (эксперимент 2012 года)
Эксперименты группы Уруцкоева подтвердили основной вывод работы девяностолетней давности. Действительно, в результате электровзрыва вольфрама образовывалось избыточное количество атомов гелия-4 (порядка 10^16 частиц). Если же вольфрамовую проволочку заменяли на железную, то гелий не образовывался. Заметим, что в экспериментах на установке «ГЕЛИОС» исследователи зафиксировали в тысячу раз меньше атомов гелия, чем в экспериментах Айриона и Вендта, хотя «энерговклад» в проволочку был приблизительно одинаков. С чем связано такое отличие - еще предстоит выяснить.
Во время электровзрыва материал проволочки распылялся на внутреннюю поверхность взрыв-ной камеры. Масс-спектрометрический анализ показал, что в этих твердых остатках наблюдался дефицит изотопа вольфрама-180, хотя в исходной проволочке его концентрация соответствовала природной. Этот факт также может свидетельствовать о возможном альфа-распаде вольфрама или другого ядерного процесса при электровзрыве проволочки (Л. И. Уруцкоев, А. А. Рухадзе, Д. В. Филиппов, А. О. Бирюков и др. Исследование спектрального состава оптического излучения при электрическом взрыве вольфрамовой проволочки. «Краткие сообщения по физике ФИАН», 2012, 7, 13-18).

Ускорение альфа-распада с помощью лазера
К низкоэнергетическим ядерным реакциям можно отнести и некоторые процессы, ускоряющие спонтанные ядерные превращения радиоактивных элементов. Интересные результаты в этой области получили в Институте общей физики им. А. М. Прохорова РАН в лаборатории, возглавляемой доктором физико-математических наук Георгием Айратовичем Шафеевым. Ученые открыли удивительный эффект: альфа-распад урана-238 ускорялся под действием лазерного излучения с относительно небольшой пиковой интенсивностью 10^12-10^13 Вт/см2 (А.В.Симакин, Г.А.Шафеев, Влияние лазерного облучения наночастиц в водных растворах соли урана на активность нуклидов. «Квантовая электроника», 2011, 41, 7, 614-618).
Вот как выглядел эксперимент. В кювету с водным раствором соли урана UO2Cl2 с концентрацией 5-35 мг/мл помещали мишень из золота, которую облучали лазерными импульсами с длиной волны 532 нанометра, длительностью 150 пикосекунд, частотой повторения 1 килогерц в течение одного часа. При таких условиях поверхность мишени частично расплавляется, а жид-кость, контактирующая с ней, мгновенно вскипает. Давление паров разбрызгивает наноразмерные капельки золота с поверхности мишени в окружающую жидкость, где они охлаждаются и превращаются в твердые наночастицы с характерным размером 10 нанометров. Такой процесс называют лазерной абляцией в жидкости и широко используют, когда требуется приготовить коллоидные растворы наночастиц различных металлов.
В экспериментах Шафеева за один час облучения золотой мишени образовывалось 10^15 нано-частиц золота в 1 см3 раствора. Оптические свойства таких наночастиц радикально отличаются от свойств массивной золотой пластинки: они не отражают свет, а поглощают его, причем электромагнитное поле световой волны вблизи наночастиц может усиливаться в 100-10 000 раз и достигать внутриатомных величин!
Ядра урана и продуктов его распада (торий, протактиний), оказавшиеся вблизи этих наночастиц, подвергались воздействию многократно усиленных лазерных электромагнитных полей. В ре-зультате заметно изменилась их радиоактивность. В частности, гамма-активность тория-234 увеличилась в два раза. (Гамма-активность образцов до и после лазерного облучения измеряли полупроводниковым гамма-спектрометром.) Поскольку торий-234 возникает в результате альфа-распада урана-238, увеличение его гамма-активности свидетельствует об ускорении альфа-распада этого изотопа урана. Отметим, что гамма-активность урана-235 не возросла.
Ученые из ИОФ РАН обнаружили, что лазерное излучение может ускорять не только альфа-распад, но и бета-распад радиоактивного изотопа 137Cs - одного из главных компонентов радиоактивных выбросов и отходов. В своих экспериментах они использовали зеленый лазер на парах меди, работающий в импульсно-периодическом режиме с длительностью импульса 15 наносекунд, частотой повторения импульсов 15 килогерц и пиковой интенсивностью 109 Вт/см2. Лазерное излучение воздействовало на золотую мишень, помещенную в кювету с водным раствором соли 137Cs, содержание которого в растворе объемом 2 мл составляло примерно 20 пикограмм.
Через два часа облучения мишени исследователи зафиксировали, что в кювете образовался коллоидный раствор с наночастицами золота размером 30 нм (рис. 4), а гамма-активность цезия-137 (и, следовательно, его концентрация в растворе) уменьшилась на 75%. Период полураспада цезия-137 составляет около 30 лет. Значит, такое уменьшение активности, какое было получено в двухчасовом эксперименте, должно происходить в естественных условиях примерно за 60 лет. Поделив 60 лет на два часа, получим, что в течение лазерного воздействия скорость распада увеличилась примерно в 260 000 раз. Такое гигантское возрастание скорости бета-распада должно было бы превратить кювету с раствором цезия в мощнейший источник гамма-излучения, сопровождающего обычный бета-распад цезия-137. Однако в действительности этого не происходит. Радиационные измерения показали, что гамма-активность раствора соли не увеличивается (E.V.Barmina, A. V. Simakin, G. A. Shafeev, Laser-induced caesium-137 decay. «Quantum Electronics», 2014, 44 , 8, 791-792).
Этот факт говорит о том, что при лазерном воздействии распад цезия-137 идет не по наиболее вероятному (94,6 %) в нормальных условиях сценарию с излучением гамма-кванта с энергией 662 кэВ, а по другому - безызлучательному. Это, предположительно, прямой бета-распад с образованием ядра стабильного изотопа 137Ва, который в нормальных условиях реализуется только в 5,4% случаев.
Почему происходит такое перераспределение вероятностей в реакции бета-распада цезия - пока неясно. Тем не менее имеются другие независимые исследования, подтверждающие, что ускоренная дезактивация цезия-137 возможна даже в живых системах.

Низкоэнергетические ядерные реакции в живых системах

Поиском низкоэнергетических ядерных реакций в биологических объектах уже более двадцати лет занимается доктор физико-математических наук Алла Александровна Корнилова на Физиче-ском факультете Московского государственного университета им. М. В. Ломоносова. Объектами первых опытов стали культуры бактерий Bacillus subtilis, Escherichia coli, Deinococcus radiodurans. Их помещали в питательную среду, обедненную железом, но содержащую соль марганца MnSO4 и тяжелую воду D2O. Эксперименты показали, что в этой системе вырабатывался дефицитный изотоп железа - 57Fe (Vysotskii V. I., Kornilova A. A., Samoylenko I. I., Experimental discovery of the phenomenon of low-energy nuclear transmutation of isotopes (Mn55 to Fe57) in growing bio-logical cultures, «Proceedings of 6th International Conference on Cold Fusion», 1996, Japan, 2, 687-693).
По мнению авторов исследования, изотоп 57Fe появлялся в растущих клетках бактерий в резуль-тате реакции 55Mn+ d = 57Fe (d - ядро атома дейтерия, состоящее из протона и нейтрона). Определенным аргументом в пользу предлагаемой гипотезы служит тот факт, что если тяжелую воду заменить на легкую или исключить соль марганца из состава питательной среды, то изотоп 57Fe бактерии не нарабатывали.
Убедившись, что ядерные превращения стабильных химических элементов возможны в микро-биологических культурах, А. А. Корнилова применила свой метод к дезактивации долгоживущих радиоактивных изотопов (Vysotskii V. I., Kornilova A. A., Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems. «Annals of Nuclear Energy», 2013, 62, 626-633). На сей раз Корнилова работала не с монокультурами бактерий, а со сверхассоциацией микроорганизмов различных типов, чтобы повысить их выживаемость в агрессивных средах. Каждая группа этого сообщества максимально адаптирована к совместной жизнедеятельности, коллективной взаимопомощи и взаимозащите. В результате сверхассоциация хорошо приспо-сабливается к самым разным условиям внешней среды, в том числе и к повышенной радиации. Типичная максимальная доза, которую выдерживают обычные микробиологические культуры, соответствует 30 килорад, а сверхассоциации выдерживают на несколько порядков больше, причем их метаболическая активность почти не ослабляется.
В стеклянные кюветы помещали равные количества концентрированной биомассы вышеупомя-нутых микроорганизмов и 10 мл раствора соли цезия-137 в дистиллированной воде. Начальная гамма-активность раствора была равна 20 000 беккерелей. В некоторые кюветы дополнительно добавляли соли жизненно важных микроэлементов Ca, K и Na. Закрытые кюветы выдерживали при 20оС и каждые семь дней измеряли их гамма-активность при помощи высокоточного детек-тора.
За сто дней эксперимента в контрольной кювете, не содержащей микроорганизмы, активность цезия-137 уменьшилась на 0,6%. В кювете, дополнительно содержащей соль калия, - на 1%. Быстрее всего активность падала в кювете, дополнительно содержащей соль кальция. Здесь гамма-активность уменьшилась на 24%, что эквивалентно сокращению периода полураспада цезия в 12 раз!
Авторы выдвинули гипотезу, что в результате жизнедеятельности микроорганизмов 137Cs пре-образуется в 138Ba - биохимический аналог калия. Если калия в питательной среде мало, то трансформация цезия в барий происходит ускоренно, если много, то процесс трансформации блокируется. Что касается роли кальция, то она проста. Благодаря его присутствию в питатель-ной среде популяция микроорганизмов быстро растет и, следовательно, потребляет больше калия или его биохимического аналога - бария, то есть подталкивает трансформацию цезия в барий.
А что с воспроизводимостью?
Вопрос о воспроизводимости описанных выше экспериментов требует некоторых пояснений. Реактор «E-Cat», подкупающий своей простотой, пытаются воспроизвести сотни, если не тысячи изобретателей-энтузиастов по всему миру. Существуют даже специальные форумы в Интернете, на которых «репликаторы» обмениваются опытом и демонстрируют свои достижения (http://www.lenr-forum.com/). Определенных успехов в этом направлении добился российский изобретатель Александр Георгиевич Пархомов. Ему удалось сконструировать теплогенератор, работающий на смеси порошка никеля и алюмогидрида лития, который дает избыточное количество энергии (А.Г. Пархомов, Результаты испытаний нового варианта аналога высокотемпера-турного теплогенератора Росси. «Журнал формирующихся направлений науки», 2015, 8, 34-39). Однако в отличие от экспериментов Росси искажений изотопного состава в отработанном топливе обнаружить не удалось.
Эксперименты по электровзрыву вольфрамовых проволочек, как и по лазерному ускорению распада радиоактивных элементов, гораздо более сложны с технической точки зрения и могут быть воспроизведены только в серьезных научных лабораториях. В связи с этим на место вопроса о воспроизводимости эксперимента приходит вопрос о его повторяемости. Для экспериментов по низкоэнергетическим ядерным реакциям типична ситуация, когда в идентичных условиях проведения эксперимента эффект то присутствует, то нет. Дело в том, что не удается контролировать все параметры процесса, включая, по-видимому, и основной - пока не выявленный. Поиск нужных режимов идет практически вслепую и занимает многие месяцы и даже годы. Экспе-риментаторам не раз приходилось менять принципиальную схему установки в процессе поиска управляющего параметра - той «ручки», которую нужно «крутить», чтобы добиться удовлетворительной повторяемости. На данный момент повторяемость в описанных выше экспериментах составляет примерно 30%, то есть положительный результат получается в каждом третьем опыте. Много это или мало, судить читателю. Ясно одно: без создания адекватной теоретической модели исследуемых явлений вряд ли удастся кардинально улучшить этот параметр.

Попытка интерпретации

Несмотря на убедительные экспериментальные результаты, подтверждающие возможность ядерных превращений стабильных химических элементов, а также ускорения распада радиоак-тивных веществ, физические механизмы этих процессов пока неизвестны.
Основная загадка низкоэнергетических ядерных реакций - как положительно заряженные ядра при сближении преодолевают силы отталкивания, так называемый кулоновский барьер. Обычно для этого требуются температуры в миллионы градусов Цельсия. Очевидно, что в рассмотренных экспериментах такие температуры не достигаются. Тем не менее есть ненулевая вероятность того, что частица, не обладающая достаточной кинетической энергией для преодоления сил отталкивания, все же окажется вблизи ядра и вступит с ним в ядерную реакцию.
Этот эффект, получивший название туннельного, имеет чисто квантовую природу и тесно связан с принципом неопределенности Гейзенберга. Согласно этому принципу, квантовая частица (например, ядро атома) не может иметь точно заданные значения координаты и импульса одновременно. Произведение неопределенностей (неустранимых случайных отклонений от точ-ного значения) координаты и импульса ограничено снизу величиной, пропорциональной постоянной Планка h. Это же произведение определяет вероятность туннелирования через потенциальный барьер: чем больше произведение неопределенностей координаты и импульса частицы, тем выше эта вероятность.
В работах доктора физико-математических наук, профессора Владимира Ивановича Манько и соавторов показано, что в определенных состояниях квантовой частицы (так называемых когерентных коррелированных состояниях) произведение неопределенностей может на несколько порядков превышать постоянную Планка. Следовательно, для квантовых частиц в таких состояниях вероятность преодоления кулоновского барьера будет возрастать (В.В.Додонов, В.И.Манько, Инварианты и эволюция нестационарных квантовых систем. «Труды ФИАН. Москва: Наука, 1987, т. 183, с. 286)».
Если в когерентном коррелированном состоянии окажутся одновременно несколько ядер раз-личных химических элементов, то в этом случае может протекать некий коллективный процесс, приводящий к перераспределению протонов и нейтронов между ними. Вероятность такого процесса будет тем больше, чем меньше разница энергий начального и конечного состояний ансамбля ядер. Именно это обстоятельство, по-видимому, и определяет промежуточное положение низкоэнергетических ядерных реакций между химическими и «обычными» ядерными реакциями.
Как формируются когерентные коррелированные состояния? Что заставляет ядра объединяться в ансамбли и обмениваться нуклонами? Какие ядра могут, а какие не могут участвовать в этом процессе? На эти и на многие другие вопросы пока нет ответов. Теоретики делают только первые шаги на пути решения этой интереснейшей задачи.
Поэтому на данном этапе основная роль в исследованиях низкоэнергетических ядерных реакций должна принадлежать экспериментаторам и изобретателям. Необходимы системные экс-периментальные и теоретические исследования этого удивительного феномена, всесторонний анализ полученных данных, широкое экспертное обсуждение.
Понимание и освоение механизмов низкоэнергетических ядерных реакций помогут нам в решении самых разных прикладных задач - создании дешевых автономных энергетических установок, высокоэффективных технологий дезактивации ядерных отходов и преобразовании химических элементов.

July 24th, 2016

23 марта 1989 года Университет Юты сообщил в пресс-релизе, что «двое ученых запустили самоподдерживающуюся реакцию ядерного синтеза при комнатной температуре». Президент университета Чейз Петерсон заявил, что это эпохальное достижение сравнимо лишь с овладением огнем, открытием электричества и окультуриванием растений. Законодатели штата срочно выделили $5 млн на учреждение Национального института холодного синтеза, а университет запросил у Конгресса США еще 25 млн. Так начался один из самых громких научных скандалов XX века. Печать и телевидение мгновенно разнесли новость по миру.

Ученые, сделавшие сенсационное заявление, вроде бы имели солидную репутацию и вполне заслуживали доверия. Переселившийся в США из Великобритании член Королевского общества и экс-президент Международного общества электрохимиков Мартин Флейшман обладал международной известностью, заработанной участием в открытии поверхностно-усиленного рамановского рассеяния света. Соавтор открытия Стэнли Понс возглавлял химический факультет Университета Юты.

Так что же это все таки, миф или реальность?


Источник дешевой энергии

Флейшман и Понс утверждали, что они заставили ядра дейтерия сливаться друг с другом при обычных температурах и давлениях. Их «реактор холодного синтеза» представлял собой калориметр с водным раствором соли, через который пропускали электрический ток. Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде — тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.

Палладий обладает уникальной способностью к поглощению водорода. Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков.

Физики вносят ясность

Однако физики-ядерщики и специалисты по физике плазмы не спешили бить в литавры. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии (около 2,45 МэВ). Их нетрудно обнаружить либо непосредственно (с помощью нейтронных детекторов), либо косвенно (поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации). В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры.

Однако из этого ничего не вышло. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества (АФО), которая состоялась в Балтиморе 1 мая того же года.


Sic transit gloria mundi

От этого удара Понс и Флейшман уже не оправились. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество.

Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО.

Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования. Флейшман возвратился в Англию, где живет на пенсии. Понс отказался от американского гражданства и поселился во Франции.

Пироэлектрический холодный синтез

Холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Так, в 2005 году исследователям из Калифорнийского университета в Лос-Анджелесе удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Его источником служила вольфрамовая игла, подсоединенная к пироэлектрическому кристаллу танталата лития, при охлаждении и последующем нагревании которого создавалась разность потенциалов 100−120 кВ. Поле напряженностью порядка 25 ГВ/м полностью ионизировало атомы дейтерия и так разгоняло его ядра, что при столкновении с мишенью из дейтерида эрбия они давали начало ядрам гелия-3 и нейтронам. Пиковый нейтронный поток составил порядка 900 нейтронов в секунду (в несколько сотен раз выше типичного фонового значения). Хотя такая система имеет перспективы в качестве генератора нейтронов, говорить о ней как об источнике энергии нельзя. Подобные устройства потребляют намного больше энергии, чем генерируют: в экспериментах калифорнийских ученых в одном цикле охлаждения-нагревания длительностью несколько минут выделялось примерно 10-8 Дж (на 11 порядков меньше, чем нужно для нагрева стакана воды на 1°С).

На этом история не заканчивается.

В начале 2011 года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Возвращаясь к итальянским первооткрывателям приходится признать, что и сами «ученые» не внушают особого доверия, ни своими прошлыми достижениями, ни своим нынешним положением. Имя Серджио Фокарди до сих пор было мало кому известно, но зато благодаря своему ученому званию профессора, можно хотя бы не сомневаться в его причастности к науке. А вот в отношении коллеги по открытию, Андреа Росси, такого уже не скажешь. На данный момент Андреа является сотрудником некой американской корпорации Leonardo Corp, и в свое время отличился лишь привлечением к суду за уклонение от уплаты налогов и контрабанду серебра из Швейцарии. Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились. Выяснилось, что научный журнал Journal of Nuclear Physics, в котором были опубликованы статьи итальянцев о своем открытие, на самом деле представляет собой скорее блог, а неполноценный журнал. И, вдобавок, его владельцами оказались ни кто иные, как уже знакомые итальянцы Серджио Фокарди и Андреа Росси. А ведь публикация в серьезных научных изданиях служит подтверждением «правдоподобности» открытия.

Не остановившись на достигнутом, и капнув еще глубже, журналисты также выяснили, что идея представленного проекта принадлежит совершенного другому человеку — итальянскому ученому Франческо Пьянтелли. Похоже, именно на этом, бесславно и закончилась очередная сенсация, и мир в очередной раз лишился «вечного двигателя». Но как, не без иронии, утешают себя итальянцы, если это всего лишь выдумка, то, по-крайней мере, она не лишена остроумия, ведь одно дело разыграть знакомых и совсем другое, попытаться обвести вокруг пальца целый мир.

В настоящее время все права на данное устройство принадлежат американской компании Industrial Heat, где Росси возглавляет всю научно-исследовательскую и конструкторскую деятельность в отношении реактора.

Существуют низкотемпературная (E-Cat) и высокотемпературная (Hot Cat) версии реактора. Первая для температур примерно 100-200 °C, вторая для температур порядка 800-1400 °C. В настоящее время компания продала низкотемпературный реактор на 1МВт неназванному заказчику для коммерческого использования и, в частности, на этом реакторе Industrial Heat проводит тестирование и отладку для того, чтобы начать полномасштабное промышленное производство подобных энергетических блоков. Как заявляет Андреа Росси, реактор работает главным образом за счет реакции между никелем и водородом, в ходе которой происходит трансмутация изотопов никеля с выделением большого количества тепла. Т.е. одни изотопы никеля переходят в другие изотопы. Тем не менее был проведен ряд независимых испытаний, наиболее информативным из которых было испытание высокотемпературной версии реактора в швейцарском городе Лугано. Об этом испытании уже писали .

Еще в 2012 году сообщалось, что продана первая установка холодного синтеза Росси.

27 декабря на сайте E-Cat World была опубликована статья о независимом воспроизведении реактора Росси в России . В этой же статье содержится ссылка на доклад «Исследование аналога высокотемпературного теплогенератора Росси» физика Пархомова Александра Георгиевича . Доклад подготовлен для всероссийского физического семинара «Холодный ядерный синтез и шаровая молния», который прошел 25 сентября 2014 года в Российском университете дружбы народов.

В докладе автор представил свою версию реактора Росси, данные по его внутреннему устройству и проведенным испытаниям. Главным вывод: реактор действительно выделяет больше энергии, чем потребляет. Отношение выделенного тепла к потребленной энергии составило 2.58. Более того, около 8 минут реактор проработал вообще без подачи входной мощности, после того, как питающий провод перегорел, производя при этом около киловата тепловой мощности на выходе.

В 2015 году А.Г. Пархомову удалось сделать длительно работающий реактор с замером давления. С 23:30 16 марта температура держится до сих пор. Фото реактора.

Наконец, удалось сделать длительно работающий реактор. Температура 1200оС достигнута в 23:30 16 марта после 12- часового постепенного нагрева и держится до сих пор. Мощность нагревателя 300 Вт, COP=3.
Впервые успешно удалось вмонтировать в установку манометр. При медленном нагреве максимальное давление 5 бар было достигнуто при 200оС, потом давление снижалось и при температуре около 1000оС стало отрицательным. Наиболее сильный вакуум около 0,5 бар был при температуре 1150оС.

При длительной непрерывной работе нет возможности круглосуточно подливать воду. Поэтому пришлось отказаться от использованной в предыдущих экспериментах калориметрии, основанной на измерении массы испарившейся воды. Определение теплового коэффициента в этом эксперименте проводится путем сравнения потребляемой электронагревателем мощности при наличии и отсутствии топливной смеси. Без топлива температура 1200оС достигается при мощности около 1070 Вт. При наличии топлива (630 мг никеля +60 мг алюмогидрида лития) такая температура достигается при мощности около 330 Вт. Таким образом, реактор вырабатывает около 700 Вт избыточной мощности (COP ~ 3,2). (Объяснение А.Г. Пархомова, более точное значение СОР требует более детального расчета)

источники

Холодный термоядерный синтез известен как одна из крупнейших научных мистификаций XX века. Долгое время большинство физиков отказывались обсуждать даже саму возможность подобной реакции. Однако недавно два итальянских ученых представили публике установку, которая, по их словам, легко его осуществляет. Неужели этот синтез все-таки возможен?

В начале нынешнего года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H 2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Именно поэтому многие ученые на протяжении всего XX века пытались осуществить термоядерную реакцию синтеза при низких температурах и обычном давлении, то есть тот самый холодный термояд. Первое сообщение о том, что это возможно, появилось 23 марта 1989 года, когда профессор Мартин Флейшман и его коллега Стенли Понс провели в своем Университете штата Юта пресс-конференцию, где сообщили о том, как они путем почти обычного пропускания тока через электролит получили положительный энергетический выход в виде тепла и зафиксировали идущее от электролита гамма-излучение. То есть провели реакцию холодного термоядерного синтеза.

В июне того же года ученые послали статью с результатами эксперимента в Nature, однако вскоре вокруг их открытия разгорелся настоящий скандал. Дело в том, что исследователи из ведущих научных центров США, Калифорнийского и Массачусетского технологических институтов, в деталях повторили этот эксперимент и подобного не обнаружили. Правда потом последовали два подтверждения, сделанные учеными из Техасского университета "Эй энд Эм" и Института технологических исследований штата Джорджия. Однако и с ними тоже получился конфуз.

При постановке контрольных экспериментов выяснилось, что электрохимики из Техаса неправильно истолковали результаты опыта — в их эксперименте повышенное выделение тепла было вызвано электролизом воды, поскольку термометр служил в качестве второго электрода (катода)! В Джорджии же нейтронные счетчики оказались настолько чувствительными, что реагировали на тепло поднесенной руки. Именно так и был зарегистрирован "выброс нейтронов", который исследователи сочли результатом реакции термоядерного синтеза.

В результате всего этого многие физики преисполнились уверенностью в том, что никакого холодного термояда нет и не может быть, а Флейшман и Понс просто-напросто смошенничали. Тем не менее, другие (а их, к сожалению, явное меньшинство) не верят в мошенничество ученых и даже в то, что здесь была просто ошибка, и надеются, что чистый и практически неисчерпаемый источник энергии сможет быть сконструирован.

К числу последних относится и японский ученый Йосиаки Арата, который несколько лет исследовал проблему холодного термояда и в 2008 году провел в Университете Осака публичный эксперимент, показавший возможность протекания термоядерного синтеза при невысоких температурах. Он и его коллеги использовали особые структуры, состоящие из наночастиц.

Это были специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная их особенность состояла в том, что они имели внутри обширные пустоты, в которые можно закачивать атомы дейтерия (изотоп водорода) до очень высокой концентрации. И когда эта концентрация превысила определенный предел, данные частицы сблизились друг с другом настолько, что начали сливаться, в результате чего запустилась настоящая термоядерная реакция. Она заключалась в слиянии двух атомов дейтерия в атом лития-4 с выделением тепла.

Доказательством этого служило то, что когда профессор Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению ученого, это можно было объяснить только тем, что произошел ядерный синтез.

Правда, пока эксперимент Араты также не удалось повторить ни в одной лаборатории. Поэтому многие физики продолжают считать холодный термояд мистификацией и шарлатанством. Однако сам Арата отрицает подобные обвинения, упрекая оппонентов в том, что они не умеют работать с наночастицами, поэтому-то у них ничего и не получается.