Механика сплошных сред. Лекции

Принцип работы

Сифон Мариотта представляет собой герметично закрытый сосуд, в крышку которого вставлена открытая с обоих концов трубка, одним концом погруженная в жидкость, а другим - сообщающаяся с атмосферой.

Первоначально, когда все клапаны и сообщающееся с атмосферой отверстие в трубке закрыты, уровень жидкости в трубке совпадает с уровнем жидкости в сосуде. Если наполнить сосуд жидкостью не полностью, над её поверхностью будет некоторое количество воздуха, и давление в нижней части трубки вычисляется по формуле:

, где:

Если открыть клапан 3, то трубку, вытеснив жидкость в ней, заполнит воздух, а давление над поверхностью станет равным . На уровне конца трубки установится атмосферное давление . Жидкость из отверстия начнёт вытекать только под давлением столба жидкости между клапанами 2 и 3 (на рис.), которое останется постоянным всё время, пока конец трубки остаётся погруженным в жидкость. Через трубку в верхнюю часть сосуда будет поступать воздух.

Скорость истечения жидкости можно определить, воспользовавшись формулой Торричелли :

, где - расстояние между нижним концом трубки и клапаном (или между клапанами 2 и 3 на рис.).

Соответственно, если открыть клапан 2, находящийся на уровне нижнего конца трубки, жидкость из отверстия вытекать не будет. При откупоривании отверстия 1 давление на его уровне будет ниже атмосферного, уровень которого - это уровень конца трубки. Поэтому через отверстие в сосуд будет поступать воздух, а жидкость вытекать не будет.

Применение

Основное свойство сосуда Мариотта состоит в том, что он позволяет регулировать скорость потока жидкости. Это используется в системах непрерывной подачи чернил (СНПЧ) , при дозировке жидкостей в лабораторных условиях .

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Сосуд Мариотта" в других словарях:

    Закон, связывающий изменения объема газа при постоянной температуре с изменениями его упругости. Этот закон, открытый в 1660 г. англ. физиком Бойлем и позже, но, независимо от него, Мариоттом во Франции, по своей простоте и определенности… …

    У этого термина существуют и другие значения, см. Галилео. Галилео Жанр научно популярная развлекательная программа Режиссёр(ы) Кирилл Гаврилов, Елена Калиберда Редактор(ы) Дмитрий Самородов Производство Телеформат (… Википедия

    Основная статья: Галилео (программа) В основном каждый выпуск состоит из четырёх шести сюжетов и одного эксперимента в студии. Сюжеты могут быть как и из оригинальной немецкой версии, так и снятые уже русской командой. Содержание 1 1 сезон (март… … Википедия

    Инструменты и методы физиологии прошлого века сейчас могут казаться странными, наивными и даже чуточку алхимическими: Необходимые … Википедия

    Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Вместимость геометрического тела, т. е. части пространства, ограниченной одной или несколькими замкнутыми поверхностями. Вместимость или емкость выражается числом заключающихся в О. кубических единиц. Вычисление величины О. производится с помощью … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Природный газ - (Natural gas) Природный газ это один из самых распространенных энергоносителей Определение и применение газа, физические и химические свойства природного газа Содержание >>>>>>>>>>>>>>> … Энциклопедия инвестора

    С древнейших времен стали понимать великое значение воды не только для людей и всяких животных и растительных организмов, но и для всей жизни Земли. Некоторые из первых греческих философов ставили воду даже во главе понимания вещей в природе, и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Раздел молекулярной физики, рассматривающий многие свойства веществ исходя из представлений о быстром хаотическом движении огромного числа атомов и молекул, из которых эти вещества состоят. Молекулярно кинетическая теория концентрирует внимание… … Энциклопедия Кольера

    Тела, характеризующиеся стремлением наполнять любое пространство и лишенные собственной формы. Учение о Г. представляет блестящую страницу современного естествознания. Казавшаяся некогда неуловимой форма тела, по понятиям древних занимавшего… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Введение в физику открытых систем: аттрактор Лоренца

Колебания и волны: Энергия, переносимая звуковой волной.

Введение в физику открытых систем: Динамическое и статистическое описание сложных движений

Автомодельность

Колебания и волны: Предисловие

Механика сплошных сред. Лекции.

Вытекание жидкости через отверстие в сосуде.

Пусть жидкость, заполняющая сосуд, под действием силы тяжести вытекает из него через отверстие в боковой стенке, расположенное вблизи дна сосуда (рис. 3.6). В отверстие вставлена горизонтальная трубка с закругленной внутренней кромкой, направляющая вытекающую струю воды. Закругленная кромка обеспечивает полное заполнение трубки вытекающей жидкостью.
Рис. 3.6.

Разобьем текущую жидкость на трубки тока. Одна из таких трубок изображена на рисунке 3.6. Хотя мы и не знаем, как выглядят эти трубки, однако все они начинаются на свободной поверхности жидкости и заканчиваются на выходном торце сливной трубки. Если площадь отверстия трубки S значительно меньше площади свободной поверхности S 0 , то при истечении жидкости ее опускающаяся с некоторой скоростью v 0 поверхность будет оставаться горизонтальной. Это означает. что константа, входящая в уравнение Бернулли (3.14), будет одинакова для всех трубок тока:

Здесь H - высота уровня жидкости в сосуде. Поэтому скорость истечения жидкости v определяется из уравнения

Эта формула носит название формулы Торичелли, поскольку была получена Торичелли, жившем до Бернулли. Сразу бросается в глаза, что скорость истечения жидкости из сосуда такая же, как и при ее свободном падении с высоты H. В этом нет ничего удивительного, поскольку вязкостью мы пренебрегли, а работа сил атмосферного давления над трубкой тока равна нулю. Поэтому, как и при свободном падении тел в отсутствие сопротивления воздуха, при ращение кинетической энергии равно работе силы тяжести:

Справедливость формулы Торичелли можно легко проверить, если на выходную трубку надеть кусок гибкого шланга и вытекающую струю воды направить вверх под небольшим наклоном к вертикали (рис. 3.7). Струя поднимется практически до уровня поверхности жидкости. Если же струю направить вертикально вверх, то взлетающие вверх частицы жидкости, взаимодействуя с падающими вниз частицами, не смогут подняться на высоту H.
Рис. 3.7.

Интересно отметить, что трубки тока жидкости расположены преимущественно ближе к стенке сосуда с отверстием, в то время как у противоположной (левой на рис. 3.8) стенки жидкость практически малоподвижна. Это означает, что на левую стенку действуют силы давления, которое легко посчитать, используя линейный закон нарастания гидростатического давления с глубиной, даваемой формулой (2.11). Расчет сил давления, действующих на правую стенку, требует гидродинамического решения задачи. Однако и без такого расчета ясно, что в трубке тока, примыкающей к правой стенке, давление на каждой глубине будет меньше соответствующего этой глубине гидростатического давления. Это означает, что равнодействующая сил давления, действующих на обе стенки, направлена в сторону, противоположную направлению истечения жидкости. Под действием этой силы, называемой также реактивной, сосуд, поставленный на колеса, может придти в движение. Величину этой силы легко посчитать с использованием формулы Торичелли. По 3-му закону Ньютона искомая реактивная сила равна по величине силе, с которой стенки сосуда действуют на воду, сообщая ее (по 2-му закону Ньютона) приращение импульса в направлении истечения. Поскольку масса, вытекающая через отверстие с сечением S равна , то изменение импульса в единицу времени составит величину Поэтому реактивная сила

где - величина гидростатического давления на глубине H, S - площадь отверстия в правой стенке.
Однако можно добиться одинакового (гидростатического) распределения давлений у обеих стенок, если конец трубки с острой кромкой будет отстоять от правой стенки, как показано на рис. 3.9. В этом случае реактивная сила может определяться с помощью формулы (3.20). Если же ее вычислять при помощи (3.19), то в этой формуле надо вместо сечения трубки S подставить сечение струи воды в трубке S B =kS, где коэффициент истечения k1/2. При таком истечении трубка будет заполнена жидкостью приблизительно наполовину.

а реактивная сила возрастает линейно с повышением избыточного давления над свободной поверхностью жидкости.

Гидрорезание.

Если создать очень высокое избыточное давление, например, 5000 атм = 5*10 Н/м2, то скорость истечения воды v = 1000 м/с. Если такую струю направить на какой-либо твердый материал, то его поверхность будет подвержена гидродинамическому давлению Такое огромное давление в ряде случаев может превосходить предел прочности некоторых материалов, и последние будут разрушаться под действием струи. Со второй половины 80-х годов получило развитие новое направление в обработке материалов - гидрорезание. В этой технологии водяной нож - высоко-скоростная струя воды с диаметром иглы - легко режет материалы толщиной в несколько сантиметров со скоростью резания несколько десятков сантиметров в минуту. Для резки металлов, твердых сплавов, бетона и других материалов в струю добавляют абразивный порошок. Это позволяет значительно увеличить гидродинамическое давление и повысить производительность и возможности гидрорезания.

Сосуд Мариотта.

Весьма поучительным для понимания движения жидкости является истечение жидкости из сосуда Мариотта. Он позволяет обеспечить постоянную скорость вытекания жидкости из сосуда, несмотря на понижения ее уровня. Для этого в сосуд через герметичную пробку в его горловину вводится трубочка, сообщающаяся с атмосферой (рис. 3.10). Скорость вытекания определяется по формуле Торичелли , где h - высота нижнего конца трубки над отверстием. Это происходит потому, что при незначительном истечении жидкости из полностью заполненного сосуда давление под пробкой будет меньше атмосферного, а давление в горизонтальной плоскости, совпадающей и нижним концом трубки, равно атмосферному. Скорость вытекания легко регулируется вертикальным перемещением трубки. Если конец трубки находится на уровне h=0 или ниже отверстия, то жидкость не вытекает вовсе.
Рис. 3.10.

Условие несжимаемости движущейся жидкости.

Равенство (3.2), являющееся условием несжимаемости, связывает скорости движущейся жидкости в двух различных сечениях. Между тем, как на это неоднократно обращалось внимание в предыдущих лекциях, в физике важно оперировать с равенствами или уравнениями, отнесенными к одной точке пространства.
Для этого рассмотрим деформацию движущегося кубического элемента жидкости. Если его объем через малый отрезок времени не изменяется, то сумма диагональных элементов тензора деформации равна нулю, т.е.

Здесь u x , u y и u z - смещения граней кубика в направлении соответствующих осей координат. Однако эти смещения связаны со скоростями движения граней (а точнее, частиц жидкости, находящихся в данный момент на этих гранях):

Подставляя эти равенства в (3.22), получаем локальное (относящееся к одной точке пространства) условие несжимаемости в виде

Дивергенция вектора является скалярной функцией координат и времени и легко рассчитывается, если известны компоненты векторного поля (в нашем случае v x , v y и v z). Поэтому условие (3.22) постоянства объема несжимаемой жидкости записывается кратко:
(3.24)

Отметим, что уравнение (3.24) является одним из основных уравнений гидродинамики несжимаемой жидкости.
Следует отметить, что имеется множество векторных полей, как, например, электрическое E =E (x,y,z,t) и магнитное B =B (x,y,z,t) поля и др., при описании которых также широко используется понятие дивергенции: div E или div B и т.д. Хотя она определяется в соответствии с (3.23), вводится, однако, несколько из других соображений, поскольку в электродинамике не идет речь о движении и деформации элемента материальной среды.
На примере векторного поля скоростей v =v (x,y,z,t) поясним фундаментальный смысл понятия дивергенции.
Для этого рассмотрим неподвижный элементарный объем пространства. dV=dxdydx и посчитаем объем жидкости, втекающий и вытекающий из этого объема за единицу времени.
Введем понятие элементарного потока вектора скорости v через маленькую площадку dS:
(3.25)

где dS =n dS - вектор, направленный по нормали n к элементарной площадке. Ясно, что поток (3.25) равен объему жидкости, пересекающей площадку dS за единицу времени (рис. 3.12). Он допускает также наглядную геометрическую интерпретацию. В самом деле, в соответствии с определением линий тока, данным в начале этой лекции, их густота характеризует скорость течения. Поэтому величине скорости всегда можно поставить в соответствие количество линий тока, пересекающих площадку с dS=1 и n || v. Тогда поток dN v в (3.25) будет характеризоваться числом линий, пересекающих площадку при ее произвольной ориентации.
Рис. 3.12.

Теперь легко посчитать баланс между втекающей и вытекающей жидкостью для элементарного объема, изображенного на рис. 3.12. Для этого восстановим внешние нормали по всем 6-ти граням кубика и посчитаем потоки жидкости через его грани. Легко понять, что положительное значение потока будет для вытекающей жидкости, а отрицательное - для втекающей. Если скорость в центре кубика v (x,y,z) изменяется при приближении к соответствующим граням, то при вычислении такого потока это необходимо учесть. Результирующий поток определится следующим образом:

Таким образом, дивергенция вектора скорости численно равна потоку жидкости через поверхность единичного объема. Если жидкость несжимаема, то, естественно, этот поток должен быть равен нулю. Графически последнее интерпретируется как равенство количества входящих и выходящих линий тока для этого объема. Это, в свою очередь, означает, что в окрестности точки, где div v =0, линии тока не прерываются. Поэтому равенство div v =0 называют условием неразрывности.
Из школьного курса физики известно, что силовые линии электростатического поля (аналог линий тока) прерываются только на зарядах. Поэтому для областей, не занятых зарядами, мы также вправе написать . Силовые линии индукции магнитного поля B всегда замкнуты, поэтому во всех случаях div B =0.

Известен, прямо скажем, не особо широко. Ни английская, ни даже французская википедия не могут похвастаться более-менее внушительной статьёй о нём, что уж говорить о нас? Ну, в средней школе все проходили закон Бойля-Мариотта (который описывает зависимость между давлением и объёмом газа постоянной массы при постоянной температуре: чем меньше объём - тем больше давление, и наоборот) , но кто его помнит? К тому же, если по правде, Роберт Бойль успел открыть этот закон за полтора десятилетия до Мариотта (последний, впрочем, переоткрыл его честно и независимо). Но несмотря на всё это Мариотт был довольно продуктивным учёным с очень широкими интересами, уже не говоря о том, что ему принадлежит и как минимум одно весьма интересное открытие далёкое от физики, но лёгшее несмываемым пятном на его биографию...

На представленном фрагменте картины «Кольбер представляет Людовику XIV членов Королевской Академии наук » (см. полную версию) авторства Henri Testelin, Эдм Мариотт предположительно изображён шестым справа. Картина является «фантазийной» (написанной лишь по воспоминаниям), поэтому идентификация отдельных представленных персон затруднена.

Эдм Мариотт родился в 1620 году в местечке Тиль-Шатель, что в Бургундии, чуть к северу от Дижона (русскоязычные источники нередко приводят как место его рождения и сам город Дижон). Его отец, Симон Мариотт, был главой коммуны, скончался в 1652 году; мать, урождённая Екатерина Денизо, скончалась в 1636 году от чумы. У Эдма был старший брат (Жан, с 1630 года и до самой смерти он служил в, как бы сейчас сказали, городском совете Парижа) и три сестры - Дениз, Клод и Екатерина. О ранних годах жизни Мариотта (а также о том, где он получил образование и какое именно) сведений практически нет. Известно лишь, что он служил настоятелем мужского монастыря Святого Мартина в городке Бон под Дижоном, одновременно занимаясь своими научными исследованиями (некоторые скупые данные из его писем позволяют предположить , что он был гениальным самоучкой) . В своих трудах Мариотт (даром, что священник, к его чести будет сказано!) неуклонно проводил мысль о том, что именно «дух наблюдения и сомнения» должен являться основой любых естественнонаучных изысканий; принято считать, что именно Мариотт являлся чуть ли не основным проводником экспериментального метода в тогдашней французской науке. Он стал одним из членов-основателей французской Академии наук (1666 год) как «физик»/«природовед» (фр. physicien ). Английская википедия пишет, что он вошёл в состав Академии лишь в 1668 году, но это является ошибкой, см. Liste de Messieurs de l’académie royale des sciences de Paris depuis l’établissement de cette compagnie en 1666, jusqu’en 1733 . В 1670 году Мариотт переезжает в Париж, где он и скончался 12 мая 1684 года. Вот, в принципе, и всё, что мы знаем о его биографии...

Научные интересы Мариотта были весьма широки, и во многих разделах физики он сумел сделать заметные на то время открытия. Так, его труды по механике внесли значительный вклад в теорию соударений упругих тел. Известно, например, что сам великий Ньютон в своих «Началах... » признавал вклад Мариотта в эту область.




Так называемая «Колыбель Ньютона»
Название этой игрушке дал британский актёр Саймон Преббл (в 1967 году), но физические принципы её работы описал ещё Мариотт! :)

Мариотт также интересовался и такими практическими вопросами, как упругие свойства материалов (их прочность при различного рода деформациях): в частности он экспериментировал с балками и пластинами, изучая их деформации под внешними силовыми воздействиями (грубо говоря, он был одним из первых сопромат чиков:)). Одним из важных его открытий следует считать тот факт, что балка, заделанная в опоры, является более устойчивой к деформациям, чем аналогичная балка, просто покоящаяся на своих опорах.

Ещё более значителен вклад Мариотта в гидравлику и гидродинамику. Так, он занимался экспериментальной проверкой формулы Торричелли (которая описывает скорость истечения жидкости из малого отверстия в открытом сосуде). Подтвердив истинность формулы, Мариотт попутно изобрёл устройство, позволяющее добиться равномерного вытекания струи жидкости из сосуда (так называемый «сосуд Мариотта »): герметично закрытая ёмкость, в крышку которой вставлена открытая с обоих концов трубка, одним концом погружённая в жидкость, а другим - сообщающаяся с атмосферой. Принцип работы данного устройства (позволяющего погружением трубки регулировать скорость истечения жидкости), несмотря на всю его простоту, сохраняет значение и до сих пор: аналогичные устройства используются в системах непрерывной подачи чернил, при дозировке жидкостей в лабораторных условиях, а также в топливных баках для мазутных горелок испарительного типа.


Сосуд Мариотта
Если открыть клапан №3, то жидкость будет вытекать через него с постоянной скоростью до тех пор, пока нижний конец трубки остаётся погружённым в жидкость

Мариотт также исследовал устойчивость труб (находящихся под действием внутреннего давления) к разрыву. На основе целой серии экспериментов он нашел, что безопасная толщина трубы должна быть пропорциональна не только действующему на неё внутреннему давлению, но и её диаметру. Он также занимался физическими проблемами работы фонтанов, составив таблицы зависимости высоты подъёма струи фонтана от диаметра его отверстия.

Интерес Мариотта к воде привёл его и к другим интересным наблюдениям. Например, отдельные источники говорят о том, что именно Мариотт окончательно и бесповоротно доказал экспериментально, что вода при замерзании расширяется (приоритет Мариотта в этом вопросе, впрочем, дискутабелен) . Другое связанное с водой исследование Мариотта принадлежит уже к области географии: он постарался дать ответ на важный практический вопрос об источниках питания родников. В то время доминировала мысль о том, что родники подпитываются «испарениями» из глубины Земли (внутренность которой тогда ещё считали водно-жидкой). Мариотт предпринял крупномасштабное (как сейчас бы сказали) климатически-гидрографическое исследование, показав, что родники питаются за счёт дождевой/талой воды. Его теорию тогда пусть и не осмеяли, но не признали (приводились, в частности, и такие «контраргументы», как «дождевая вода не может проникать в землю глубже, чем на два фута ») . Мариотт также исследовал причины возникновения ветров, связывая их с вращением Земли. Ещё одним его географическим достижением могут служить термометрические исследования подвалов Парижской обсерватории, показавшие, что в помещениях, находящихся на заметной глубине под поверхностью, температура не зависит от времени года. Наконец, если говорить о географии, именно Мариотт впервые предложил способ определения высоты на основании показаний барометра (понятно, что в то время данный метод давал лишь весьма грубые результаты, но сам принцип был предложен именно нашим героем; к слову, по данным Британники само слово «барометр» было введено в обращение именно Мариоттом) .

Мариотта следует считать и одним из первых экспериментаторов в исследовании физиологии растений. Одну из своих работ - De la végétation des plantes - он посвятил морфологии и физиологии высших растений (его особо интересовал вопрос о том, как и почему растительный сок (своеобразная «кровь» растений) может распространяться по их телу). К числу незаурядных практических вопросов, рассмотренных Мариоттом, относятся также отдача огнестрельного оружия и принципы работы трубы как музыкального инструмента.

Наконец, Мариотт интересовался также оптикой, вопросами света и цвета (он изучал такие явления, как дифракция света, венцы Луны, радуга и т. п.). Интерес к физической стороне оптических явлений не мог не возбудить в нём естественного интереса к анатомии и физиологии нашего органа зрения. И тут он приходит к своему самому известному открытию. Анатомируя структуры глаза, он обнаруживает, что зрительный нерв входит в глаз (ну, строго говоря, выходит из глаза) не против самого зрачка, а несколько кнутри (ближе к носу) от центра внутренней поверхности глазного яблока. Данный факт в то время казался если не парадоксальным, то уж точно - неожиданным, поэтому Мариотт начинает экспериментировать с направлением взгляда; при этом он обнаружил, что данный участок не обладает никакой восприимчивостью. Тем самым в 1668 году было открыто так называемое «слепое пятно » глаза (которое иногда обозначают также и как «пятно Мариотта»).


Офтальмоскопическая картина глазного дна
Слепое пятно видно слева в виде светлого диска.

Сейчас мы знаем, что в этом месте (анатомы именуют это образование «диском зрительного нерва», лат. Discus nervi optici ), отдельные волокна зрительного нерва (собирающие информацию от светочувствительных клеток со всей сетчатки) собираются в кучу, чтобы сформировать собственно зрительный нерв. Понятно, что концентрация этих волокон будет здесь максимальной, поэтому свет в любом случае не мог бы пройти сквозь них до палочек и колбочек (поэтому здесь их даже нет). В результате данная область глазного дна является нечувствительной к световосприятию. Нужно пояснить (не все это знают), что сетчатка человека устроена как бы «шиворот-навыворот»: светочувствительные клетки (палочки и колбочки) находятся не на её поверхности, как можно было бы ожидать, а наоборот - в её глубине, тогда как нервные волокна, собирающие импульсы от этих клеток, проходят над ними. На большей части сетчатки эти волокна не представляют препятствий для прохождения света до палочек и колбочек, но в пределах слепого пятна концентрация нервных волокон сильно возрастает (что и делает бесполезным размещение здесь светочувствительных клеток - свет бы всё равно не смог их достичь). Разумеется, такая «инверсия» слоёв сетчатки - это не глюк и не случайность, а довольно полезное эволюционное приобретение: добавочные («верхние») слои сетчатки, через которые нужно пройти свету до достижения светочувствительных клеток, уменьшают интенсивность ультрафиолетового излучения, способствуя тем самым защите фоторецепторов. У, например, осьминогов, сетчатка устроена «правильно»: светочувствительные клетки лежат прямо на её поверхности, так как под водой ультрафиолетовое излучение и так ослабляется самóй водной толщей. Полна чудес могучая природа!

Всего этого, разумеется, Мариотт в 1668 году ещё не знал (он даже пришёл к ошибочному выводу о том, что функция световосприятия принадлежит не сетчатке, а лежащей под ней сосудистой оболочке глаза, так как сетчатка прозрачна, а сосудистая оболочка - наоборот, тёмная; окончательно световоспринимающая функция сетчатки была доказана уже во второй половине XVIII веке Альбрехтом фон Галлером) . Но его открытие в любом случае стало весьма знаменитым и даже произвело своего рода фурор: как говорят, Людовик XIV развлекался со слепым пятном, наблюдая членов своего двора таким образом, словно бы у них не было голов:).



Картинка, позволяющая обнаружить слепое пятно
См. описание ниже.

Физиологическое слепое пятно не создаёт нам каких-либо проблем (так как слепые пятна обоих глаз располагаются с разных сторон; следовательно, «пробел» одного глаза корректируется/перекрывается восприятием того же поля зрения другим глазом). Однако слепое пятно можно легко обнаружить, воспользовавшись представленной картинкой. Для этого нужно закрыть правый глаз и левым глазом посмотреть на правый крестик (в кружке). Не сводя взгляда с правого крестика, нужно приближать (или отдалять) лицо от картинки, одновременно следя за левым крестиком (но не переводя на него взгляд! взгляд должен быть направлен на крестик в кружке!). В определённый момент (на индивидуальном расстоянии лица от монитора) левый крестик исчезнет! Вуаля! Аналогичным образом (только закрыв левый глаз и наблюдая правым глазом за левым крестиком) можно обнаружить слепое пятно и с правой стороны.

В разделе на вопрос Как устроен сосуд Мариотта и принцип его действия? заданный автором Европеоидный лучший ответ это Сосуд Мариотта.
Весьма поучительным для понимания движения жидкости является истечение жидкости из сосуда Мариотта. Он позволяет обеспечить постоянную скорость вытекания жидкости из сосуда, несмотря на понижения ее уровня. Для этого в сосуд через герметичную пробку в его горловину вводится трубочка, сообщающаяся с атмосферой. Скорость вытекания определяется по формуле Торичелли, где h - высота нижнего конца трубки над отверстием.
ЭТО ПРОИСХОДИТ ПОТОМУ, что при незначительном истечении жидкости из полностью заполненного сосуда давление под пробкой будет меньше атмосферного, а давление в горизонтальной плоскости, совпадающей и нижним концом трубки, равно атмосферному.
Скорость вытекания легко регулируется вертикальным перемещением трубки. Если конец трубки находится на уровне h=0 или ниже отверстия, то жидкость не вытекает вовсе.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Как устроен сосуд Мариотта и принцип его действия?