Биография и научная деятельность генриха герца. Личная жизнь и смерть

Детство

Немецкий физик, ставший основоположником электродинамики, родился 22 февраля 1857 года в Гамбурге. Его семья была весьма процветающих евреев. Отец занимался коммерцией и являлся членом городского совета, а бабушка была из семьи состоятельных банкиров. Банк, который основал ее отец и по сегодняшний день действует. Мать Генриха Анна Элизабет Пфефферкорн родом из Франкфурта-на-Майне. В их семье, кроме Генриха было еще трое младших братьев и сестра.

С самого детства Генрих был болезненным и слабым ребенком. Поэтому подвижные и шустрые игры были не для него. Зато в его распоряжении было множество книг, он мог читать сколько угодно душе и также с удовольствием изучать иностранные языки. Так, еще в юном возрасте он выучил самостоятельно арабский язык и санскрит. Все это прекрасно тренировало память ребенка.

Путь к науке

Его родители считали, что сын должен пойти по стопам отца и стать юристом, для чего мальчика отдали в гимназию при Гамбургском университете. Техника и наука изучались молодым студентом в Берлине, Мюнхене и Дрездене. В возрасте 23 лет он получил степень доктора философии, изучая ее в Берлине. А еще спустя 5 лет Генрих получает звание профессора в Университете Карлсруэ. Именно там он сделал свое научное открытие об электромагнитных волнах. Еще будучи студентом он попал на работу в лабораторию к известному физику Герману Гельмгольцу, это был достаточно известный ученый того времени. Под его руководством и происходили многие занятия, благодаря нему была защищена диссертация и написаны многие труды. Их плодотворное сотрудничество вскоре переросло в тесную дружбу.

В те годы такая наука как физика была мало изучена. Ученые того времени считали в природе существуют только флюиды, а магнитное и электрические поля не были до конца изучены.
Но не только теоретическая часть науки была интересна молодому ученому. Эксперименты привлекали его все больше и больше, он проводил их в физическом институте, который находился при Берлинском университете.

Научные работы

Генрих Герц проводил многочисленные опыты, но положительные результаты были получены не сразу. Однако за проводимые исследования он был награжден особым призом от Берлинского университета. Награда стала мощным стимулом для дальнейшего изучения науки. Многие из полученных результатов составили основу будущей диссертации. Защитил он ее в 1880 году, она и стала основанием научной карьеры молодого ученого.

В распоряжении молодого человека была достаточно примитивная аппаратура, но и с ее помощью Генрих сделал множество открытий. Ему удалось подтвердить наличие электромагнитных волн. Определить их скорость распространения, отражения и преломления.

В его честь названа единица измерения герц. А его знаменитые открытия легли в основу таких изобретений как радио, телеграф, телевидение.

Благодаря его исследованиям ученые пересматривали существующую на то время теорию о природе света. Ученый сделал открытие фотоэффекта. Им были сделаны также открытия в метеорологии и механике контакта.

Личная жизнь и смерть

Супругой молодого ученого стала Елизавета Долль. В браке у них родились две девочки, Матильда и Джоанна. Матильда стала впоследствии психологом. Замуж обе дочери не вышли, поэтому прямых потомков у великого ученого не осталось. В 36 лет Генриха Герца не стало, произошло это 1 января 1894 года от инфекционной болезни в Бонне. Предшествовала этому сильная мигрень, после был диагностирован гранулематоз Вегенера в 1892 году. На протяжении двух лет Генриха пытались вылечить, несколько раз прооперировали, но спасти его не удалось.

В 30-е годы его жене и дочерям пришлось эмигрировать в Англию, послужил этому серьезному шагу – приход к власти Гитлера.

Из непрямых потомков у Генриха вошли в историю благодаря своему вкладу в науку – племянник Густав Людвиг Герц, он занимался также физикой и стал лауреатом Нобелевской премии и его сын создавший медицинскую сонографию.

В 1896 году учёный Попов, изобретатель радио, осуществил передачу и прием первой в мире радиограммы. Текст её состоял из двух слов "Генрих Герц". Это было чествование немецкого физика, который внес огромный вклад в науку, экспериментально доказав существование электромагнитных волн. В истории науки не так много открытий, с которыми мы соприкасаемся ежедневно. Но без Генриха Герца современный мир выглядел бы совсем по-другому, потому что всё, предназначенное для коммуникации, основано на его изобретениях.

Генрих Рудольф Герц родился 22 февраля 1857 года в семье почтенного адвоката. Мальчик рос слабым и болезненным, но благополучно пережил трудные для него первые годы жизни, и вырос веселым и здоровым, к радости родителей. Все вокруг пророчили ему потрясающую карьеру, если бы он выбрал идти по стопам отца. Генрих так и собирался сделать - поступил в Гамбургское реальное училище и собирался изучать юриспруденцию. Но его интересы изменилось, когда в училище начался курс физики. Родители не мешали сыну самостоятельно принять выбор и разрешили перейти из училища в гимназию, после которой он мог поступить в университет.

В 1875 Герц уехал в Дрезден поступил в высшее техническое училище. Сначала профессия инженера ему понравилась, однако позже он написал матери, что быть посредственным ученым для него предпочтительнее, чем быть посредственным инженером. Поэтому он ушел из училища и отправился в Мюнхен, где его сразу приняли на второй курс университета. Годы, проведенные в Мюнхене показали Генриху, что университетских знаний недостаточно, необходим был учёный, согласный стать его научным руководителем. Поэтому после окончания университета Герц отправился в Берлин и устроился ассистентом в лабораторию крупнейшего немецкого физика того времени Германа Гельмгольца.

Маститый учёный обратил внимание на талантливого юношу, у них установились хорошие отношения, которые вылились в крепкую дружбу и тесное научное сотрудничество. Под руководством Гельмгольца Герц на отлично защитил докторскую диссертацию по теме "Об индукции во вращающемся шаре". В какой-то момент Генрих начал сомневаться, что его опубликованные теоретические работы имеют ценность для него, как для учёного. Его все больше и больше привлекали эксперименты.

По протекции своего учителя, Герц получил место доцента в Киле, а через шесть лет стал профессором физики в Высшей технической школе в Карлсруэ. Там у Герца была оборудована научная лаборатория для экспериментов, которая давала ему полную творческую свободу и возможность заниматься теми вещами, к которым он чувствовал интерес.

Генрих Герц осознавал, что больше всего на свете его интересовали быстрые электрические колебания, над изучением которых он трудился еще в студенческие годы. Именно в Карлсруэ начался самый плодотворный научный период Герца, который, к сожалению, продлился недолго.

После своего доклада 13 декабря 1888 года в Берлинском университете Герц стал популярным и авторитетным учёным, а электромагнитные волны стали повсеместно называться "лучами Герца". В 1932 году в СССР, а затем в 1933 году на заседании Международной электротехнической комиссии была принята единица частоты "герц", вошедшая затем в международную систему СИ.

В 1892 году у Герца диагностировали инфекцию, его несколько раз прооперировали, но спасти так и не смогли, он умер в возрасте 36 лет в Бонне. Его похоронили на кладбище Ольсдорф. Его жена Элизабет Герц так и осталась вдовой. У супругов Герц было две дочери - Джоанна и Матильда. После прихода Гитлера к власти все трое эмигрировали в Англию. Несмотря на то, что Герц был протестантом и не считал евреем, его портрет нацисты сняли с почетного места на в городской ратуше Гамбурга, поскольку он "частично еврейского происхождения".

"Вечерняя Москва" вспомнила открытия Герца, без которых современный мир был бы совершенно другим.

Эксперименты с электромагнитными волнами

Электромагнитная теория английского физика Джеймса Максвелла 25 не находила признания в научном мире. Герцу потребовалось всего 2 года, чтобы подтвердить ее экспериментально. В своих опытах учёный смог воспроизвести с электромагнитными волнами все явления, типичные для любых волн: образование "тени" позади хорошо отражающих предметов (в данном случае - металлических), преломление в большой призме (сделанной из асфальта), образование стоячей волны в результате наложения падающей на металлический лист волны и волны, отраженной этим листом. Он не только доказал подобие электромагнитных и световых волн, но и сумел измерить их длину.

Вибратор и резонатор Герца

Английский физик Максвелл теоретически доказал, что испускать электромагнитные волны могут колеблющиеся заряженные частицы, а энергия образующейся при этом волны тем больше, чем больше частота колебаний. Заставить заряженные частицы колебаться было несложно - надо соединить конденсатор и катушку индуктивности, чтобы получить колебательный контур. Но как увеличить частоту колебания зарядов, чтобы энергия излучаемых волн стала выше?

Герц нашел решение - он раздвинул пластины конденсатора и уменьшил площадь пластин. В результате этих манипуляций он получил открытый колебательный контур или провод. Чтобы дополнительно увеличить частоту колебаний электронов внутри провода, Герц уменьшим число витков катушки.

Но теперь требовалось заставить электроны колебаться внутри получившегося отрезка проволоки. Генрих разрезал провод пополам, а концы присоединил к источнику высокого напряжения, чтобы между кусками провода возникали электрические искры.

Таким образом Герц изготовил вибратор (излучатель) и резонатор (приёмник) электромагнитных волн. Вибратор Герца выглядит как два медных прутика с насаженными на ближайших концах латунными шариками. Между ними зазор - искровой промежуток. К стержням подводился ток высокого напряжения, и в определенный момент между шариками возникала электрическая искра, делающая сопротивление его воздушного промежутка настолько маленьким, что в вибраторе возникали высокочастотные электромагнитные колебания. Поскольку вибратор представляет собой открытый колебательный контур, происходит излучение электромагнитных волн.

Чтобы улавливать излучаемые волны, Герц придумал резонатор - проволочное незамкнутое кольцо, с такими же как у "передатчика" латунными шариками на концах и регулируемым расстоянием между ними. Приборы учёного удивляют простотой и кажущейся эффективностью. Изменяя размеры и положение резонатора, Герц настраивал его на частоту колебаний вибратора. Маленькие искры в резонаторе проскакивали в тот самый момент, когда появлялись разряды между шариками вибратора. Искры были очень слабые, поэтому наблюдать за ними приходилось в темноте.

В 1888 году, после серии трудоемких опытов Герц экспериментально доказал существование предсказанных Максвеллом электромагнитных волн, распространяющихся в пространстве.
Герц был первым человеком, который сознательно управлял электромагнитными волнами, но он не ставил перед собой задачи наладить беспроводную радиосвязь. Однако эксперименты Генриха, которые он подробно описал в своих научных статьях, заинтересовали физиков всего мира. многие ученые начали искать пути усовершенствования приемника и резонатора электромагнитных волн. Резонатор Герца был прибором не очень чувствительным, и мог улавливать испускаемые вибратором электромагнитные волны только в пределах комнаты. Но в итоге открытие учёного привело к изобретению радиотелеграфа, а потом и радио.

Фотоэффект

Чтобы лучше видеть искру во время эксперимента, Герц поместил приёмник в затемнённую коробку. При этом он заметил, что длина искры становится меньше. Тогда Герц провел серию экспериментов в этом направлении, в частности, он исследовал зависимость длины искры в случае, когда между передатчиком и приёмником помещается экран из различных материалов.

Герц нашёл, что электромагнитные волны проходили через одни виды материалов и отражались другими, что привело в будущем к появлению радаров. Кроме того, учёный заметил, что заряженный конденсатор теряет свой заряд гораздо быстрее при освещении его пластин ультрафиолетовым излучением. Новое открытие в физике было названо фотоэффектом, а теоретическое обоснование этому явлению дал Альберт Эйнштейн, получивший за это Нобелевскую премию в 1921 году.

Он любил все предметы, любил писать стихи и работать на токарном станке. К сожалению, всю жизнь Герцу мешало слабое здоровье.


Генрих Рудольф Герц (1857- 1894) родился 22 февраля в Гамбурге, в семье адвоката, ставшего позднее сенатором. Учился Герц прекрасно и был непревзойдённым по сообразительности учеником. Он любил все предметы, любил писать стихи и работать на токарном станке. К сожалению, всю жизнь Герцу мешало слабое

здоровье.

В 1875 году после окончания гимназии Герц поступает в Дрезденское, а затем в Мюнхенское высшее техническое училище. Дело шло до тех пор, пока изучались предметы общего характера. Но как только началась специализация, Герц изменил своё решение. Он более не желает быть узким специалисто

м, он рвётся к научной работе и поступает в Берлинский университет. Герцу повезло: его непосредственным наставником оказался Гельмгольц. Хотя знаменитый физик был приверженцем теории дальнодействия, но как истинный учёный он безоговорочно признавал, что идеи Фарадея - Максвелла о близкодействии и фи

зическое поле дают прекрасное согласие с экспериментом.

Попав в Берлинский университет, Герц с большим желанием стремится к занятиям в физических лабораториях. Но к работе в лабораториях допускались лишь те студенты, которые занимались решением конкурсных задач. Гельмгольц предложил Герцу задачу

из области электродинамики: обладает ли ток кинетической энергией? Гельмгольц хотел направить силы Герца в область электродинамики, считая её наиболее запутанной.

Герц принимается за решение поставленной задачи, рассчитанной на 9 месяцев. Он сам изготовляет приборы и отлаживает их. При работе н

ад первой проблемой сразу же выяснились заложенные в Герце черты исследователя: упорство, редкое трудолюбие и искусство экспериментатора. Задача была решена за 3 месяца. Результат, как и ожидалось, был отрицательным (Сейчас нам ясно, что электрический ток, представляющий собой направленное движение

электрических зарядов (электронов, протонов), обладает кинетической энергией. Для того чтобы Герц мог обнаружить это, надо было повысить точность его эксперимента в тысячи раз.). Полученный результат совпал с точкой зрения Гельмгольца, хотя и ошибочной, но в способностях молодого Герца он не ошибся.

“ Я увидел, что имел дело с учеником совершенно необычного дарования” - отмечал он позднее. Работа Герца была удостоена премии.

Вернувшись после летних каникул 1879 года, Герц добился разрешения работать над другой темой: “ Об индукции во вращающихся телах” , взятой в качестве докторской диссер

тации. Он предлагал завершить её за 2 - 3 месяца, защитить и получить поскорее звание доктора, хотя университет ещё не был закончен. Работая с большим подъёмом и воодушевлением, Герц быстро закончил исследование. Защита прошла успешно, и ему присудили степень доктора с “ отличием” - явление исключит

ельно редкое, тем более для студента.

С 1883 по 1885 года Герц заведовал кафедрой теоретической физики в провинциальном городке Киле, где совсем не было физической лаборатории. Герц решил заниматься здесь теоретическими вопросами. Он корректирует систему уравнения электродинамики одного из ярких

представителей дальнодействия Неймана. В результате этой работы Герц написал свою систему уравнений, из которой легко получалось уравнение Максвелла. Герц разочарован, ведь он пытался доказать универсальность электродинамической теории представителей дальнодействия, а не теории Максвелла. “ Данный

В 1855 году Герц принимает приглашение технической школы в Карлсруэ, где будут проведены его замечательные опыты по распространению электрической силы.

Ещё в 1879 году Берлинская академия наук поставила задачу: “ Показать экспериментальное наличие какой-нибудь связи между электродинамическим силами и диэлектрической поляризации диэлектриков” . Предварительные подсчёты Герца показали, что ожидаемый эффект будет очень мал даже при самых благоприятны

х условиях. Поэтому, видимо, он и отказался от этой работы осенью 1879 года. Однако он не переставал думать о возможных путях её решения и пришёл к выводу, что для этого нужны высокочастотные электрические колебания.

Герц тщательно изучил всё, что было известно к этому времени об электротехническ

их колебаниях и в теоретическом, и в экспериментальном планах. Найдя в физическом кабинете технической школы пару индукционных катушек, и проводя с ними лекционные демонстрации, Герц обнаружил, что с их помощью можно было получить быстрые электрические колебания с периодом 10-8с. В результате экспер

иментов Герц создал не только высокочастотный генератор (источник высокочастотных колебаний), но и резонатор - приёмник этих колебаний.

Генератор Герца состоял из индукционной катушки и присоединённых к ней проводов, образующих разрядный промежуток, резонатор - из провода прямоугольной формы и д

вух шариков на его концах, образующих также разрядный промежуток. В результате проведённых опытов Герц обнаружил, что если в генераторе будут происходить высокочастотные колебания (в его разрядном промежутке проскакивала искра), то в разрядном промежутке резонатора, удалённом от генератора даже на 3

метра, тоже будут проскакивать маленькие искры. Таким образом, искра во второй цепи возникала без всякого непосредственного контакта с первой цепью. Каков же механизм её передачи? Или это электрическая индукция, согласно теории Максвелла? В 1887 году Герц пока ничего ещё не говорит об электрических

волнах, хотя уже и заметил, что явление генератора на приёмник особенно сильно в случае резонанса (частота колебаний генератора совпадает с собственной частотой резонатора).

Проведя многочисленные опыты при различных взаимных положениях генератора и приёмника, Герц приходит к выводу о существов

ании электромагнитных волн, распространяющихся с конечной скоростью. Будет ли она вести себя, как свет? И Герц проводит тщательную проверку этого предположения. После изучения законов отражения и преломления, после установления поляризации и измерения скорости электромагнитных волн он доказал их пол

ную аналогичность со световыми. Всё это было изложено в работе “ О лучах электрической силы” , вышедшей в декабре 1888 года. Этот год считается годом открытия электромагнитных волн и экспериментального подтверждения теории Максвелла. В 1889 году, выступая на съезде немецких естествоиспытателей, Герц

говорил: “ Все эти опыты очень просты в принципе, тем не менее они влекут за собой важнейшие исследования. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла. Насколько маловероятным казалось ранее её

воззрение на сущность света, настолько трудно теперь не разделить это воззрение” .

Напряжённая работа Герца не прошла безнаказанно для его и без того слабого здоровья. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре началось общее заражение крови, от которого и скончался знаменит

ый уже в свои 37 лет учёный Генрих Герц.

Герц завершил огромный труд, начатый Фарадеем. Если Максвелл образовал представления Фарадея в Математические образы, то Герц превратил эти образы в видимые и слышимые электромагнитные волны, ставшие ему вечным памятником. Мы помним Г. Герца, когда слушаем

Это был ум, в равной мере способный как к величайшей остроте и ясности логического мышления, так и к изумительной внимательности при наблюдении неприметных явлений.

Г. Гельмголъц

Ближайшая и в определенном смысле важнейшая задача нашего сознательного познания природы заключается в том, чтобы найти возможность предвидеть будущий опыт и в соответствии с этим регулировать наши действия в настоящем.

Генрих Герц

Его облик памятен нам еще по школьной физике: спокойное лицо глубоко задумавшегося человека, твердый сосредоточенный взгляд. На фотографии он выглядит старше своего возраста и похож более на рабочего, чем ученого. И в этом тоже заключена его сущность: по натуре он был прежде всего экспериментатором - «чернорабочим науки». Его мать вспоминала, что когда мастер, учивший юного Генриха слесарному делу, узнал, что его ученик стал профессором, он воскликнул: «Жаль! Из него мог выйти прекрасный токарь!»

Он был скромен, доброжелателен, искренне радовался успехам товарищей и коллег, что, впрочем, сочеталось у него с глубокой принципиальностью. Он никогда не гнался за славой, предпочитая - решительно во всех случаях - оставаться в тени. На лекциях он был так же немногословен, как и в своих статьях. Обычно деловито-молчаливый, тихий, он при том умел вставить меткое замечание, оживлявшее и лекцию, и дружескую беседу. Великий его учитель и близкий друг Герман Гельмгольц назвал его «любимцем богов», наделенным «редчайшими дарами ума и характера».

У Генриха с детства были руки умельца. И они не терпели праздности. Он любил инструменты, металл и дерево, работу, атмосферу мастерских. Он хорошо чертил и рисовал, писал даже красками. От верстака он переходил к токарному станку, он строил модели и ремонтировал механизмы, даже намеревался самостоятельно изготовить для себя все наиболее употребительные механические и оптические приборы. Он все умел и никогда не боялся трудностей.

«Большая часть времени уходит, конечно, на вспомогательные, малопоучительные работы, как то: изготовление пробок, изоляцию проводов и т. д. Несмотря на это, я никогда не избегаю этой работы и не могу сказать, сколь велико удовлетворение, которое она мне доставляет». Это - из письма Генриха Герца, студента. А вот что писал своим родным уже всемирно известный ученый: «Я чувствую себя бесконечно уверенней, когда я свободно и честно занимаюсь механической работой, нежели когда я сижу у письменного стола».

В лаборатории он не гнушался никаким делом. Более того, он искренне любил всякую простую, незамысловатую работу, и с годами эта любовь, пожалуй, даже росла.

Жизнь его не была богата внешними событиями. Генрих Рудольф Герц родился 22 февраля 1857 г. в Гамбурге в семье адвоката, впоследствии ставшего сенатором. У Генриха было трое младших братьев и сестра. Широко образованный юрист, Герц-отец стремился к тому, чтобы дети любили знания. Незаурядной женщиной была и мать Генриха: после смерти сына она проявила себя как талантливый мемуарист, написав о его детстве воспоминания, полные ярких подробностей. В семье Герцев царил дух взаимного уважения и непринужденности. Дети дорожили советами родителей, это осталось у них даже тогда, когда они стали взрослыми. (Генрих, например, с волнением отметил впоследствии в своем дневнике то, как он, профессор-сын, такого-то числа демонстрировал физические опыты приехавшему к нему в гости сенатору-отцу. Он не развлекал отца, а как бы отчитывался перед ним - показывал, чего он достиг, и хотел знать, как отец эти его достижения оценит.)

Генрих был мальчиком болезненным, хилым. Однако у тщедушного с виду малыша оказалась большая сила воли. Он установил для себя прямо-таки железный распорядок и годами его неукоснительно выдерживал: вставал очень рано, тотчас же принимался за работу и работал - с небольшими перерывами - весь день. Это усердие, настойчивость и целеустремленность сохранились у него на всю жизнь.

Он отличался большой любознательностью, живо реагировал на все, с чем сталкивался, стремился все понять, пристально ко всему присматривался. Кроме того, у него было сильно развито чувство долга, ответственности. Учился он блестяще, всегда шел в числе первых. По словам одного из школьных учителей, «никто не мог превзойти его в быстроте и остроте восприятия». Он одинаково легко усваивал как математические, так и гуманитарные науки, обладал превосходной памятью.

После городского реального училища он стал готовиться в высший класс гимназии и целый год занимался по двум, если не по трем программам: по специально технической (для себя) и по программе гимназии. Вместе с тем не были, конечно, заброшены и работы в мастерской, а по воскресным дням он посещал еще и ремесленную школу, где учился геометрическому черчению. Это не помешало ему пережить и довольно сильное увлечение ботаникой. К тому же он буквально был влюблен в Данте и Гомера. С томом Гомера он, можно сказать, не расставался, и к семнадцати годам лучше всех в классе знал греческий.

А потом случился такой казус: случайно он купил у бродячего торговца арабскую грамматику и с рвением принялся ее изучать. Отец, видя такое, взял ему преподавателя. Тот был в восторге от лингвистических способностей Генриха. И долго убеждал родителей, что юноша должен стать ориенталистом. Однако Генрих решительно это отклонил. До того к ним приходил директор ремесленной школы и убеждал, что Генрих должен посвятить себя математике, ибо наделен совершенно исключительным математическим талантом. Но тот ответил, что не намерен целиком погружаться в математику, поскольку, по его мнению, это изрядно абстрактная наука, уводящая от жизненно важных дел.

Так кем же он хочет быть? Только - инженером. Разносторонность его интересов и равная его одаренность во многих областях не дезориентировала его в выборе жизненного пути. Правда, у Генриха была и другая мечта, тайная - стать ученым, физиком. Но слишком скромный и требовательный к себе, понимающий, какие трудности стоят на пути ученого, он считал свои способности недостаточными, чтобы претендовать на подобную роль. (Гельмгольц же полагал, что на первоначальный выбор Герца повлиял тот «дух практицизма», который преобладал в его родном Гамбурге.)

И вот - Генрих учащийся сперва дрезденской, потом мюнхенской технической школы. Целый год - между Дрезденом и Мюнхеном - отняла служба в армии, в железнодорожных частях. Во Франкфурте он принял даже участие в строительстве моста через Майн. Ему восемнадцать лет. На фотографии того времени он запечатлен в мундире с плетеными погончиками, с нашивками на стоячем воротнике. И даже отрастил небольшие усы. Однако на лице его угадывается как бы двойственность переживаний: словно и не всем он доволен, и не до конца все решил. Так, впрочем, оно и было: стоило ему окунуться в атмосферу училища, как тяга к «чистой науке» проснулась вновь. И уже больше его не покидала.

Он ведет дневник. Если, однако, судить по его дневниковым записям, то человек он изрядно скрытный: коротенькие, скупые фразы, чаще всего одна в день - настоящий «телеграфный стиль». Зато в письмах он откровенен и подробно обо всем рассказывает. В этом - своя логика: ведь дневник - это для себя (он и писал его какими-то условными закорючками, потом пришлось расшифровывать), а письма - все равно, что живое общение, которое он так всегда любил.

Он признается родителям: «Мне больше хотелось бы быть великим ученым, чем крупным инженером, однако быть посредственным инженером для меня предпочтительнее, нежели посредственным ученым». Процитировав Шиллера («Кто трусит жизнью рисковать, тому успеха в ней не знать»), он заключает многозначительно: «Излишняя осторожность была бы с моей стороны безумием...».

И все-таки период некоторой нерешительности и сомнений растянулся у него на два года. При всем том, преодолевая сомнения, взвешивая возможные ошибки, Герц всегда умел выбрать путь единственно правильный. (Это подтверждает и история его последующих научных поисков.)

Наконец колебания преодолены. И он сообщает своим родным, правда, еще с некоторой долей неуверенности: «Мне неудобно признаться, но я все же считаю нужным сказать, что в последний момент я решил изменить профессию и посвятить себя изучению естественных наук...».

К этому времени он уже из Дрезденской высшей технической школы перевелся в Мюнхенскую, а в 1877 г., заручившись согласием родителей на занятия «чистой наукой», перешел в Мюнхенский университет. (Здесь, между прочим, он познакомился с Максом Планком.) Однако через два семестра Герц покидает Мюнхен, чтобы завершить свое образование в столичном университете,

Он отмечает в дневнике, что штудирует теоретические труды Лапласа и Лагранжа по математике и механике, усиленно занимается практической физикой, слушает лекции Кирхгофа и Гельмгольца, слава которых тогда гремела даже за пределами ученого мира.

Проницательный Гельмгольц сразу же обратил внимание на вдумчивого и трудолюбивого новичка. К тому же выяснилось, что новичок настойчив в поисках и умеет подчас находить блестящие решения. Это дало маститому ученому повод сказать потом, что «характер его [Герца] дарования обнаружился очень рано». В посмертной биографии Герца Гельмгольц писал: «Уже в то время, когда он выполнял элементарные учебные работы, я увидел, что имею дело с учеником совершенно необычайного дарования».

Следуя совету учителя, Герц обратился к опытам по электродинамике.

Это был тогда важнейший участок науки. Гельмгольц необыкновенно удачно выбрал, кого именно надо туда направить.

Тема первой работы молодого ученого - кинетическая энергия движущихся зарядов. Он справился с ней настолько хорошо, что был награжден золотой медалью философского факультета. «Заключение факультета, - отмечал сам Герц, - было составлено в столь похвальных выражениях, что для меня значение премии увеличилось вдвойне».

Следующее известное свое исследование - «Об индукции во вращающихся телах» - он выполнил тоже ещё будучи студентом. Эта работа развивала и дополняла предыдущую. Герц представил ее в качестве докторской диссертации. И защитил «с высшим отличием», что в истории университета случалось не так уж часто.

Герцу двадцать четвертый год, он молодой доктор натуральной философии и математики. Не скажешь, что у него впереди вся жизнь, потому что жизни осталось только тринадцать лет...

Зато впереди был его великий научный подвиг.

Послужной список Генриха Герца невелик:

1880 - 1883 гг.: ассистент в лаборатории Гельмгольца (Берлин);

1883 - 1885 гг.: приват-доцент на кафедре физики Кильского университета;

1885 - 1889 гг.: ординарный профессор физики в Высшей технической школе (Карлсруэ);

1889 - 1894 гг.: профессор экспериментальной физики Боннского университета.

Четыре ступеньки. И все - вверх и вверх. Годы ассистентства у Гельмгольца стали для Герца великолепной школой. Расширяется его кругозор, растет и оттачивается мастерство. Он просто неутомим: окончив один эксперимент, тут же принимается за другой. Или сразу ведет их несколько. «Ни меня,- писал он родным,- ни моего времени не хватит на все те опыты, которые я хотел бы поставить с приборами, находящимися в моем распоряжении». «Я сижу в лаборатории с 9 утра до 9 вечера». «Вид вокруг меня такой, как в кухне волшебника». Однако первые его шаги не всегда имели ясно осознанную цель. «Я кружусь,- чистосердечно признается он,- без определенного метода на уже исследованной почве, узнавая известное, повторяя опыты других и вообще ставя опыты, какие попадаются под руку». Вместе с тем он радуется каждому своему успеху: «Я не могу сказать, насколько большее удовлетворение доставляет мне самому добывать у природы знания для себя и других, чем всегда учиться только у других и для одного себя».

Круг тем, которыми он занимался, довольно пестр: прикладная механика, гидравлика, электрический разряд в газах, теория упругости и удара тел - вот далеко не полный их перечень. Итог: около двадцати опубликованных работ.

Ему не пришлось искать себя долго и мучительно. Талант его, словно благодарный за то, что его так верно и во время распознали и поставили на правильный путь, развернулся сразу же.

Возникает вопрос: что же, собственно, вынудило Герца оставить Берлинский университет с его оснащенными лабораториями? Ответ прост: в провинции легче было получить место как приват-доцента, так и потом профессора. «Без толчеи, как у окошка кассы»,- пояснил Герц в письме к родным. Конечно, он мог добиться всего этого и в Берлине (тем более при хорошем к себе отношении Гельмгольца и Кирхгофа), однако даже минимальная степень «толчеи» была для щепетильного Герца крайне антипатична.

Кильский период жизни ученого - это все усиливающаяся тяга к проблемам электродинамики. В дневнике - череда лаконичных записей: «Вечером напряженно работал над электродинамикой по Максвеллу»; «Исключительно электродинамика»; «Утром удалось решить задачу по электродинамике»; «Думал об электромагнитной теории света»... Таким образом, Герц все больше и больше углублялся в теоретические проблемы.

И совсем редки записи противоположного характера: «Вечер отдыха. Пирушка».

Однако условия работы в Киле оказались нелегкими. Отдельные профессора имели лаборатории, но «посторонним» доступ туда был закрыт. В письме от 27 октября 1883 г. Герц жаловался: «Здесь, в Киле, во всем недостаток. За каждым куском платиновой проволоки или стеклянной трубки бог весть сколько приходится бегать. Даже чтобы достать жалкую спиртовку, нужны огромные усилия». Но страсть к исследованиям была столь велика, что ученый сразу же начинает создавать лабораторию - своими руками и на собственные средства. Он строит прибор за прибором и по мере этого проводит эксперименты - по гидро-, термо- и электродинамике, по оптике и теории упругости. Правда, ни одна из этих работ не привела к таким результатам, которые можно было публиковать. Это огорчало молодого ученого, но не обескураживало.

В 1885 г. Герц переезжает из Киля в Карлсруэ, чтобы занять место ординарного профессора Высшей технической школы.

Карлсруэ - город в верховьях Рейна, в ту пору довольно уже крупный. Тамошняя Высшая техническая школа считалась лучшим тогда в Германии институтом.

Сохранилась фотография лаборатории школы: казарменного вида трехэтажное здание; на улице - ни единого деревца. Солнечно, знойно. Человек, прячущийся в тени, отбрасываемой огромным возом аккуратно уложенных снопов, ведет под уздцы лошадь. Все провинциально, сонно и буднично. Не верится, что в нескольких десятках метров от этого патриархального воза за унылой кирпичной стеной бьется живая мысль великого физика - быть может, в эту самую минуту!

В Карлсруэ и взлетел яркий гений Генриха Герца. Проведенные им здесь опыты получили мировой резонанс. «Опыты Герца, классические на веки веков...» - сказал про них уже в 1890 г. известный петербургский физик О. Д. Хвольсон. Опыты, которые подготовили возникновение беспроволочной телеграфии, радиосвязи, телевидения.

Герц приехал в Карлсруэ подающим надежды приват-доцентом, а уезжал отсюда не только профессором, но и всемирно прославленным ученым. Ему исполнилось тридцать два года.

Здесь же он обзавелся и семьей - женился на Элизабет Долль, дочери своего коллеги. 2 октября 1887 г. у него родилась дочь Иоганна. Она стала биографом своего знаменитого отца. А вторая его дочь, Матильда, занимавшаяся ваянием, создала прекрасный его скульптурный портрет.

Гельмгольц настойчиво приглашал Герца занять кафедру в Берлинском университете. Герц же намеревался перебраться в Бонн. Гельмгольц писал ему: «Мне чрезвычайно тяжело, что Вы не хотите переехать в Берлин, но... я думаю, что Вы поступаете правильно. Кто видит перед собой обширные научные задачи, которые он способен выполнить, тому лучше быть подальше от больших городов».

В Бонне Герцу предстояло заменить уходящего на покой знаменитого физика Рудольфа Клаузиуса, который встретил его приезд скептическим вопросом: «Зачем взяли того, кто уже совершил свое великое дело?..» Однако Герц едва не опроверг скептицизм Клаузиуса. Во всяком случае, был близок к этому: исследуя в 1891 г. прохождение катодных лучей сквозь тонкие металлические пластинки, он наблюдал флюоресценцию стекла под действием неизвестных лучей. Ученый, только что открывший «герцевы лучи», был на пороге открытия лучей рентгеновых, а возможно, и беккерелевых (радиоактивных)! Но из-за болезни он уже не имел возможности продолжить опыты.

В Бонн из Карлсруэ можно приплыть по Рейну. Родина Бетховена, город этот славился своим университетом - одним из самых больших в стране: около 1200 студентов и более ста преподавателей.

Говорят, что Бонн славится также мягким, благоприятным для здоровья климатом. Герцу, однако, он вряд ли прибавил жизни. Едва ученый успел организовать новую лабораторию, как серьезно заболел. У него резко ухудшилось зрение, стали болеть зубы, что вызвало заболевание носа и ушей. Его лечили лучшие врачи, но больному становилось все хуже. Болезнь затормозила, а потом и вовсе остановила его исследования. В том была злостная насмешка судьбы: профессор экспериментальной физики не в состоянии был экспериментировать! Лекции он продолжал читать, но тоже через силу.

В 1892 г. здоровье ученого резко ухудшилось. Усилились боли в голове, временами они становились невыносимыми. Операции лишь на время облегчали страдания. Однако силы Герца еще не были сломлены, он боролся упорно, мужественно. Он верил в свое выздоровление. «Единственное, что мне еще плохо удается,- в шутливом тоне сообщал он в одном письме,- это смех. Улыбка для меня трудна, поэтому, когда я делаю дружественную мину, мне должны быть благодарны, ибо потом я за это расплачиваюсь...»

3 декабря 1893 г. он заносит в дневник обширные планы исследований более чем на десять лет вперед. Но то была его последняя дневниковая запись.

Спустя два дня он писал родным: «Если со мной действительно что-либо случится, вы не должны печалиться, а должны хотя бы немножко гордиться и думать, что я принадлежу к тем избранникам, которые жили хотя и недолго, но вместе с тем жили достаточно. Этой судьбы я не хотел и не выбирал, но я доволен ею, и если бы мне предоставили выбор, я, может быть, сам выбрал бы ее».

В речи, посвященной памяти Генриха Герца, Макс Планк о его последних днях рассказывает: «Пребывание весною в Ривьере и осенью прошлого года в Рейхенгалле снова укрепило его телесные и духовные силы. Повсюду его друзья и коллеги относились к нему с сердечным участием и каждый раз с радостью встречали лучшие вести. Но с началом зимы снова начали курсировать тревожные слухи. Неохотно и только шепотом говорили об этом в кругу его друзей; не хотели, не могли верить в возможность самого худшего. И все же те самые силы природы, которые некогда должны были ему открываться, потому что он видел насквозь их вечные законы, теперь по такому же неумолимому закону потребовали его жизнь и вместе с нею без сожаления разрушили все еще дремавшие в его мозгу силы... Последние недели Герц провел при ясном сознании, превозмогая все возраставшие и в конце уже немыслимые боли, пока наконец первый день нового года не освободил его от мучений. Вскрытия не было, причиной смерти врачи признали отравление крови» .

Это случилось 1 января 1894 г. Ученый не дожил до 37 лет семь недель. Похоронен он был в Гамбурге.

Гельмгольц, для кого безвременная смерть Герца была особенно тяжелым ударом, писал в биографии своего любимого ученика и друга: «Наделенный редчайшими дарами ума и характера, он собрал в своей, увы, столь короткой жизни урожай почти нежданных плодов, обрести которые тщетно стремились в течение истекающего столетия многие из самых одаренных его коллег». И далее: «Моя боль была особенно сильна, ибо среди всех своих учеников я всегда рассматривал Герца как того, которому был наиболее близок круг моих научных идей; с ним, казалось, я мог связывать свои надежды на их дальнейшее развитие и обогащение» .

Книгу Герца «Принципы механики, изложенные в новой связи» Гельмгольц назвал «последним памятником его земной деятельности». Эта работа - своеобразное размышление о философии механики. Он начал ее весной 1891 г., едва завершив последнюю статью электродинамического цикла. Лишенный возможности экспериментировать, ученый каждый отвоеванный им у недуга час отдавал этому своему исследованию. Отсылая ее в набор в октябре 1893 г., он был полон сомнений: «Все же боязно выступать с вещью, которую ни с кем никогда не обсуждал...».

В ней обобщены итоги работы Максвелла, лорда Кельвина, Кирхгофа, Дж. Дж. Томсона и других ученых, в том числе самого Герца о так называемой механике без силы. Герц стремился «изложить ее в виде системы, исходящей из минимального числа предпосылок».

В творческом процессе случаются как будто странные и труднообъяснимые повороты и скачки. Герц еще совсем недавно занимался работами «о распространении силы». Они принесли ему славу и успех. Но едва покончив с циклом этих работ, он принимается за механику без силы. Можно спросить: где же тут логика? Но логика тут особая: в творчестве ученого начинался новый период. К сожалению, ему не суждено было завершиться. А жатву он обещал богатую...

Сила - краеугольный камень механики Ньютона, причина, порождающая движение. Герц считал, что понятие силы лишено конкретного физического значения. У него движение объясняется взаимодействием движущихся масс при их контакте. Однако это не сделало его механику «более убедительной».

Герц исходил из правильной материалистической формулы: все явления природы - это следствие движения материи; но философские взгляды ученого носили механистический характер. Подчас он колебался между кантианством и материализмом. За «Принципы механики», стоящие в его творчестве особняком, сразу же уцепились идеалисты. Они пытались доказать, что философская подоплека книги имеет явно кантианский (одна точка зрения), явно махистский (другая точка зрения) характер. Идеалистам очень хотелось причислить великого ученого к своему лагерю, но им это не удалось. На защиту «знаменитого физика Генриха Герца» решительно встал В. И. Ленин. В своей книге «Материализм и эмпириокритицизм» (1909) он писал: «Этот курьезный спор о том, чей Герц, дает хороший образчик того, как идеалистические философы ловят малейшую ошибку, малейшую неясность в выражении у знаменитых естествоиспытателей, чтобы оправдать свою подновленную защиту фидеизма. На самом деле, философское введение Г. Герца к его „Механике" показывает обычную точку зрения естествоиспытателя, напуганного профессорским воем против „метафизики" материализма, но никак не могущего преодолеть стихийного убеждения в реальности внешнего мира» . И ниже: «...Герцу даже не приходит в голову возможность нематериалистического взгляда на энергию» . Ошибки Герца, говорит Ленин,- это ошибки иного плана: он, «в сущности, был так же непоследователен, как Гельмгольц» .

Несмотря на ущербность отдельных положений, «Механика» Герца оказала плодотворное влияние на формирование материалистических основ физики.

«Что же в конце концов следует думать о теории Герца? - спрашивает Анри Пуанкаре. - Несомненно интересная, она все же не удовлетворяет меня полностью потому, что оставляет слишком большое место гипотезе».

Способ изложения Герца был нов, оригинален. Он заставлял думать, отрешившись от старых представлений. Его «механика без силы» сыграла немаловажную роль в развитии одной из главных проблем физики - проблемы пространственно-временной формы движения материи. И в этом ее несомненная, так сказать, эвристическая ценность. Однако в современную физику она не вошла, поскольку для решения практических задач механика Ньютона более приемлема.

Сочинения Генриха Герца собраны в трех томах . Этот грандиозный по результатам труд был создан в течение пятнадцати лет. В первый том включены ранние исследования; «Принципы механики, изложенные в новой связи» составляют третий том. Любой из этих томов мог принести ему славу большого ученого, но великая слава Герца - это 14 статей второго тома, куда вошли работы 1887 - 1891 гг. Он издал эту книгу под общим названием «Исследования о распространении электрической силы», предпослав ей вводный обзор, в котором нарисовал увлекательную и правдивую историю своих открытий. Об этом обзоре Гельмгольц писал: «К сожалению, у нас мало подобных трудов, раскрывающих нам внутреннюю психологию науки, и мы чрезвычайно благодарны автору за то, что он позволил нам заглянуть так глубоко в мастерскую своей мысли и даже в историю своих возможных заблуждений».

Генрих Герц жил и работал в эпоху «физического безвременья», когда физики, по выражению Ленина, «от атома отошли, а до электрона не дошли» , когда славная ныне и всеми почитаемая теория Фарадея - Максвелла - динамическая теория электромагнетизма - прозябала на задворках науки, не понятая и не признанная...

Холодно, полным непониманием встретил ученый мир также и электромагнитную теорию света Максвелла. Она во многом аналогична волновой теории Гюйгенса - Эйлера - Френеля - Юнга - «доброй старой, классической». Но так как теория Максвелла не была экспериментально подтверждена, ее не спасала даже безукоризненность логических построений. К сожалению, Максвелл облек свои мысли в довольно сложную математическую форму (именно это имел в виду Герц, когда говорил: «...здание его теории было основательно заслонено лесами, воздвигнутыми при постройке»). В течение многих лет она отрицалась не только официальной наукой, но и всеми авторитетами.

Максвелл много размышлял над собственной теорией, однако ничего потом к ней уже не прибавил. Он понимал, что в науке утвердить ее может только эксперимент. А поскольку до тех пор еще никому не удалось получить электромагнитные волны, то вся его теория выглядела утопией. Сотрудники Максвелла по Кавендишской лаборатории принимали, в общем, и поддерживали его теорию. Это, собственно, и был весь лагерь сторонников Максвелла - лагерь весьма малочисленный! Но и они - эти передовые и талантливые молодые английские физики - ровно ничего не сделали, чтобы подтвердить теорию Максвелла экспериментально.

Только Генриху Герцу - исключительно тонкому и одаренному экспериментатору - оказалась под силу эта задача.

Гельмгольц свидетельствует: «В ту пору область электродинамики представляла собой хаотическое царство, в котором трудно было разобраться. Факты, основанные на наблюдениях, и следствиях из весьма сомнительных теорий - все это было вперемешку соединено между собой».

Гельмгольц тоже пытался подобрать ключ к этой загадке. Его теории присущ некий компромиссный характер: в ней он стремился объединить лучшие из различных теорий, однако этот малоудачный гибрид лишь усиливал общую путаницу. Он вначале мешал и Герцу правильно осмыслить наблюденные факты. Поэтому к заслуге последнего следует причислить еще и преодоление гельмгольцевского влияния, что тоже было непросто. Но именно с этого и началась работа Герца в утверждении теории Максвелла.

Электродинамику Фарадея - Максвелла Герц сравнивал с аркой, перекинутой над пропастью неизвестного. Арка как бы соединяет две важных коммуникации - домаксвелловскую электродинамику и оптику, расположенных на противоположных сторонах пропасти. «Свод... уже мог держать сам себя,- говорил Герц в начале своих исследований,- но пролет все еще слишком велик для того, чтобы рискнуть возвести на нем что-либо. Для этого были необходимы еще добавочные опоры...»

А начиналось все это так.

В 1879 г. Берлинская академия наук по инициативе Гельмгольца объявила конкурс на экспериментальное доказательство существования электромагнитного поля согласно уравнениям Максвелла.

К серии своих экспериментальных исследований Герц приступил почти десятилетием позже.

Предварительные расчеты показали, что при имевшихся экспериментальных средствах эта задача не могла быть решена. Не было, например, даже приемника, чувствительность которого давала бы возможность обнаружить электромагнитные волны. «Найти решение заданной мне задачи каким-либо новым путем становилось делом моего честолюбия»,- признается Герц.

В это время он переехал из Киля в Карлсруэ. В физическом кабинете Высшей технической школы ученый нашел несколько индукционных катушек Румкорфа. Используя их для лекционных опытов, он вдруг (это было как озарение!) увидел возможность получить с их помощью быстрые электрические колебания. Теория электрических колебаний была к тому времени уже основательно разработана и экспериментально подтверждена. Но частоты применялись обычно очень низкие, поэтому при ничтожной мощности эти колебания не могли породить электромагнитных волн, доступных наблюдению.

Герц должен был работать в двух направлениях: как экспериментатор и как теоретик. Причем теоретик счастливейшим образом дополнял в нем экспериментатора. Экспериментальные же его приемы всегда отличались простотой и изяществом.

Он долго и пристально изучал колебательный разряд, стремясь повысить частоту колебаний. Ему удалось повысить ее более чем в сто раз. Вместе с тем он сконструировал и свой классический излучатель, названный им «открытым вибратором». Вибратор был чрезвычайно прост: два металлических листа или шара, соединенных проволокой с небольшим промежутком, в котором и наблюдались проскакиваемые электрические искры. Источником переменного тока служила индукционная катушка Румкорфа. Искровой разряд сопровождался возникновением электромагнитных волн - заветных электромагнитных волн! Электромагнитные волны, как бы отрываясь от своего источника - вибратора, распространялись в окружающем пространстве со скоростью света.

Вибратор Герца явился прообразом современных антенн.

Но чтобы доказать существование электромагнитных волн, излучаемых вибратором, их надо было принять, т. е. зарегистрировать.

Ток в приборах Герца за одну секунду менял свое направление несколько миллионов раз. Пытаться обнаружить его посредством, например, гальванометра - затея совершенно бессмысленная. Нужен был специальный приемник. Герц сконструировал и его. Он был еще более прост, чем вибратор: медная проволока, согнутая в виде кольца или прямоугольника, с «искровым промежутком» и с укрепленными на концах небольшими медными шариками.

Приемник, или «резонатор», находился в нескольких метрах от вибратора. Чтобы он мог принимать («отзываться»), его надо было настроить в резонанс. Для этого подбирались размеры обоих контуров, а затем регулировались величины искровых промежутков. При работе вибратора в резонаторе происходило ответное искрение той же частоты. Получился своего рода «электрический глаз» (как назвал его лорд Кельвин), способный «видеть» электромагнитные волны. Однако наблюдать подобное явление было чрезвычайно трудно ввиду его малости. Требовался большой навык и огромное глазное напряжение экспериментатора.

Вильям Брэгг потом комментировал: «Расстояние между передатчиком и приемником в этих ранних опытах составляло всего несколько ярдов; это неудивительно, потому что первые аппараты были крайне маломощными. Особенно слабыми были средства приема. О методе Герца можно сказать, что это была цепочка, в которой существовали только первое и последнее медные звенья, и он наблюдал искру в разрыве, сделанном в последнем звене. Этот метод, конечно, был крайне нечувствительным. Изобретение когерера Бранли явилось существенным шагом вперед. Но только электронная лампа позволила двинуться вперед гигантскими шагами и привела к изумительному прогрессу...» .

Герц писал: «Я работаю очень усердно, нет ни одного дня, когда бы я хоть немного не продвинулся вперед». Однако его путь к успеху был не легок. Бессонные ночи, месяцы поисков, сомнений и неудач, титаническая предварительная работа. «За каждой преодоленной трудностью встает новая, еще большая», - писал ученый родным. Таких признаний в его дневнике и письмах много.

Но он умел преодолевать трудности. И видеть, всматриваться, подмечать он тоже умел как никто. Поражает в нем и необыкновенная целенаправленность исканий. Перед ним стояла определенная цель, и он шел к ней, не отступая, не разбрасываясь, решительно устраняя с пути все, что могло помешать, отвлечь. В этом отношении показателен такой эпизод. Изучая свойства вибратора, он открыл фотоэффект, который был вызван действием ультрафиолетовых лучей на отрицательно заряженный электрод вибратора. Но ему сейчас не до фотоэффекта. Да и вообще его натуре не свойственна многоплановость устремлений, что отличало, например, Гельмгольца, Менделеева, Юнга. Он скорее примыкал к ученым «узкого» профиля - к таким, как Роберт Майер, Попов, Гиббс (это в силу естественных причин присуще и ученым наших дней). Герц, казалось, понимал: времени мало, надо спешить и не разбрасываться.

И действительно, надо было, спешить! Впоследствии выяснилось, что приблизительно в том же направлении работали несколько других физиков, в частности англичанин Оливер Лодж. Герц этого знать не мог, но словно бы чувствовал. Впрочем, он был далеко впереди, поэтому на долю ближайшего к нему соперника - Лоджа - досталось лишь повторить и подтвердить его результаты.

Первый несомненный успех экспериментов определился весной 1887 г. Посылая в конце июня Гельмгольцу свою только-только оконченную статью «О весьма быстрых электрических колебаниях», Герц, в частности, писал: «Вероятно, я не ошибусь, считая, что проведенные опыты достаточно убедительны. Я думаю, что примененные здесь электрические колебания могут быть весьма полезны для электродинамики незамкнутых токов». И далее: «Я не мог не послать Вам эту работу, так как в ней излагается предмет, к рассмотрению которого Вы сами побудили меня несколько лет тому назад».

Гельмгольц незамедлительно ответил восторженной открыткой: «Манускрипт получен. Браво! В четверг отправляю в печать. Г. ф. Г тц. »

В том же своем сопроводительном письме Герц сообщал, что он «уже успел сделать несколько дальнейших шагов». Он продолжал экспериментировать до конца июля, пока совершенно не выбился из сил. Стояла удушливая жара. 19 июля ученый отметил в дневнике: «Полностью пропала удача в работе». Надо было подумать об отдыхе. В последних числах месяца он с молодой женой уехал в Херренальб. Но 7 сентября он уже снова в лаборатории. И радуется тому, что «быстро пришел в medias res» - в столь им любимое «чернорабочее состояние».

Опыты шли отлично. Герц погрузился в изучение открытых им электромагнитных волн. Он устанавливает, что они отражаются от зеркал, преломляются в призмах, поляризуются и интерферируют, т. е. обладают всеми свойствами световых волн. Эврика! Стало быть, конкурсная задача Берлинской академии наук решена.

Когда Герцу впоследствии потребовалось уменьшить длину полученных волн, он стал уменьшать размеры вибратора: снял с него шары, оставив одни короткие стержни, между которыми теперь и проскакивали искры. Этот новый вибратор имел длину 30 сантиметров и испускал 60-сантиметровые волны.

Для изучения оптических свойств дециметровых волн Герцу пришлось собственноручно изготовлять огромные линзы и призмы из диэлектриков. Одна такая призма, отлитая из асфальтовой массы, имела высоту 1,5 метра и весила 1200 килограммов.

Получив электромагнитные волны, Герц возвел этим такую надежную «опору», что ее одной оказалось достаточно, чтобы укрепить фарадей-максвелловскую «арку теории».

Свой доклад о работах Герца, произнесенный вскоре в Физическом обществе, Гельмгольц начал словами: «Сегодня я должен сообщить вам о важнейшем физическом открытии нынешнего столетия».

«Исследования Герца являются одним из наиболее замечательных во всей истории физики триумфов экспериментального уменья, изобретательности и осторожности в сделанных выводах», - писал Дж. Дж. Томсон.

Герцем были «блестяще подтверждены математические формулы Максвелла, - сказал известный русский физик И. И. Боргман. - Они принесли окончательную победу и электромагнитной теории света».

Герц, таким образом, перевел на экспериментальный язык уравнения Максвелла. Но и как теоретик он тоже проявил себя исключительным образом. Ему принадлежит изречение: «Теория Максвелла - это уравнения Максвелла». Анализ уравнений Максвелла, предшествовавший экспериментам, был проведен Герцем на самом высоком философско-математическом уровне. В начале 1889 г. он преобразовал уравнения Максвелла, обобщил и упростил их, придал им строго симметричную форму, благодаря чему особенно четко выступила взаимосвязь электрических и магнитных процессов. Аналогичную работу - почти одновременно с Герцем - выполнил и английский ученый Оливер Хевисайд. После этого «система уравнений Максвелла, - как отметил впоследствии Макс Лауэ, - приняла такой эстетически совершенный симметричный вид, который... привлекает нас почти как очевидность». В таком виде уравнения Максвелла потом и вошли в науку.

В 1890 г. Герц, снова вернувшись к уравнениям Максвелла, обобщил их для случая движущихся тел, что имело чрезвычайные последствия: под влиянием этого электродинамикой движущихся сред заинтересовался Лоренц, а Пуанкаре, опираясь на достижения Лоренца, выдвинул свой знаменитый принцип относительности и получил так называемые преобразования Лоренца, явившиеся одним из истоков теории относительности.

Макс Борн указывает еще такой аспект значения открытия Герца: «...с чувством облегчения, - говорит он, - было встречено экспериментальное подтверждение Герцем теории Максвелла, поскольку теперь стало возможным отождествить электромагнитный эфир со световым. Этим сразу были устранены трудности формального порядка: ...электромагнитный эфир предстал не как механическое тело со свойствами, установленными на основе повседневного опыта, а как особого рода сущность со своими законами (такими, как уравнение Максвелла) - типичное искусственное понятие» .

Герц был одним из первых ученых, которые поняли все величие теории Максвелла. Однако к пониманию и признанию ее он тоже пришел не сразу. Его отношение к Максвеллу не было ни однозначным, ни простым. «Уточняя причину метаморфоза взглядов Герца, - отмечает А. Н. Вяльцев, - надо... подчеркнуть, что ею ни в коей мере не был пиетет перед личностью Максвелла. Наоборот, до конца своих дней Герц сохранил к Максвеллу чувство некоторой неприязни... Чем это было обусловлено, можно только догадываться. Возможно, Герц испытал неизгладимый шок от того, что не сразу понял отношение своих опытов к теории этого человека; не исключено, что у него появилось чувство досады, когда стало ясно, что он не открыл новое явление, а лишь экспериментально подтвердил теоретически открытое... В последнем отношении для немцев создалась на редкость неблагоприятная... ситуация. На протяжении нескольких десятилетий виднейшие теоретические умы Германии, от Неймана-отца до Неймана-сына, прочно держали инициативу развития электродинамики в своих руках, и было основание считать вклад, сделанный в науку этой плеядой немецких теоретиков, бессмертным. С признанием же теории шотландца Максвелла, основанной на воззрениях англичанина Фарадея, вклад этот терял всякую научную ценность» . И далее: «...только когда это пестрое сооружение рухнуло под тяжестью своей неполноценности, Герц признал теорию Максвелла, не оставляя, впрочем, сомнений в ее законченности и универсальности. Только накануне смерти он снял свое последнее возражение».

Деятельность Генриха Герца - это блестящая иллюстрация к знаменитой формуле Ломоносова: «Из наблюдений устанавливать теорию, через теорию исправлять наблюдения - есть лучший всех способ к изысканию правды».

Опыты Герца обратили на себя внимание не только ученого круга физиков, но и всего образованного мира.

«Он вынудил природу к откровениям, которые до него не открывались ни одному человеку», - скажет потом Макс Планк.

Его путь к вершине был хоть и не долог, но труден. Когда же вершина была достигнута, он позволил себе оглядеться.

В знаменитой речи, произнесенной 20 сентября 1889 г. в Гейдельберге на 62-м съезде естествоиспытателей и врачей, Герц говорил: «Отправившись из области чисто электрических явлений, мы, шаг за шагом, подошли к явлениям чисто оптическим. Высокий перевал преодолен; дорога спускается, вновь становится ровной. Связь между светом и электричеством, которую теория предчувствовала, подозревала, предвидела, - установлена, стала доступной чувству, понятна для здравого смысла. С наиболее высокой точки, которой мы достигли, с самого перевала, открывается далекий вид на обе области. Они оказываются большими, чем мы думали раньше».

Петр Николаевич Лебедев, другой гениальный экспериментатор того времени, учившийся в ту пору в Страсбургском университете, вспоминал, что читавший им курс теоретической оптики профессор Эмиль Кон строил его целиком на теории Френеля. Курс был большой - четыре часа в неделю, но электромагнитной теории Максвелла в нем уделялось лишь... полчаса. А через год (т. е. сразу, как только стали известны опыты Герца) тот же профессор Кон строил весь свой курс уже целиком на теории Максвелла.

Так стремительно утверждалась в науке фарадей-максвелловская теория. Она словно брала реванш за годы пренебрежения и унизительного к ней недоверия. Джеймс Клерк Максвелл не дожил до этого времени всего девять лет.

Вместе с тем после опытов Герца начался новый этап борьбы за электромагнитную теорию. Русские физики, как и при жизни Максвелла, вновь оказались на самых передовых позициях.

Учение об электромагнитных волнах глубоко захватило А. Г. Столетова. Он писал: «Эта тема в руках талантливого и настойчивого Герца дала чудные плоды: его открытия были победой теории Максвелла, и тот мост между светом и электричеством, который существовал дотоле только в гениальном уме английского физика, получил реальные устои. Учение о дальнодействии... сложило оружие на поле электрических явлений; единственным представителем дальнодействий осталось еще не разъясненное в этом смысле тяготение».

3 января 1890 г. Столетов произнес речь «Эфир и электричество», где, в частности, указывал, что важную проблему доказательства единства электромагнитных волн надо решать путем уменьшения длины вновь получаемых электромагнитных волн. (Мы уже видели и увидим ниже, как физики, в том числе русские, а затем и советские, своими исследованиями ответили на это указание Столетова.) Далее Столетов спрашивал: «...нет ли в спектре Солнца лучей с большей длиной волны, вроде герцевых лучей?». Впоследствии физика и на этот вопрос ответила положительно, что явилось важным шагом на пути развития радиоспектроскопии и радиоастрономии.

Вильям Брэгг писал: «Лишь после того, как Клерк Максвелл сформулировал четыре математических уравнения, выражающих четыре принципа, раскрытие которых было медленным и потребовало большой затраты труда и мысли, радио, как мы теперь называем его, стало возможностью».

В большой и сложной предыстории радио открытиям Генриха Герца принадлежат, пожалуй, самые яркие главы. Он радио не открыл, поскольку даже возможностям гения положен предел, но на его долю выпала немалая честь - проложить дорогу к этому величайшему открытию современности.

Работы Герца вдохнули жизнь в новую тогда область физики - учение об электромагнитных колебаниях. Открытие Герцем электромагнитных волн не свелось к «приватно-физическому» событию. Нет. Подобно открытию Фарадеем электромагнитной индукции, оно оказало огромное влияние на развитие всей цивилизации. Вместе с тем интересно, что ученый не верил в практическое значение полученных им волн. Должно быть, именно в этом смысле Дж. Дж. Томсон и говорил о необыкновенной его «осторожности в сделанных выводах». В 1889 г., отвечая инженеру Губеру на вопрос о перспективах практического использования его открытия, Герц недвусмысленно заявил, что полученные им электромагнитные волны, по его мнению, для практических целей малопригодны. К такому заключению он пришел в силу того, что не видел возможности существенно увеличить энергию электромагнитных колебаний.

Первым, кто заговорил об огромных перспективах «герцевых волн» для беспроволочной связи, был проницательный Вильям Крукс.

Александр Степанович Попов не только разделял взгляды Крукса, но одним из первых взял на себя нелегкий труд воплотить эту идею в жизнь. На это ему потребовалось более шести лет. 5 мая 1895 г. (этот день мы отмечаем теперь как День радио) Попов сообщил о своем изобретении приемника электромагнитных волн. В то время эфир был девственно пуст. Никаких «сигналов», кроме разрядов атмосферного электричества. Потому-то Попов и назвал свой прибор «грозоотметчиком», хотя в действительности это был первый приемник электромагнитных волн.

Первая в истории радиотехники радиограмма была передана несколько позже: ее послала в эфир рука А. С. Попова 24 марта 1896 г. И состояла она из двух слов: «Генрихъ Герцъ». Переданы они были по азбуке Морзе. Так изобретатель радио подчеркнул великую историческую заслугу своего предшественника.

Изобретение Попова вывело теорию Максвелла в широкий мир техники и многочисленных ее приложений.

Электромагнитные волны, полученные Герцем, имели длину от 10 метров до 60 сантиметров.

60-сантиметровые волны в 100 тысяч раз длиннее волн инфракрасных. Как только была доказана тождественность электромагнитных и световых волн, так сама собой возникла очередная задача: получить полный спектр электромагнитных волн, что для подтверждения теории Максвелла совершенно необходимо. По тому времени - задача не из простых. Ею занялись многие физики. Они работали на разных участках спектра, двигаясь друг другу навстречу. Лебедев, Рубенс, Риги, Никольс, Тир, Глаголева-Аркадьева, Левитская - вот далеко не полный их список.

Лебедев и Риги стремились продвинуться в область красных волн. В 1895 г. П. Н. Лебедев получил волны в 6 миллиметров. А. Г. Столетов подарил молодому ученому оттиск своей статьи «Эфир и электричество» с такой примечательной надписью: «Новейшему от древнейшего (в России) пропагатору герцологии».

Навстречу Лебедеву, со стороны тепловых волн, шел Рубенс. Все совершенствуя и совершенствуя свой метод, он в 1898 г. получил волны в 61 микрон, а через тринадцать лет довел их длину до 340 микрон.

В 1899 г. П. Н. Лебедев впервые обнаружил и измерил световое давление. Годом позже он встретился на Всемирном конгрессе физиков в Париже с Генрихом Рубенсом. Во время рукопожатия ученые произнесли шутливое пожелание: в недалеком будущем «пожать друг другу руку в полном спектре электромагнитных волн». Однако должна была пройти еще четверть века, прежде чем это пожелание могло быть осуществлено. Ни Лебедев, ни Рубенс, увы, до этого дня не дожили.

Герцевы волны со световыми были соединены в 1922 - 1924 гг. Это сделала А. А. Глаголева-Аркадьева. Она подошла к задаче совсем по-новому: не стала конструировать еще более филигранных приборов, как ее предшественники, а создала среду, которая играла роль излучателя самых коротких волн. Электрические искры Глаголева-Аркадьева получала между мелкими металлическими частицами, находящимися в вязком масле. В настоящее время волны длиной в несколько миллиметров легко получают в магнетронах и клистронах. Успехи электроники таковы, что все это давно перестало быть проблемой .

Заслуги Генриха Герца нашли всеобщее признание еще при его жизни.

Можно было бы привести длинный перечень ученых званий и наград, которых он был удостоен. Так, он был избран членом-корреспондентом ряда академий - Берлина, Мюнхена, Геттингена, Вены, Турина, Рима, Болоньи. Он получил премию Парижской академии наук, медаль Румфорда от Лондонского королевского общества и ряд других высоких наград и отличий. Впоследствии его имя было присвоено Институту по исследованию колебаний Берлинской академии наук (ГДР). В его честь назван ряд физических и математических понятий: «герцевы волны», «вектор Герца», «функция Герца». Но поистине нерукотворным памятником великому ученому явилось введение наименования единицы частоты колебаний - герц (Гц, Hz). Эта единица принята в 1935 г. на VIII съезде Международной электротехнической комиссии.

Таким был Генрих Герц. Таков его исторический вклад в дело утверждения теории Максвелла.

). - М.: Наука, 1986. - 176 с, ил. - (Серия «История науки и техники»).

За всю историю науки сделано немало открытий. Однако лишь с немногими из них нам приходится сталкиваться каждый день. Невозможно представить себе современную жизнь и без того, что сделал Герц Генрих Рудольф.

Этот немецкий физик стал основоположником динамики и доказал всему миру факт существования электромагнитных волн. Именно благодаря его исследованиям мы пользуемся телевидением и радио, которые прочно вошли в быт каждого человека.

Семья

Генрих Герц родился 22.02.1857 г. Его отец - Густав - по роду своей деятельности был адвокатом, после дослужившимся до сенатора города Гамбурга, в котором и проживала семья. Мать мальчика - Бетти Августа. Она была дочерью известного кельнского основателя банка. Стоит сказать о том, что это учреждение до сих пор функционирует в Германии. Генрих был первенцем Бетти и Густава. Позже в семье появилось еще три мальчика и одна девочка.

Школьные годы

В детстве Генрих Герц был слабым и болезненным мальчиком. Именно поэтому ему не нравились подвижные игры и физические упражнения. Но зато Генрих с огромным увлечением читал различные книги и занимался изучением иностранных языков. Все это способствовало тренировке памяти. Существуют интересные факты биографии будущего ученого, которые говорят о том, что мальчик сумел самостоятельно выучить арабский язык и санскрит.

Родители полагали, что их первенец непременно станет юристом, пойдя по стопам отца. Мальчика отдали в Гамбургское реальное училище. Там он должен был изучать юриспруденцию. Однако на одном из уровней обучения в училище стали проводиться занятия по физике. И с этого момента интересы Генриха коренным образом изменились. К счастью, его родители не настаивали на изучении юридического дела. Они позволили мальчику найти свое призвание в жизни и перевели его в гимназию. По выходным дням Генрих занимался в школе ремесел. Много времени мальчик проводил за чертежами, изучая столярное дело. Будучи школьником, он предпринял свои первые попытки создания приборов и аппаратов для изучения физических явлений. Все это свидетельствовало о том, что ребенок тянется к знаниям.

Студенческие годы

В 1875 г. Генрих Герц получил аттестат зрелости. Это дало ему право поступать в университет. В 1875 г. он уехал в Дрезден, где стал студентом высшего технического училища. На первых порах учеба в этом заведении нравилась юноше. Однако вскоре Генрих Герц осознал, что карьера инженера - это не его призвание. Юноша оставил училище и уехал в Мюнхен, где его приняли сразу на второй курс университета.

Путь в науку

Будучи студентом, Генрих стал стремиться к исследовательской деятельности. Но вскоре молодой человек понял, что получаемых в университете знаний для этого явно недостаточно. Именно поэтому, получив диплом, он поехал в Берлин. Здесь, в столице Германии, Генрих стал студентом университета и устроился работать ассистентом в лабораторию Германа Гельмгольца. Этот крупнейший физик того времени заметил талантливого молодого человека. Вскоре между ними установились хорошие взаимоотношения, позже перешедшие не только в тесную дружбу, но и в научное сотрудничество.

Получение докторской степени

Память о великом ученом

В 1892 году Герц перенес серьезную мигрень, после которой у него была диагностирована инфекция. Ученого несколько раз прооперировали, пытаясь избавить от недуга. Однако в возрасте тридцати шести лет Герц Генрих Рудольф скончался от заражения крови. До самых последних дней знаменитый физик работал над своим трудом «Принципы механики, изложенные в новой связи». В этой книге Герц пытался осмыслить свои открытия, наметив дальнейшие пути изучения

После смерти ученого данный труд был завершен и подготовлен к изданию Германом Гельмгольцем. В предисловии к этой книге он указал на то, что Герц являлся самым талантливым из его учеников, и что его открытия впоследствии определят развитие науки. Эти слова стали пророческими. Интерес к открытиям ученого появился у исследователей уже спустя несколько лет после его смерти. А в 20 веке на основе работ Герца стали развиваться практически все направления, которые принадлежат современной физике.

В 1925 г. за открытие законов о соударении электронов с атомом ученый был награжден Нобелевской премией. Получил ее племянник великого физика - Густав Людвиг Герц. В 1930 г. Международная Электротехническая комиссия приняла новую единицу системы измерения. Ею стал Герц (Гц). Это частота, соответствующая одному периоду колебаний в течение секунды.

В 1969 г. на территории Восточной Германии возвели мемориал им. Г. Герца. В 1987 г. была учреждена медаль Heinrich Hertz IEEE. Ее ежегодное вручение производится за выдающиеся достижения в области эксперимента и теории с использованием каких-либо волн. В честь Герца назвали даже лунный кратер, который находится позади восточного края небесного тела.