Является ли функция y x. Основные свойства функции

Функция - это математическая величина, показывающая зависимость одного элемента «у» от другого «х».

Иначе сказать: зависимость у называется функцией переменной величины х , если каждому значению, которое может принимать х соответствует одно или несколько определяемых значений у . Переменная х - это аргумент функции .

Величина у всегда зависит от величины х , следовательно, аргумент х является независимой переменной , а функция у - зависимой переменной .

Поясним на примере:

Пусть Т - это температура кипения воды , а Р - атмосферное давление. При наблюдении установлено, что каждому значению, которое может принимать Р , соответствует всегда одно и то же значение Т . Таким образом, Т - это функция аргумента Р .

Функциональная зависимость Т от Р позволяет при наблюдении температуры кипения воды без барометра определять давление по специальным таблицам, например таким:

Видно, что есть значения аргумента Т , которые температура кипения принимать не может, например, она не может быть меньше «абсолютного нуля» (- 273 °С). То есть, невозможному значению Т = - 300 °С, не соответствует никакое значение Р . Поэтому в определении сказано: «каждому значению, которое может принимать х…» , а не каждому значению х…

При этом Р является функцией аргумента Т . Таким образом, зависимость Р от Т позволяет, при наблюдении за давлением без термометра определять температуру кипения воды по аналогичной таблице:

Второе определение функции.

Если каждому значению аргумента х отвечает одно значение функции у , то функция называется однозначной ; если два и более, - то многозначной (двузначной, трехзначной). Если не оговаривается, что функция многозначна, следует понимать, что она однозначна.

Например:

Сумма (S ) углов многоугольника - это функция числа (n ) сторон. Аргумент n может принимать только целые значения, но не меньше, чем 3 . Зависимость S от n выражается через формулу:

S = π (n - 2).

За единицу измерения в данном примере принят радиан . При этом n - это функция аргумента S и функциональная зависимость n от S выражается формулой:

n = S / π + 2.

Аргумент S может принимать только значения, которые кратны π , (π , 2 π , 3 π и т.д.).

Поясним на еще одном примере :

Сторона квадрата х является функцией его площади S (x = √ S ). Аргумент может принимать любые положительные значения.

Аргумент - это всегда переменная величина , функция, обычно, тоже переменная величина, зависящая от аргумента, но не исключена возможность ее постоянства.

Например:

Расстояние движущейся точки от неподвижной - это функция времени пребывания в пути, она обычно меняется, но при движении точки по окружности расстояние от центра остается постоянным.

При этом, продолжительность движения по окружности не является функцией расстояния от центра.

Таким образом, когда функция является постоянной величиной , то аргумент и функцию нельзя менять местами.

ФУНКЦИЯ ФУНКЦИЯ (от латинского functio - исполнение, осуществление), 1) деятельность, обязанность, работа ; внешнее проявление свойств какого-либо объекта в данной системе отношений (например, функция органов чувств, функция денег). 2) Функция в социологии - роль, которую выполняет определенный социальный или процесс по отношению к целому (например, функция государства, семьи и т.д. в обществе). 3) Функция в математике - соответствие между переменными величинами, в силу которого каждому значению одной величины x (независимого переменного, аргумента) соответствует определенное значение другой величины y (зависимого переменного, функции). Функции могут быть заданы, например, формулой, графиком, таблицей, правилом.

Современная энциклопедия . 2000 .

Синонимы :

Смотреть что такое "ФУНКЦИЯ" в других словарях:

    - (лат. functio – исполнение) обязанность, круг деятельности. «Функция – это существование, мыслимое нами в действии» (Гёте). Наука о функциях органов живых существ – физиология; специальная наука о функциях нервной системы – физиология органов… … Философская энциклопедия

    функция - Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

    См … Словарь синонимов

    - (лат. functio). В физиологии: отправление каким либо органом ему одному свойственных действий, как напр., дыхание, пищеварение. 2) в математике: величина, зависящая от другой переменной величины. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка

    Функция - 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

    Функция - (от латинского functio исполнение, осуществление), 1) деятельность, обязанность, работа; внешнее проявление свойств какого–либо объекта в данной системе отношений (например, функция органов чувств, функция денег). 2) Функция в социологии роль,… … Иллюстрированный энциклопедический словарь

    - (от лат. functio исполнение осуществление),..1) деятельность, обязанность, работа; внешнее проявление свойств какого либо объекта в данной системе отношений (напр., функция органов чувств, функция денег)2)] Функция в социологии роль, которую… … Большой Энциклопедический словарь

    ФУНКЦИЯ, в математике одно из основных понятий, выражение, определяющее регулярную зависимость между двумя множествами переменных величин, заключающуюся в том, что каждому элементу одного множества соответствует определенная, единственная… … Научно-технический энциклопедический словарь

    - (function) Взаимосвязь между двумя и более переменными. Если у является функцией от х и записывается в виде y=f(x), то, если значение аргумента х известно, функция позволяет показывает, как найти значение у. Если у – однозначная функция от х, то… … Экономический словарь

    - (от лат. исполняю, совершаю) центр, понятие в методологии функционального и структурно функционального анализа об в. Понятие “Ф.” стало активно использоваться в социальных науках со вт. пол. 19 в. в связи с проникновением сначала… … Энциклопедия культурологии

Книги

  • Функция оргазма , В. Райх. Предисловие к монографии д-ра Вильгельма Райха`Функция оргазма`:`В октябре 1957 г. агенты американского правительства нагрянули в издательство Института оргона в Нью-Йорке. Они изъяли все…
  • Функция оргазма , В. Райх. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Предисловие к монографии д-ра Вильгельма Райха "Функция оргазма" :"В октябре 1957 г. агенты…

Пределы и непрерывность

Множества

Под множеством понимается совокупность однородных объектов. Объекты, которые образуют множество, называются элементами или точками этого множества. Множества обозначают прописными буквами, а их элементы – строчными. Если a является элементом множества A , то используется запись a ÎA . Если b не является элементом множества A , то это записывается так: b ÏA . Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается так: Ø.

Если множество B состоит из части элементов множества A или совпадает с ним, то множество B называют подмножеством множества и обозначают B ÌA .

Два множества называют равными , если они состоят из одних и тех же элементов.

Объединением двух множеств A и B называется множество C , состоящее из всех элементов, принадлежащих хотя бы одному из множеств: C =A ÈB .

Пересечением двух множеств A и B называется множество C , состоящее из всех элементов, принадлежащих каждому из данных множеств: C =A ÇB .

Разностью множеств A и B называется множество E A , которые не принадлежат множеству B : .

Дополнением множества A ÌB называется множество C , состоящее из всех элементов множества B , не принадлежащих A .

Множества, элементами которых являются действительные числа, называются числовыми :

При этом N ÌZ ÌQ ÌR , I ÌR и R =I ÈQ .

Множество X , элементы которого удовлетворяют неравенству называется отрезком (сегментом) и обозначается [a ; b ]; неравенству a <x <b интервалом и обозначается () ; неравенствам и - полуинтервалами и обозначаются соответственно и . Также часто приходится иметь дело с бесконечными интервалами и полуинтервалами: , , , и . Все их удобно называть промежутками .

Интервал , т.е. множество точек удовлетворяющих неравенству (где ), называется -окрестностью точки a .

Понятие функции. Основные свойства функции

Если каждому элементу x множества X ставится в соответствие единственный элемент y множества Y , то говорят, что на множестве X задана функция y =f (x ). При этом x называют независимой переменной или аргументом , а y зависимой переменной или функцией , а f обозначает закон соответствия. Множество X называют областью определения функции, а множество Y областью значений функции.

Существует несколько способов задания функций.


1) Аналитический способ – функция задается формулой вида y =f (x ).

2) Табличный способ – функция задается таблицей, содержащей значения аргумента и соответствующие им значения функции y =f (x ).

3) Графический способ – изображение графика функции, т.е. множества точек (x ; y ) координатной плоскости, абсциссы которых представляют значения аргумента , а ординаты – соответствующие им значения функции y =f (x ).

4) Словесный способ – функция описывается правилом ее составления. Например, функция Дирихле принимает значение 1, если x – рациональное число и 0, если x – иррациональное число.

Выделяют следующие основные свойства функций.

1 Четность и нечетность Функция y =f (x ) называется четной , если для любых значений x из области ее определения выполняется f (–x )=f (x ), и нечетной , если f (–x )=–f (x ). Если не выполняется ни одно из перечисленных равенств, то y =f (x ) называется функцией общего вида . График четной функции симметричен относительно оси Oy , а график нечетной функции симметричен относительно начала координат.

2 Монотонность Функция y =f (x ) называется возрастающей (убывающей ) на промежутке X , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции. Пусть x 1 ,x 2 ÎX , x 2 >x 1 . Тогда функция возрастает на промежутке X , если f (x 2)>f (x 1), и убывает, если f (x 2)<f (x 1).

Наряду с возрастающими и убывающими функциями рассматривают неубывающие и невозрастающие функции. Функция называется неубывающей (невозрастающей ), если при x 1 ,x 2 ÎX , x 2 >x 1 выполняется неравенство f (x 2)≥f (x 1) (f (x 2)≤f (x 1)).

Возрастающие и убывающие функции, а также невозрастающие и неубывающие функции называют монотонными.

3 Ограниченность Функция y =f (x ) называется ограниченной на промежутке X , если существует такое положительное число M >0, что |f (x )|≤M для любого x ÎX . В противном случае функция называется неограниченной на X .

4 Периодичность Функция y =f (x ) называется периодической с периодом T ≠0, если для любых x из области определения функции f (x +T )=f (x ). В дальнейшем под периодом будем понимать наименьший положительный период функции.

Функция называется явной , если она задана формулой вида y =f (x ). Если функция задана уравнением F (x , y )=0, не разрешенным относительно зависимой переменной y , то ее называют неявной .

Пусть y =f (x ) есть функция от независимой переменной , определенная на множестве X с областью значений Y . Поставим в соответствие каждому y ÎY единственное значение x ÎX , при котором f (x )=y .Тогда полученная функция x =φ (y ), определенная на множестве Y с областью значений X , называется обратной и обозначается y =f –1 (x ). Графики взаимно обратных функций симметричны относительно биссектрисы первой и третьей координатных четвертей .

Пусть функция y =f (u ) есть функция переменной u , определенной на множестве U с областью значений Y , а переменная u в свою очередь является функцией u =φ (x ), определенной на множестве X с областью значений U . Тогда заданная на множестве X функция y =f (φ (x )) называется сложной функцией (композицией функций, суперпозицией функций, функцией от функции).

Элементарные функции

К основным элементарным функциям относят:

Из основных элементарных функций новые функции могут быть получены при помощи алгебраических действий и суперпозицией функций.

Функции, построенные из основных элементарных функций с помощью конечного числа алгебраических действий и конечного числа операций суперпозиции, называются элементарными .

Алгебраической называется функция, в которой над аргументом проводится конечное число алгебраических действий. К числу алгебраических функций относятся:

· целая рациональная функция (многочлен или полином)

· дробно-рациональная функция (отношение двух многочленов)

· иррациональная функция (если в составе операций над аргументом имеется извлечение корня).

Всякая неалгебраическая функция называется трансцендентной . К числу трансцендентных функций относятся показательная, логарифмическая, тригонометрические, обратные тригонометрические функции.

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций.

Определение
Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функцией .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.