После какой цифры идет бесконечность. Бесконечное число имен бесконечности

Когда-то в детстве, мы учились считать до десяти, потом до ста, потом до тысячи. Так какое самое большое число вы знаете? Тысяча, миллион, миллиард, триллион... А дальше? Петаллион, скажет кто-то, и будет не прав, ибо путает приставку СИ, с совсем другим понятием.

На самом деле вопрос не так прост, как кажется на первый взгляд. Во-первых мы говорим об именовании названий степеней тысячи. И тут, первый нюанс, который многие знают по американским фильмам - наш миллиард они называют биллионом.

Дальше больше, существует два вида шкал - длинная и короткая. В нашей стране используется короткая шкала. В этой шкале на каждом шаге мантиса увеличивается на три порядка, т.е. умножаем на тысячу - тысяча 10 3 , миллион 10 6 , миллиард/биллион 10 9 , триллион (10 12). В длинной шкале после миллиарда 10 9 идет биллион 10 12 , а в дальнейшем мантиса уже увеличивается на шесть порядков, и следующее число, которое называется триллион, уже обозначает 10 18 .

Но вернемся к нашей родной шкале. Хотите знать, что идет после триллиона? Пожалуста:

10 3 тысяча
10 6 миллион
10 9 миллиард
10 12 триллион
10 15 квадриллион
10 18 квинтиллион
10 21 секстиллион
10 24 септиллион
10 27 октиллион
10 30 нониллион
10 33 дециллион
10 36 ундециллион
10 39 додециллион
10 42 тредециллион
10 45 кваттуордециллион
10 48 квиндециллион
10 51 cедециллион
10 54 септдециллион
10 57 дуодевигинтиллион
10 60 ундевигинтиллион
10 63 вигинтиллион
10 66 анвигинтиллион
10 69 дуовигинтиллион
10 72 тревигинтиллион
10 75 кватторвигинтиллион
10 78 квинвигинтиллион
10 81 сексвигинтиллион
10 84 септемвигинтиллион
10 87 октовигинтиллион
10 90 новемвигинтиллион
10 93 тригинтиллион
10 96 антригинтиллион

На этом числе наша короткая шкала не выдерживает, и в дальшейшем мантиса увеличивается прогрессивно.

10 100 гугол
10 123 квадрагинтиллион
10 153 квинквагинтиллион
10 183 сексагинтиллион
10 213 септуагинтиллион
10 243 октогинтиллион
10 273 нонагинтиллион
10 303 центиллион
10 306 центуниллион
10 309 центдуоллион
10 312 центтриллион
10 315 центквадриллион
10 402 центтретригинтиллион
10 603 дуцентиллион
10 903 трецентиллион
10 1203 квадрингентиллион
10 1503 квингентиллион
10 1803 сесцентиллион
10 2103 септингентиллион
10 2403 окстингентиллион
10 2703 нонгентиллион
10 3003 миллиллион
10 6003 дуомилиаллион
10 9003 тремиллиаллион
10 3000003 милиамилиаиллион
10 6000003 дуомилиамилиаиллион
10 10 100 гуголплекс
10 3×n+3 зиллион

Гугол (от англ. googol) - число, в десятичной системе счисления изображаемое единицей со 100 нулями:
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
1938 году американский математик Эдвард Каснер (Edward Kasner, 1878-1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirotta), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» («New Names in Mathematics»), где и рассказал любителям математики о числе гугол.
Термин «гугол» не имеет серьёзного теоретического и практического значения. Каснер предложил его для того, чтобы проиллюстрировать разницу между невообразимо большим числом и бесконечностью, и с этой целью термин иногда используется при обучении математике.

Гуголплекс (от англ. googolplex) - число, изображаемое единицей с гуголом нулей. Как и гугол, термин «гуголплекс» был придуман американским математиком Эдвардом Каснером (Edward Kasner) и его племянником Милтоном Сироттой (Milton Sirotta).
Число гугол больше числа всех частиц в известной нам части вселенной, которое составляет величину от 1079 до 1081. Таким образом, число гуголплекс, состоящее из (гугол+1) цифр, в классическом «десятичном» виде записать невозможно, даже если всю материю в известной части вселенной превратить в бумагу и чернила или в компьютерное дисковое пространство.

Зиллион (англ. zillion) - общее название для очень больших чисел.

Этот термин не имеет строгого математического определения. В 1996 году Конвей (англ. J. H. Conway) и Гай (англ. R. K. Guy) в своей книге англ. The Book of Numbers определили зиллион n-ой степени как 10 3×n+3 для системы наименования чисел с короткой шкалой.

Существуют и более длинные группы цифр, которые, находясь на конце чисел, сохраняются и в их произведении. Число таких групп цифр, как мы покажем, бесконечно велико.

Мы знаем двузначные группы цифр, обладающие этим свойством: это 25 и 76. Для того чтобы найти трехзначные группы, нужно приписать к числу 25 или 76 спереди такую цифру, чтобы полученная трехзначная группа цифр тоже обладала требуемым свойством.

Какую же цифру следует приписать к числу 76? Обозначим ее через k. Тогда искомое трехзначное число изобразится:

100k + 76.

Общее выражение для чисел, оканчивающихся этой группой цифр, таково:

1000а + 100k + 76, 1000b + 100k + 76 и т. д.

Перемножим два числа этого вида; получим:

1000000аb + 100000ak + 100000bk + 76000а + 76000b + 10000k 2 + 15200k + 5776.

Все слагаемые, кроме двух последних, имеют на конце не менее трех нулей. Поэтому произведение оканчивается на 1006+76, если разность

15200k + 5776 - (100k + 76) = 15100k + 5700 = 15000k + 5000 + 100 (k + 7)

делится на 1000. Это, очевидно, будет только при k = 3.

Итак, искомая группа цифр имеет вид 376. Поэтому и всякая степень числа 376 оканчивается на 376. Например:

376 2 = 141376.

Если мы теперь захотим найти четырехзначную группу цифр, обладающую тем же свойством, то должны будем приписать к 376 еще одну цифру спереди. Если эту цифру обозначим через l, то придем к задаче: при каком l произведение

(10000а + 1000l + 376) (10000b + 1000l + 376)

оканчивается на 1000l + 376? Если в этом произведении раскрыть скобки и отбросить все слагаемые, которые оканчиваются на 4 нуля и более, то останутся члены

752000l + 141376.

Произведение оканчивается на 1000l + 376, если разность

752000l + 141376 - (1000l + 376) = 751000l + 141000 = (750000l + 140000) + 1000(l + 1)

делится на 10000. Это, очевидно, будет только при l = 9.

Искомая четырехзначная группа цифр 9376.

Полученную четырехзначную группу цифр можно дополнить еще одной цифрой, для чего нужно рассуждать точно так же, как и выше. Мы получим 09376. Проделав еще один шаг, найдем группу цифр 109376, затем 7109376 и т. д.

Такое приписывание цифр слева можно производить неограниченное число раз. В результате мы получим "число", у которого бесконечно много цифр:

7109376.

Подобные "числа" можно складывать и умножать по обычным правилам: ведь они записываются справа налево, а сложение и умножение ("столбиком") также производятся справа налево, так что в сумме и произведении двух таких чисел можно вычислять одну цифру за другой - сколько угодно цифр.

Интересно, что написанное выше бесконечное "число" удовлетворяет, как это ни кажется невероятным, уравнению

Х 2 = х.

Б самом деле, квадрат этого "числа" (т. е. произведение его на себя) оканчивается на 76, так как каждый из сомножителей имеет на конце 76; по той же причине квадрат написанного "числа" оканчивается на 376; оканчивается на 9376 и т. д. Иначе говоря, вычисляя одну за другой цифры "числа" x 2 , где х =... 7109376, мы будем получать те же цифры, которые имеются в числе х, так что х 2 = х.

Мы рассмотрели группы цифр, оканчивающиеся на 76 * . Если аналогичные рассуждения провести для групп цифр, оканчивающихся на 5, то мы получим такие группы цифр:

5, 25, 625, 0625, 90625, 890625, 2890 625 и т. д.

* (Заметим, что двузначная группа цифр 76 может быть найдена при помощи рассуждений, аналогичных приведенным выше: достаточно решить вопрос о том, какую цифру надо спереди приписать к цифре 6, чтобы полученная двузначная группа цифр обладала рассматриваемым свойством. Поэтому "число" ... 7109376 можно получить, приписывая спереди одну за другой цифры к шестерке. )

В результате мы сможем написать еще одно бесконечное "число"

2890625,

также удовлетворяющее уравнению х 2 = х. Можно было бы показать, что это бесконечное "число" "равно"

5 2 2 2...

Полученный интересный результат на языке бесконечных "чисел" формулируется так: уравнение х 2 = х имеет (кроме обычных х = 0 и x = 1) два "бесконечных" решения:

Х = ...7109376 и x = ...2890625,

а других решений (в десятичной системе счисления) не имеет * .

* (Бесконечные "числа" можно рассматривать не только в десятичной, айв других системах счисления. Такие числа, рассматриваемые в системе счисления с основанием р, называются р-адическими числами. Кое-что об этих числах можно прочесть в книге Е. Б. Дынкина и В. А. Успенского "Математические беседы" (Гостехиздат, 1952). )

Две вещи действительно бесконечны:
Вселенная и человеческая глупость.
Впрочем, насчет Вселенной у меня
есть некоторые сомнения.
Альберт Эйнштейн

Недавно мы уже поднимали этот вопрос, но он так важен, что стоит остановиться на нём подробнее.

Если про один объект иногда говорят такие же слова, как про другой, то это не значит, что эти объекты имеют одинаковые свойства.

Вышло длинное и непонятное предложение, поэтому поясню примером:
Можно сказать «позвони по телефону», а можно сказать «позвони в колокол» - очень разные действия, но один глагол. Из этого нельзя делать вывод, что все остальные действия с телефоном (приём SMS, память на 200 номеров и так далее) свойственны колоколу. Это настолько очевидно, что данный абзац выглядит абсурдным.

Но почему тогда многие так легко оперируют со словом бесконечность, как будто это число? Да, к бесконечности можно применять некоторые действия, которые успешно проходят с числами (сделав необходимые оговорки ):
2 + ∞ = ∞,
∞ - 5 = ∞,
2 * ∞ = ∞,
∞ / 5 = ∞,
∞ + ∞ = ∞ (более того, ряд вещественных чисел часто расширяют ещё парой элементов +∞ и -∞, но строго оговаривают , как с ними можно обращаться).

Это значит, что далеко не всё с такими «бесконечностями» можно делать. Например, ∞ - ∞ = ? (здесь мы имеем неопределённость, так как не можем дать ответ, не зная природы этих двух «бесконечностей»). Во всяком случае, наивно сразу говорить, что разница будет нулевой.

А уж если начинаются разговоры про то, что какая-то величина стремится к нулю или бесконечности, то очень часто до корректных рассуждений дело так и не доходит. Кстати, полгода назад мы разбирались с бытовым применением понятия бесконечности . Нам тогда удалось «доказать», что сумма катетов треугольника всегда равна гипотенузе. Это был не очень простой, но полезный пример. Есть куда более древние и знаменитые построения, которые выглядят столь просто, что совершенно не ясно, как с ними возможны какие-то проблемы.

Давайте вспомним классическую апорию Зенона:
Если известно, что Ахиллес бегает в десять раз быстрее черепахи, а находится от неё на расстоянии в 1 километр, то за время, которое Ахиллес потратит на этот километр, черепаха проползёт 100 метров. Соответственно, когда Ахиллес пробежит ещё 100 метров, черепаха проползёт 10 метров, и так далее. Процесс будет продолжаться до бесконечности, а Ахиллес никогда не сможет догнать черепаху, хотя перемещается быстрее.

Способность говорить внятные вещи по поводу таких задач необходима, чтобы хоть как-то понимать рассуждения о стремлении, пределе, бесконечности и прочих интуитивно ясных, но достаточно сложных понятиях. Без этого разговор обычно скатывается в «у кого голос громче», хотя смысл математической науки вовсе не в том, чтобы любой ценой не дать себя переубедить. Увы, последние десятилетия всё меньше людей отличают корректное от наукоподобного , поэтому часто более важным считается пере кричать убедить, чем приблизиться к истине.

Итак, каким образом можно разрешить проблему с Ахиллесом и черепахой? Пожалуйста, не пишите, что как только Ахиллес пробежит второй километр, черепаха останется далеко позади. Это очевидно каждому, но совершенно не помогает. Тут нужно почувствовать проблему в исходном решении, а не придумать свой взгляд на то же условие.

Хорошего вам дня!

Философские проблемы дают себя знать, когда внутри одной бесконечности вдруг обнаруживается другая. Например, выбирая среди всех чисел только четные, мы снова получим бесконечную последовательность 2, 4, 6, … Для того, чтобы не путаться с бесконечностями, математики стали говорить о множествах и мощностях: множество натуральных чисел, хотя и бесконечно, равно по мощности множеству четных. Это следует из существования простого правила, устанавливающего связь между этими двумя множествами: достаточно разделить на 2 любое четное число или умножить на 2 любое натуральное, чтобы убедиться во взаимной однозначности этого правила.

Похожее правило — только немного более сложное — взаимнооднозначно связывает натуральные числа и со всеми простыми дробями. Иначе говоря, простые дроби тоже можно перенумеровать. А значит, и множество рациональных чисел имеет ту же мощность, что и множество рациональных, то есть и эти две бесконечности «равны» друг другу. Так, может быть, бесконечность едина и все бесконечные множества в этом смысле всегда «равны» друг другу? Но нет: во-первых, иррациональные числа перенумеровать невозможно — и это множество оказывается «больше», чем множество натуральных чисел, — а во-вторых, для любого множества можно построить «большее».

Немецкий математик-изгой

Оба эти утверждения доказал немецкий математик Георг Кантор ( , 1845-1918). Раз бесконечности разные, то для них тоже можно ввести свои имена — так сказать, трансфинитные числа. Мощность натурального ряда Кантор обозначил буквой алеф из древнееврейского алфавита с индексом ноль: א o , а для мощности континуума — это непрерывный отрезок прямой или вся прямая — он использовал ту же букву, но с индексом единица: א l , тем самым предполагая, что никакого другого трансфинитного числа между א o и א l быть не может.

О том, что континуум можно считать множеством точек, стало известно незадолго до Кантора, но он смог доказать это еще раз, сумев «перенумеровать» все точки прямой — точнее, единичного отрезка. Только в роли «номеров» в этом случае выступают не натуральные числа, а бесконечные последовательности цифр. Достаточно даже просто нулей и единиц (если считать, что каждый «номер» записан в двоичной системе): множество дробей вида 0,100010100111… полностью воплощает в себе множество всех рациональных чисел вместе с иррациональными от 0 до 1. Однако из теории Кантора следовало и нечто большее: его «алефы» позволяли нумеровать точки, для которых прямая слишком коротка (отсюда и название трансфинитные — то есть находящиеся «за бесконечностью»).

Идеи Кантора стоили ему больших несчастий. Многие из его коллег нашли в теории «алефов» не просто множество математических парадоксов и несуразностей — это было бы полбеды. В рассуждениях Кантора просматривалась его глубокая религиозность и желание постичь «Абсолют». По мере того, как он развивал свою теорию, у него все больше разлаживались отношения с начальством по университету в городе Галле , и от нее отказывались даже те математики, которые поначалу отнеслись к ней восторженно. Центром математической мысли в конце XIX века была Франция , но двое ведущих французских математиков Шарль Эрмит (Charles Hermite , 1822-1901) и Поль Эмиль Аппель ( , 1855-1930) высказывались даже против того, чтобы переводить сочинения Кантора на французский язык . Можно было ожидать, что новые идеи поддержит патриарх французской математики, человек, во многом предвосхитивший её будущее развитие в ХХ веке, — Анри Пуанкаре ( , 1854-1912)… Но нет — и он тоже отказывался разговаривать «об актуальной бесконечности».

К концу века на самого Кантора все чаще нападают приступы депрессии . Постепенно становится очевидно, что речь идет о серьезном заболевании — маниакально-депрессивном психозе. Эмиль Борель (Émile Borel , 1871-1956), один из молодых поклонников теории множеств, постепенно стал чувствовать отторжение к ней, которое только усиливалось от слухов о болезнях других математиков. Спустя много лет после этого он написал своему другу Полю Валери (Paul Valéry , 1871-1945), что ему пришлось отказаться от занятий теорией множеств «из-за переутомления, которое на него навалилось и заставило опасаться серьезных заболеваний, в том случае, если бы он продолжил свою работу».

Вопрос закрыл ещё один авторитетный математик — Жак Адамар ( , 1865-1963), заключивший, что весь сюжет вышел за «пределы математики» и стал относиться «к психологии, к свойствам нашего разума». Это решение многим показалось остроумным, но, по мнению Лорена Грэхэма и Жан-Мишеля Кантора, оно повлекло за собой уход французской математики с передовой. Увидев серьезное математическое содержание в сравнении размеров бесконечных множеств и упорядочении их бесконечных же подмножеств, математики России смогли построить школу, долгое время остававшуюся первой и даже к настоящему времени не до конца утратившую свое значения.

Число Бога

Первые одиннадцать лет своей жизни создатель теории множеств провел в Санкт-Петербурге . Однако климат этого города оказался слишком вредным для его отца, и в 1856 году вся семья перебралась в значительно более благоприятный климат Франкфурта-на-Майне . Изучение естественных и технических наук осуществлялось юным Кантором в самых разных городах Европы — от Дармштадта до Цюриха — и сопровождалась вполне ожидаемой борьбой с родителями, с большей радостью видевших в своем ребенке инженера, а не математика с явными философскими склонностями. Однако постепенно Георг преодолел их сопротивление и, как уже говорилось, очутился в университете Галле.

Свои философские взгляды он определял формулой «умеренный аристотелевский реализм», однако в них явственно угадывается платонизм пифагорейского толка. Актуальная бесконечность, выраженная трансфинитными числами, занимает у него промежуточное положение между конечным и бесконечным абсолютно — то есть божественным. Понимая, что такая постановка вопроса может быть с большей вероятностью близка философам, а не математикам, главное свое сочинение «Математически-философский опыт в учении о бесконечном», он и адресовал скорее философам, чем математикам:

[Я подразумевал] двоякого рода читателей — с одной стороны, философов, которые следили за развитием математики вплоть до новейшего времени, а с другой — математиков, которые знакомы с важнейшими фактами древней и новой философии .

И такого рода читателей он нашел — у себя на родине. Неудивительно, что ими оказались, в первую очередь, также платоники пифагорейского толка и христианские мистики. Самый, пожалуй, известный из них у нас сейчас — (1882-1937) — понимал, в каком смысле мы можем говорить о числе, которое больше любого натурального числа:

В этом же смысле мы можем сказать, что могущество Божие актуально-бесконечно, потому что оно, будучи определенным (ибо в Боге нет изменения), в то же время больше всякого конечного могущества .

Метафора эта вовсе и не была метафорой в глазах самого Флоренского, для которого особой границы между теологией и математикой даже не подразумевалось. А кроме того, то религиозно-философское направление, которое Флоренский развивал в начале ХХ века, постулировало, что «имя Божие и есть сам Бог». Но имя это само по себе представляло бесконечное множество имен, включающее и числа.

Прощай, Лузитания!

В 1900 году Флоренский поступил на физико-математический факультет МГУ , но четыре года спустя оставил занятия математикой ради церковной и богословской карьеры. Однако уже в советское время он прекратил занятия также философией и теологией, полностью погрузившись в исключительно практические инженерные вопросы. Он много занимался электротехникой, принимал участие в разработке плана ГОЭЛРО , изучал свойства вечной мерзлоты. Все это не уберегло его от репрессий новой власти, и после нескольких арестов в 1937 году он был расстрелян.

Уход из математики не означал для Флоренского ухода из математического сообщества. Среди наиболее близких ему людей оставались Николай Николаевич Лузин (1883-1950) и Дмитрий Федорович Егоров (1869-1931). Недостаточно сказать, что оба они крупные математики: в 1923 году Егорова выбрали президентом и назначили директором Института математики и механики I МГУ, именно в нем современные историки видят ключевую фигуру в создании и развитии теории функций. Среди выдающихся успехов Лузина не только собственно математические результаты, но и уникальная педагогическая энергия: его учениками или учениками его учеников побывали практически все крупные российские математики. , сложившийся уже в 20-е годы, получил название «Лузитании». Именно им уже в 30-е годы предстояло сделать открытия, открывшие дорогу к таким популярным сегодня темам, как фракталы и хаос.

Очень часто судьбу науки в меньшей степени определяет успех в решении задач, а в большей — правильный их выбор. Кто знает, какие доводы приводит сам себе математик, убеждая себя взяться за решение одной из них, и не браться за решение других. В случае Егорова и Лузина, по мнению Лорена Грэхэма и Жан-Мишеля Кантора, принципиальную важность имели их религиозные взгляды и способность увидеть за игрой в наименования далекие математические перспективы. Философские идеи Кантора, так сильно затруднившие принятие его математики в странах Западной Европы и, прежде всего, в рационалистической Франции, сыграли прямо противоположную роль в России, где существовала противоположная — мистическая — философская традиция.

Конечно, это утверждение довольно трудно доказать, и к нему следует относиться как к красивой и по своему продуктивной, но все же гипотезе. Его уже подвергли критике — вероятно, вполне справедливой — и наши математики, и наши философы. Но даже как гипотеза картина, предложенная западными исследователями, весьма привлекательна: за «серебрянным веком» российской поэзии и вообще искусств наступает «ренессанс» философии, ему на смену приходит «золотой век» математики. Потом, конечно, все проходит, вся красота если и не гибнет, то, по меньшей мере, калечится: в 31-м расстреливают Егорова, вскоре после этого открывается дело против Лузина, лишь чудом он избегает застенка, но каток репрессий не щадит его учеников… И все же воспоминание о красоте в прошлом остается, и созерцание её рождает уверенность — она была не случайной.

Новости партнёров

10 в 3003 степени

Споры о том, какая самая большая цифра в мире, ведутся постоянно. Разные системы исчисление предлагают разные варианты и люди не знают чему верить, и какую именно цифру считать самой большой.

Данный вопрос интересовал ученых еще со времен Римской империи. Наибольшая загвоздка кроется в определении, что такое «число», и что такое «цифра». В свое время люди длительное время считали самым большим числом дециллион, то есть 10 в 33 степени. Но, после того, как ученые стали активно изучать американскую и английскую метрические системы, было обнаружено, что самое большое число в мире это 10 в 3003 степени – миллеиллион. Люди в повседневной жизни считают, что самой большой цифрой является триллион. Причем, это довольно формально, поскольку после триллиона, названия просто не даются, ведь счет начинается слишком сложный. Однако, чисто теоретически, количество нулей можно прибавлять до бесконечности. Поэтому представить даже чисто визуально триллион и то, что следует за ним, является практически невозможным.

В римских цифрах

С другой стороны, определение «цифры» в понимании математиков, это немного иное. Под цифрой подразумевается знак, который принят повсеместно и используется для того, чтобы обозначить количество, выраженное в числовом эквиваленте. Под вторым понятием «число» подразумевается выражение количественных характеристик в удобном виде через использование цифр. Из этого следует, что числа состоят из цифр. Также важно то, что цифра обладает знаковыми свойствами. Они обусловлены, узнаваемы, неизменяемы. Числа тоже имеют знаковые свойства, но они вытекают из того, что числа состоят из цифр. Отсюда можно сделать вывод, что триллион, это вовсе не цифра, а число. Тогда, какая же самая большая цифра в мире, если это не триллион, который является числом?

Важно то, что цифры используются, как составляющие числа, но и не только это. Цифра впрочем это то же число, если мы говорим о каких-то вещах, считая их от нуля и до девяти. Такая система признаков применяется не только к привычным нам арабским цифрам, но также и к римским I, V, X, L, C, D, M. Это римские цифры. С другой стороны V I I I – это римское число. В арабском исчислении ему соответствует цифра восемь.

В арабских цифрах

Таким образом, получается, что цифрами считаются единицы счета от нуля до девяти, а все остальное числа. Отсюда вывод, что самой большой цифрой в мире получается девять. 9 – знак, а число это простая количественная абстракция. Триллион это число, и никак не цифра, а потому не может быть самой большой цифрой в мире. Триллионом можно назвать самое большое число в мире и то чисто номинально, поскольку числа можно считать до бесконечности. Число цифр же строго ограничено – от 0 и до 9.

Также следует помнить, что цифры и числа разных систем исчисления не совпадают, как мы видели из примеры с арабскими и римскими числами и цифрами. Это происходит потому, что цифры и числа это простые понятия, которые выдумывает сам человек. Поэтому число одной системы исчисления с легкостью может быть цифрой другой и наоборот.

Таким образом, самое большое число является неисчислимым, ведь его можно продолжать складывать до бесконечности из цифр. Что касается, собственно цифр, то в общепринятой системе, самой большой цифрой считается 9.